首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genes of α-expansins of woody plants are of great interest for genetic engineering, since they can potentially be used to improve the tree growth parameters. In the flora of Russia, model woody plants for plant biotechnology are aspen (Populus tremula L.) and black poplar (Populus nigra L.). The objective of this study was to determine the role of α-expansin-encoding genes, aspen PtrEXPA3 and black poplar PnEXPA3, in the regulation and maintenance of woody plant growth. To achieve this goal, the PtrEXPA3 expression level were determined upon exogenous phytohormone treatment, the action of stress factors, and constitutive expression of the PnARGOS-LIKE gene. In addition, transgenic aspen plants with constitutive expression of the black poplar PnEXPA3 gene were generated, and their morphological analysis was carried out. The highest PtrEXPA3 mRNA level was detected in young intensely growing aspen leaves, and furthermore, expression of the gene was induced by exogenous cytokinins and auxins. In response to NaCl and constitutive expression of the PnARGOS-LIKE gene, the PtrEXPA3 mRNA level decreased. Transgenic aspen plants with constitutive PnEXPA3 expression were characterized by the decreased size of leaves, petioles, and internodes, as well as the increased size of leaf epidermal cells, while the stem size remained unchanged. Taken together, the data obtained enable the suggestion that the PtrEXPA3 and PnEXPA3 genes encode cytokinin- and auxin-regulated, leaf-specific expansins that are involved in the cell expansion.  相似文献   

2.
3.
4.
5.
Aquatic organisms physically interact with the water that surrounds them, and this interaction is fundamental in shaping many aspects of their biology. General characteristics of the hydrodynamic interactions between organisms and the flow around them can be captured by the dimensionless Reynolds number (Re), depicting the ratio between inertial and viscous forces operating on the organism. The characteristic flow regime of larval fish that cruise at slow speeds is a regime of low Re, where viscous forces dominate. In this study, we experimentally test the ‘safe harbour’ hypothesis, which proposes that increasing larval body size facilitates an ‘escape’ from the detrimental effects of low Re. Larval gilthead seabream (Sparus aurata) were reared during early ontogeny under artificially manipulated water viscosities to expose larvae to low Re regimes. Larval survival decreased significantly with increasing water viscosity, and increased with increasing standard length. Surviving larvae exceeded the mean length of mortalities by ~1 mm, on average. Our findings provide direct experimental support for the ‘safe harbour’ hypothesis, indicating that marine larvae incur a fitness cost when operating under low Re conditions. Moreover, the results highlight the need to recognize the hydrodynamic environment when considering the a-biotic characteristics that may influence organismal performance and fitness.  相似文献   

6.
A comparative proteomic approach was performed to analyze the differential accumulation of leaf proteins in response to the symbiosis between Solanum lycopersicum and the arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis. Protein profiling was examined in leaves from tomato plants colonized with AMF (M), as well as non-colonized plants fertilized with low phosphate (20 μM P; NM-LP) and non-colonized plants fertilized with regular phosphate Hoagland’s solution (200 μM P; NM-RP). Comparisons were made between these groups, and 2D-SDS-PAGE revealed that 27 spots were differentially accumulated in M vs. NM-LP. Twenty-three out of the 27 spots were successfully identified by mass spectrometry. Two of these proteins, 2-methylene-furan-3-one reductase and auxin-binding protein ABP19a, were up-accumulated in M plants. The down-accumulated proteins in M plants were associated mainly with photosynthesis, redox, and other molecular functions. Superoxide dismutase, harpin binding protein, and thioredoxin peroxidase were down-accumulated in leaves of M tomato plants when compared to NM-LP and NM-RP, indicating that these proteins are responsive to AMF colonization independently of the phosphate regime under which they were grown. 14-3-3 protein was up-accumulated in NM-RP vs. NM-LP plants, whereas it was down-accumulated in M vs. NM-LP and M vs. NM-RP, regardless of their phosphate nutrition. This suggests a possible regulation by P nutrition and AMF colonization. Our results demonstrate AMF-induced systemic changes in the expression of tomato leaf proteins, including the down-accumulation of proteins related to photosynthesis and redox function.  相似文献   

7.
Isoprene synthase (ISPS) catalyzes the formation of isoprene, an important volatile terpenoid with strong effects on global atmospheric chemistry and protective physiological functions in plant leaves. Many terpene synthase genes including isoprene synthase, a member of the TPS-b cluster of this numerous gene family, were already functionally analysed but much less is known about regulation of their promoters. To study regulation of the PcISPS gene in detail we developed transgenic Grey poplar (Populus × canescens) and Arabidopsis thaliana plants in which the PcISPS promoter is fused to enhanced green fluorescent protein (E-GFP) and β-glucuronidase (GUS) reporter genes. We analysed these reporters during plant development, for organ specificity and in plants subjected to different light and temperature regimes. We observed low promoter activity in non-isoprene emitting tissue like roots where ISPS gene is transcribed but no active enzyme is detectable. In leaves we demonstrate that light and temperature directly modulate ISPS promoter activity. Moreover, with confocal laser scanning microscopy we show a cell specific gradient of ISPS promoter activity within the leaf parenchyma depending on light direction. Our results indicate that ISPS promoter activity, which correlates with basal isoprene emission capacity, is not uniformly distributed within leaf tissue and that it can adapt rapidly towards internal as well as external environmental stimuli.  相似文献   

8.
The GRAS gene family performs a variety of functions in plant growth and development processes, and they also play essential roles in plant response to environmental stresses. Medicago truncatula is a diploid plant with a small genome used as a model organism. Despite the vital role of GRAS genes in plant growth regulation, few studies on these genes in M. truncatula have been conducted to date. Using the M. truncatula reference genome data, we identified 68 MtGRAS genes, which were classified into 16 groups by phylogenetic analysis, located on eight chromosomes. The structure analysis indicated that MtGRAS genes retained a relatively constant exon–intron composition during the evolution of the M. truncatula genome. Most of the closely related members in the phylogenetic tree had similar motif compositions. Different motifs distributed in different groups of the MtGRAS genes were the sources of their functional divergence. Twenty-eight MtGRAS genes were expressed in six tissues, namely root, bud, blade, seedpod, nodule, and flower tissues, suggesting their putative function in many aspects of plant growth and development. Nine MtGRAS genes were upregulated under cold, freezing, drought, ABA, and salt stress treatments, indicating that they play vital roles in the response to abiotic stress in M. truncatula. Our study provides valuable information that can be utilized to improve the quality and agronomic benefits of M. truncatula and other plants.  相似文献   

9.
We identified a Populus nigra auxin-regulated gene involved in organ size (PnARGOS)-LIKE, encoding one organ size related protein in black poplar. It is homologous to AtARGOS and AtARGOS-LIKE genes of Arabidopsis thaliana. ABRE-like, G-box, GATA and I-box motifs were discovered in the promoter region of the poplar ARGOS-LIKE gene. In wild type aspen (Populus tremula) plants, an ortholog of the PnARGOS-LIKE gene (PtrARGOS-LIKE) was noticeably expressed in actively dividing and expanding young leaves and calli, whereas its mRNA content increased in response to exogenous 6-benzylaminopurine, 1-naphthaleneacetic acid, and 24-epibrassinolide. Expression of the PtrARGOS-LIKE gene was reduced under a salinity treatment. In addition, we generated transgenic tobacco and aspen plants with an up-regulated expression of the PnARGOS-LIKE gene. A constitutive expression of the gene contributed to an increase in size of stems and leaves of the transgenic tobacco plants. In the transgenic aspen, a constitutive expression of the PnARGOS-LIKE gene promoted an increase in the frequency of leaf initiations and in leaf length and area. The size of transgenic tobacco and aspen leaves increased due to the enlargement of individual cells. The results show the significance of the PnARGOS-LIKE gene for control of leaf initiation and organ growth by cell expansion in poplar.  相似文献   

10.
FATTY ACID DESATURASE 2 (FAD2, EC 1.3.1.35), also known as delta-12 oleate desaturase, is a key enzyme for linoleic acid and α-linolenic acid biosynthesis. Chia (Salvia hispanica) seeds contain the highest known proportion of α-linolenic acid in any plant sources. In this study, two full-length FAD2 genes, named as ShFAD2-1 and ShFAD2-2, were isolated from S. hispanica based on RACE method. Both ShFAD2-1 and ShFAD2-2 proteins possess strong transmembrane helices, three histidine motifs and a C-terminal ER-located signal (YNNKL). Phylogenetic analysis showed that both ShFAD2-1 and ShFAD2-2 are grouped with constitutive plant FAD2s. Heterologous expression in Saccharomyces cerevisiae indicated that ShFAD2-1 and ShFAD2-2 genes both encode a bio-functional delta-12 oleate desaturase. ShFAD2-2 was mainly expressed in flowers and early-stage seeds while ShFAD2-1 expression was almost constitutive in different organs. qRT-PCR results demonstrated that ShFAD2-1 and ShFAD2-2 show a cold-induced and heat-repressed expression pattern, whereas they also were differentially up-regulated or repressed by other abiotic stresses. This is the first cloning and function characterization of FAD2 from S. hispanica, which can provide insights into molecular mechanism of high ALA traits of S. hispanica and enrich our understanding of the roles of FAD2 genes in various abiotic stresses.  相似文献   

11.
12.
Legume plants develop nodules during their symbiotic interaction with rhizobia, and much progress has been made towards understanding Nod factor perception and downstream signaling pathways, while our knowledge about the maintenance of nodule organogenesis was limited. We report here the knockdown mutants of LjCOCH, an ortholog of COCHLEATA in Pisum sativum, cause severe defects in nodule organogenesis in Lotus japonicus. The mature nodule number was drastically decreased accompanied with abnormal lenticel and vascular bundle developmental defects, but not produce roots from nodules in both Ljcoch mutants and LjCOCH-RNAi transgenic hairy roots. LjAPP1, a membrane-associated soluble aminopeptidase P1, was identified to interact with LjCOCH through yeast two-hybrid screening. Unlike that of Ljcoch mutants, insertion mutants of LjAPP1 and LjAPP1-RNAi transgenic hairy roots showed increased nodule number, while the lenticel and vascular development were not affected. Gene expression analysis indicated that LjCOCH and LjAPP1 were differentially upregulated by rhizobia inoculation, and LjNF-YA1 was the major downstream target of LjCOCH and LjAPP1. Our findings suggested that LjCOCH acts as a key factor involved in determinate nodule development through direct interaction with LjAPP1 to regulate the expression of LjNF-YA1, opposite effects of LjCOCH and LjAPP1 provide a dynamic regulation of nodule development in L. japonicus.  相似文献   

13.
Flowering time in members of the Solanaceae plant family, such as pepper (Capsicum spp.) and tomato (Solanum lycopersicum), is an important agronomic trait for controlling shoot architecture and improving yield. To investigate the feasibility of flowering time regulation in tomato, an RNA-binding protein (RBP) encoding gene homologous to human Nucleolar protein interacting with the forkhead-associated (FHA) domain of pKI-67 (NIFK), CaRBP, was isolated from hot pepper. The function of CaRBP was determined in transgenic tomato. The deduced amino acid sequence includes an RNA recognition motif (RRM) and showed most similarity to the RRM present in a putative RBP encoded by human NIFK. CaRBP was highly expressed in the vegetative and reproductive tissues, such as leaves and fruits, respectively. Subcellular localization analysis indicated that CaRBP is a nucleolar protein. Heterologous expression of CaRBP under 35S promoter in tomato plants induced severe alteration of flowering with additional defects of vegetative organs. This floral retardation was associated with the alteration of SFT/SP3D and SlSOC1s as floral integrators. Furthermore, CaRBP reduces the expression levels of SlCOLs/TCOLs via changes in the expression of SlCDF3, SlFBHs, and SlFKF1s. This indicates a repressive effect of CaRBP on the regulation of flowering time in tomato. Overall, these results suggest that alteration in CaRBP expression levels may provide an effective means of controlling flowering time in day-neutral Solanaceae.  相似文献   

14.
15.

Objectives

To develop a new vector for constitutive expression in Pichia pastoris based on the endogenous glycolytic PGK1 promoter.

Results

P. pastoris plasmids bearing at least 415 bp of PGK1 promoter sequences can be used to drive plasmid integration by addition at this locus without affecting cell growth. Based on this result, a new P. pastoris integrative vector, pPICK2, was constructed bearing some features that facilitate protein production in this yeast: a ~620 bp PGK1 promoter fragment with three options of restriction sites for plasmid linearization prior to yeast transformation: a codon-optimized α-factor secretion signal, a new polylinker, and the kan marker for vector propagation in bacteria and selection of yeast transformants.

Conclusions

A new constitutive vector for P. pastoris represents an alternative platform for recombinant protein production and metabolic engineering purposes.
  相似文献   

16.
17.
18.
As a model organism, modeling and analysis of the phenotype of Arabidopsis thaliana (A. thaliana) leaves for a given genotype can help us better understand leaf growth regulation. A. thaliana leaves growth trajectories are to be nonlinear and the leaves contribute most to the above-ground biomass. Therefore, analysis of their change regulation and development of nonlinear growth models can better understand the phenotypic characteristics of leaves (e.g., leaf size) at different growth stages. In this study, every individual leaf size of A. thaliana rosette leaves was measured during their whole life cycle using non-destructive imaging measurement. And three growth models (Gompertz model, logistic model and Von Bertalanffy model) were analyzed to quantify the rosette leaves growth process of A. thaliana. Both graphical (plots of standardized residuals) and numerical measures (AIC, R2 and RMSE) were used to evaluate the fitted models. The results showed that the logistic model fitted better in describing the growth of A. thaliana leaves compared to Gompertz model and Von Bertalanffy model, as it gave higher R2 and lower AIC and RMSE for the leaves of A. thaliana at different growth stages (i.e., early leaf, mid-term leaf and late leaf).  相似文献   

19.
The plastidic thioredoxin F-type (TrxF) protein plays an important role in plant saccharide metabolism. In this study, a gene encoding the TrxF protein, named SlTrxF, was isolated from tomato. The coding region of SlTrxF was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana. The transgenic Arabidopsis plants exhibited increased starch accumulation compared to the wild-type (WT). Real-time quantitative PCR analysis showed that constitutive expression of SlTrxF up-regulated the expression of ADP-glucose pyrophosphorylase (AGPase) small subunit (AtAGPase-S1 and AtAGPase-S2), AGPase large subunit (AtAGPase-L1 and AtAGPase-L2) and soluble starch synthase (AtSSS I, AtSSS II, AtSSS III and AtSSS IV) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses showed that the major enzymes (AGPase and SSS) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to WT. These results suggest that SlTrxF may improve starch content of Arabidopsis by regulating the expression of the related genes and increasing the activities of the major enzymes involved in starch biosynthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号