首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Each year, hundreds of thousands of domesticated farmed Atlantic salmon escape into the wild. In Norway, which is the world’s largest commercial producer, many native Atlantic salmon populations have experienced large numbers of escapees on the spawning grounds for the past 15–30 years. In order to study the potential genetic impact, we conducted a spatio-temporal analysis of 3049 fish from 21 populations throughout Norway, sampled in the period 1970–2010. Based upon the analysis of 22 microsatellites, individual admixture, FST and increased allelic richness revealed temporal genetic changes in six of the populations. These changes were highly significant in four of them. For example, 76% and 100% of the fish comprising the contemporary samples for the rivers Vosso and Opo were excluded from their respective historical samples at P = 0.001. Based upon several genetic parameters, including simulations, genetic drift was excluded as the primary cause of the observed genetic changes. In the remaining 15 populations, some of which had also been exposed to high numbers of escapees, clear genetic changes were not detected. Significant population genetic structuring was observed among the 21 populations in the historical (global FST = 0.038) and contemporary data sets (global FST = 0.030), although significantly reduced with time (P = 0.008). This reduction was especially distinct when looking at the six populations displaying temporal changes (global FST dropped from 0.058 to 0.039, P = 0.006). We draw two main conclusions: 1. The majority of the historical population genetic structure throughout Norway still appears to be retained, suggesting a low to modest overall success of farmed escapees in the wild; 2. Genetic introgression of farmed escapees in native salmon populations has been strongly population-dependent, and it appears to be linked with the density of the native population.  相似文献   

2.
3.
One of the major challenges for understanding the ecological impact of escaped farmed Atlantic salmon (Salmo salar L.) is predicting their dispersal patterns after an escape event. Here, we quantify the behaviour of escaped farmed salmon using a simulated-escape experiment within a Norwegian fjord system. Thirty-seven individuals were tagged with acoustic transmitters and their spatial distribution, horizontal movements and diving behaviour was monitored throughout the fjord and accompanying rivers using 29 acoustic receivers. A rapid movement away from the release site occurred. There was no movement into the rivers feeding the fjord and there was no preference for residence at the fish farms: nearly a third of the individuals had a final detection in the outer part of the fjord and no detections occurred from approximately 2 months after release. As it is unlikely that all fish died or remained undetected within the study area it is reasonable to assume that a substantial proportion of the fish moved out of the fjord system. If a recapture program is not implemented immediately after an escape event, we recommend spreading potential recapture efforts over a relatively large area.  相似文献   

4.
There is concern that the progeny resulting from the spawnings of escaped farmed Atlantic salmon may compete with and disrupt native salmon populations. This study compared, both in the hatchery and in the wild, fitness-related traits and examined interactions among farmed, native and hybrid 0+ parr derived from controlled crosses and reared under common conditions. The farmed salmon were seventh-generation fish from the principal commercial strain in Norway and native salmon were from the rivers Imsa and Lone, Norway. In the hatchery, farmed salmon were more aggressive than both native populations and tended to dominate them in pairwise contests. Farmed salmon were also more prone to risk, leaving cover sooner after a simulated predator attack, and had higher growth rates than native fish. Interbreeding between farmed and native fish generally resulted in intermediate expression of the above traits. There was, however, evidence of hybrid vigour in Lone/farmed crosses which were able to dominate both pure Lone and farmed parr in pairwise contests. In the wild, observations of habitat use and diet suggested that the populations compete for territory and food, and both farmed fish and hybrids expressed higher growth rates than native fish. Our results suggest that these innate differences in behaviour and growth, that probably are linked closely to fitness, will threaten native populations through competition and disruption of local adaptations.  相似文献   

5.
This paper reviews the literature on disease interaction between wild and farmed fish and recommends strategies to reduce the disease risks to both populations. Most, if not all, diseases of farmed fish originate in wild populations. The close contact between farmed and wild fish readily leads to pathogens exchange. Aquaculture creates conditions ( e.g. high stocking levels) conducive to pathogen transmission and disease; hence pathogens can overspill back, resulting in high levels of challenge to wild populations. This is exemplified by sea lice infections in farmed Atlantic salmon. Stocking with hatchery reared fish or aquaculture escapees can affect disease dynamics in wild populations. Whirling disease has been spread to many wild rainbow trout populations in the US with the release of hatchery reared stock. The greatest impact of aquaculture on disease in wild populations has resulted from the movement of fish for cultivation. Examples of exotic disease introduction following movement of live fish for aquaculture with serious consequences for wild populations are reviewed. The salmon parasite, Gyrodactylus salaris, has destroyed wild salmon populations in 44 Norwegian rivers. Crayfish plague has wiped out European crayfish over much of Europe. Eels numbers have declined in Europe and infection with the swimbladder nematode Anguillicola crassus has in part been blamed. The impact of disease in farmed fish on wild populations can mitigated. Risk analysis methods need to be refined and applied to live fish movement and new aquacultural developments. Appropriate biosecurity strategies, based on risk assessments, should be developed to reduce pathogen exchange and mitigate the consequences.  相似文献   

6.
In some wild Atlantic salmon populations, rapid declines in numbers of wild returning adults has been associated with an increase in the prevalence of farmed salmon. Studies of phenotypic variation have shown that interbreeding between farmed and wild salmon may lead to loss of local adaptation. Yet, few studies have attempted to assess the impact of interbreeding at the genome level, especially among North American populations. Here, we document temporal changes in the genetic makeup of the severely threatened Magaguadavic River salmon population (Bay of Fundy, Canada), a population that might have been impacted by interbreeding with farmed salmon for nearly 20 years. Wild and farmed individuals caught entering the river from 1980 to 2005 were genotyped at 112 single-nucleotide polymorphisms (SNPs), and/or eight microsatellite loci, to scan for potential shifts in adaptive genetic variation. No significant temporal change in microsatellite-based estimates of allele richness or gene diversity was detected in the wild population, despite its precipitous decline in numbers over the last two decades. This might reflect the effect of introgression from farmed salmon, which was corroborated by temporal change in linkage-disequilibrium. Moreover, SNP genome scans identified a temporal decrease in candidate loci potentially under directional selection. Of particular interest was a SNP previously shown to be strongly associated with an important quantitative trait locus for parr mark number, which retained its genetic distinctiveness between farmed and wild fish longer than other outliers. Overall, these results indicate that farmed escapees have introgressed with wild Magaguadavic salmon resulting in significant alteration of the genetic integrity of the native population, including possible loss of adaptation to wild conditions.  相似文献   

7.
Genetic interactions between farmed and wild conspecifics are of special concern in fisheries where large numbers of domesticated individuals are released into the wild. In the Atlantic salmon (Salmo salar), selective breeding since the 1970's has resulted in rapid genetic changes in commercially important traits, such as a doubling of the growth rate. Each year, farmed salmon escape from net pens, enter rivers, and interbreed with wild salmon. Field experiments demonstrate that genetic introgression may weaken the viability of recipient populations. However, due to the lack of diagnostic genetic markers, little is known about actual rates of gene flow from farmed to wild populations. Here we present a panel of 60 single nucleotide polymorphisms (SNPs) that collectively are diagnostic in identifying individual salmon as being farmed or wild, regardless of their populations of origin. These were sourced from a pool of 7000 SNPs comparing historical wild and farmed salmon populations, and were distributed on all but two of the 29 chromosomes. We suggest that the generic differences between farmed and wild salmon at these SNPs have arisen due to domestication. The identified panel of SNPs will permit quantification of gene flow from farmed to wild salmon populations, elucidating one of the most controversial potential impacts of aquaculture. With increasing global interest in aquaculture and increasing pressure on wild populations, results from our study have implications for a wide range of species.  相似文献   

8.
9.
The onset of exogenous feeding, when juveniles emerge from the gravel, is a critical event for salmonids where early emergence and large size provide a competitive advantage in the wild. Studying 131 farmed, hybrid and wild Norwegian Atlantic salmon families, originating from four wild populations and two commercial strains, we investigated whether approximately 10 generations of selection for faster growth has also resulted in increased somatic growth prior to the onset of exogenous feeding. In addition, we tested whether relaxed selection in farms has allowed for alterations in hatching time between farmed and wild salmon. Across three cohorts, wild salmon families hatched earlier than farmed salmon families, while hybrid families displayed intermediate hatching times. While the observed differences were small, i.e., 1–15 degree-days (0–3 days, as water temperatures were c. 5–6°C), these data suggest additive genetic variation for hatching time. Alevin length prior to exogenous feeding was positively related to egg size. After removal of egg size effects, no systematic differences in alevin length were observed between the wild and farmed salmon families. While these results indicate additive genetic variation for egg development timing, and wild salmon families consistently hatched earlier than farmed salmon families, these differences were so small they are unlikely to significantly influence early life history competition of farmed and wild salmon in the natural environment. This is especially the case given that the timing of spawning among females can vary by several weeks in some rivers. The general lack of difference in size between farmed and wild alevins, strongly suggest that the documented differences in somatic growth rate between wild and farmed Norwegian Atlantic salmon under hatchery conditions are first detectable after the onset of exogenous feeding.  相似文献   

10.
The use of sterile triploid stock in the Atlantic salmon (Salmo salar, L) farming industry is the only commercially available means to prevent the ecological impact of domesticated escapees. This study compared the seawater (SW) performance and deformity prevalence of diploid and triploid post-smolts from 2 full-sib families produced out-of-season. Triploids completed smoltification 4 weeks earlier and at a significantly higher body-weight. Growth and survival in SW were not significantly affected by ploidy. The incidence of external deformities, dominated by jaw malformation, was ~12% in triploids and below 5% in diploids. Vertebral deformities were more prevalent in the fastest growing triploid family only. Heart morphometry differed between ploidies which may relate to a higher cardiac workload in triploids. No clear alteration of the gill apparatus was detected. The most significant detrimental effect of triploidy was on the rate and severity of cataract that were observed from August onward (50% and 92% of diploids and triploids respectively affected after 1-year in SW). At that time, cataracts were diagnosed by histological examinations as irreversible with a probable osmotic origin which could arise from factors such as water quality, nutritional deficiencies or thermal variations. This study warrants further research aiming at adapting rearing practices to the needs of triploid stocks as to improve their performance and welfare.  相似文献   

11.
Farmed fish escape and enter the environment with subsequent effects on wild populations. Reducing escapes requires the ability to trace individuals back to the point of escape, so that escape causes can be identified and technical standards improved. Here, we tested if stable isotope otolith fingerprint marks delivered during routine vaccination could be an accurate, feasible and cost effective marking method, suitable for industrial-scale application. We tested seven stable isotopes, 134Ba, 135Ba, 136Ba, 137Ba, 86Sr, 87Sr and 26Mg, on farmed Atlantic salmon reared in freshwater, in experimental conditions designed to reflect commercial practice. Marking was 100% successful with individual Ba isotopes at concentrations as low as 0.001 µg. g-1 fish and for Sr isotopes at 1 µg. g-1 fish. Our results suggest that 63 unique fingerprint marks can be made at low cost using Ba (0.0002 – 0.02 $US per mark) and Sr (0.46 – 0.82 $US per mark) isotopes. Stable isotope fingerprinting during vaccination is feasible for commercial application if applied at a company level within the world’s largest salmon producing nations. Introducing a mass marking scheme would enable tracing of escapees back to point of origin, which could drive greater compliance, better farm design and improved management practices to reduce escapes.  相似文献   

12.
We describe an unusually high infection rate of Gyrodactylus salaris Malmberg in juvenile Atlantic salmon Salmo salar L. of Baltic Sea origin, which are generally believed to be more resistant to G. salaris than East Atlantic salmon populations. Based on analyses of mitochondrial (complete cytochrome oxidase 1 [CO1] gene, 1548 bp) and nuclear (ADNAM1, 435 bp; internal transcribed spacer [ITS] rDNA region, 1232 bp) DNA fragments, the closest relatives of the characterized Estonian G. salaris strain were parasites found off the Swedish west coast and in Raasakka hatchery, Iijoki (Baltic Sea, Finland). Analyses of 14 microsatellite loci of the host S. salarrevealed that approximately 40% of studied fish were triploids. We subsequently identified triploid Atlantic salmon of Baltic origin as more susceptible to G. salaris infection than their diploid counterparts, possibly due to compromised complement-dependent immune pathways in triploid salmon. This is in accordance with earlier studies that have shown elevated susceptibility of triploids to various viral or bacterial pathogens, and represents one of the first reports of increased susceptibility of triploid salmonid fish to an ectoparasite. However, further experimental work is needed to determine whether triploid Atlantic salmon is generally more susceptible to G. salaris compared to their diploid counterparts, irrespective of the particular triploidization method and population of origin.  相似文献   

13.
Many Atlantic salmon, Salmo salar, populations are decreasing throughout the species' distributional range probably due to several factors acting in concert. A number of studies have documented the influence of freshwater and ocean conditions, climate variability and human impacts resulting from impoundment and aquaculture. However, most previous research has focused on analyzing single or only a few populations, and quantified isolated effects rather than handling multiple factors in conjunction. By using a multi-river mixed-effects model we estimated the effects of oceanic and river conditions, as well as human impacts, on year-to-year and between-river variability across 60 time series of recreational catch of one-sea-winter salmon (grilse) from Norwegian rivers over 29 years (1979-2007). Warm coastal temperatures at the time of smolt entrance into the sea and increased water discharge during upstream migration of mature fish were associated with higher rod catches of grilse. When hydropower stations were present in the course of the river systems the strength of the relationship with runoff was reduced. Catches of grilse in the river increased significantly following the reduction of the harvesting of this life-stage at sea. However, an average decreasing temporal trend was still detected and appeared to be stronger in the presence of salmon farms on the migration route of smolts in coastal/fjord areas. These results suggest that both ocean and freshwater conditions in conjunction with various human impacts contribute to shape interannual fluctuations and between-river variability of wild Atlantic salmon in Norwegian rivers. Current global change altering coastal temperature and water flow patterns might have implications for future grilse catches, moreover, positioning of aquaculture facilities as well as the implementation of hydropower schemes or other encroachments should be made with care when implementing management actions and searching for solutions to conserve this species.  相似文献   

14.
The newly described piscine reovirus (PRV) appears to be associated with the development of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon Salmo salar L. PRV seems to be ubiquitous among fish in Norwegian salmon farms, but high viral loads and tissue distribution support a causal relationship between virus and disease. In order to improve understanding of the distribution of PRV in the salmon production line, we quantified PRV by using real-time PCR on heart samples collected at different points in the life cycle from pre-smolts to fish ready for slaughter. PRV positive pre-smolts were found in about 36% of the freshwater cohorts and a general increase in viral load was observed after their transfer to seawater. A reduction in viral loads was recorded when fish approached slaughter (18 mo in sea cages). Sequencing of positive samples did not support the hypothesis that outbreaks are caused by the spreading of a particular (virulent) strain of PRV.  相似文献   

15.
Previously undocumented phenotypical and genetic variation was identified amongst isolates of Moritella viscosa collected from various geographical locations and from different fish species. The studied isolates could be split into 2 major phenotypically and genetically different clusters, one of which was consistent with the species type strain (NCIMB 13548). Isolates consistent with the type strain originated exclusively from Atlantic salmon farmed in Norway, Scotland and the Faroe Isles, although a single isolate from farmed Norwegian cod clustered closely with this group. The 'variant' cluster comprised isolates originating from Norwegian farmed rainbow trout, Icelandic farmed rainbow trout and salmon, Canadian farmed (Atlantic) salmon, Icelandic lumpsucker and only exceptionally from Norwegian salmon. With the exception of the single aforementioned cod isolate, all isolates from Norwegian farmed cod belonged to the variant cluster. Phenotypically, the clusters could be absolutely separated only by elevated haemolytic activity in the variant strain, although approximately half of these isolates also produced acid from mannose, in contrast to the typical (type) strain. While 16S rRNA gene sequencing was unable to separate the 2 clusters, Western blot analyses, plasmid profile analysis, pulsed field gel electrophoresis and gyrB gene sequence analysis produced clusters consistent with the phenotypic data. Macroscopically and histologically the disease in rainbow trout caused by the variant strain was consistent with that previously described in Atlantic salmon. The results of the present study may indicate a degree of host specificity of the typical strain for Atlantic salmon.  相似文献   

16.
Wilkins NP  Cotter D  O'Maoiléidigh N 《Genetica》2001,111(1-3):197-212
Fiftyfour thousand diploid and triploid Atlantic salmon were tagged with coded-wire micro-tags and released to the sea as smolts from two freshwater sites in Ireland in 1996 and 1997. Over 36,000 were mixed-sex groups in which the triploids (MS3N) were treated batches and the diploids (MS2N) were untreated batches of a single group of fertilized eggs at each site and year class. Over 17,000 were all-females, the triploids (AF3N) being treated batches and the diploids (AF2N) untreated batches of a single group of fertilized eggs at each site and year class. Adult tagged fish were subsequently recovered in the coastal fishery and in freshwater traps and angling fisheries in the rivers of release during 1997, 1998 and 1999. Recoveries from migration ranged from 0.08 to 9.79%. Diploid recoveries were within the normal ranges for salmon ranched from these sites, being between 0.64 and 1.82% at one site and between 3.85 and 9.79% at the other. Triploid recoveries, which occurred in the coastal fishery and in freshwater, ranged from 0.08 to 0.40% at the first site and from 0.98 to 2.05% at the other. Overall, triploid recoveries were between 12 and 24% of their diploid siblings within each release group. There were two peaks of recapture in the coastal fishery, the first in mid-June and the second in mid to late July. All-female diploids appeared to enter the fishery in advance of mixed-sex diploids. Triploids were the latest to arrive. There was no evidence of increased straying in triploids relative to diploids and the mean lengths, weights and condition factors were not significantly different between the ploidy groups. Triploidisation therefore reduced the home water harvest of treated salmon to less than 25% but did not completely eliminate triploid recaptures. The way in which triploidisation may influence the return of salmon from the oceanic feeding grounds is discussed.  相似文献   

17.
Studies of infectious salmon anaemia virus (ISAV), an important pathogen of farmed salmon in Norway, Scotland, the Faeroe Islands, Ireland, Canada, the USA and Chile, suggest that natural reservoirs for this virus can be found on both sides of the North Atlantic. Based on existing information about ISAV it is believed to be maintained in wild populations of trout and salmon in Europe. It has further been suggested that ISAV is transmitted between wild hosts, mainly during their freshwater spawning phase in rivers, and that wild salmonids, mainly trout, are possible carriers of benign wild-type variants of ISAV. Change in virulence is probably a result of deletions of amino acid segments from the highly polymorphic region (HPR) of benign wild-type isolates after transmission to farmed salmon. Hence, it has been suggested that the frequency of new outbreaks of ISA in farmed salmon could partly reflect natural variation in the prevalence of ISAV in wild populations of salmonids. The aims of the present study were to screen for ISAV in wild salmonids during spawning in rivers and to determine the pathogenicity of resultant isolates from wild fish. Tissues from wild salmonids were screened by RT-PCR and real-time PCR. The prevalence of ISAV in wild trout Salmo trutta varied from 62 to 100% between tested rivers in 2001. The prevalence dropped in 2002, ranging from 13 to 36% in the same rivers and to only 6% in 2003. All ISAV were nonpathogenic when injected into disease-free Atlantic salmon, but were capable of propagation, as indicated by subsequent viral recovery. However, non-pathogenic ISAV has also been found in farmed salmon, where a prevalence as high as 60% has been registered, but with no mortalities occurring. Based on the results of the present and other studies, it must be concluded that vital information about the importance of wild and man-made reservoirs for the emergence of ISA in salmon farming is still lacking. This information can only be gained by further screening of possible reservoirs, combined with the development of a molecular tool for typing virulence and the geographical origin of the virus isolates.  相似文献   

18.
Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions.  相似文献   

19.
20.
In Chilean Patagonia relatively pristine aquatic environments are being modified by the introduction of exotic salmonids, initially through their deliberate release for sport fishing since the early twentieth century, and more recently via the accidental escape from fish farms. There is therefore a need to reliably distinguish between naturally reproducing and fugitive salmonids associated with the Chilean salmonid farming industry, the second largest in the world. We tested the ability of stable isotope analysis (SIA) and analysis of scale growth profiles to discriminate between farmed and free-living salmonids sampled around the Island of Chiloé. Juvenile Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) from aquaculture facilities were significantly more enriched in δ15N and lipid-corrected δ13C than river-caught individuals. Scale growth slopes during the first year in freshwater were significantly higher in farmed than in wild-caught rainbow trout, indicating faster somatic growth under hatchery conditions. Stable isotopes analysis classified 94% of juvenile Atlantic salmon and rainbow trout to their correct farm or free-living groups. Our results, therefore, can help to elucidate the origin and spread of exotic invasive salmonids in Chile, and address one of the biggest threats to native freshwater fishes in Patagonia and other temperate zones of the Southern Hemisphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号