首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The study of phylogenetic conservatism in alpine plant phenology is critical for predicting climate change impacts; currently we have a poor understanding of how phylogeny and climate factors interactively influence plant phenology. Therefore, we explored the influence of phylogeny and climate factors on flowering phenology in alpine meadows. For two different types of alpine plant communities, we recorded phenological data, including flowering peak, first flower budding, first flowering, first fruiting and the flowering end for 62 species over the course of 5 years (2008–2012). From sequences in two plastid regions, we constructed phylogenetic trees. We used Blomberg’s K and Pagel’s lambda to assess the phylogenetic signal in phenological traits and species’ phenological responses to climate factors. We found a significant phylogenetic signal in the date of all reproductive phenological events and in species’ phenological responses to weekly day length and temperature. The number of species in flower was strongly associated with the weekly day lengths and followed by the weekly temperature prior to phenological activity. Based on phylogenetic eigenvector regression (PVR) analysis, we found a highly shared influence of phylogeny and climate factors on alpine species flowering phenology. Our results suggest the phylogenetic conservatism in both flowering and fruiting phenology may depend on the similarity of responses to external environmental cues among close relatives.  相似文献   

2.
The values of many plant traits are often different even within a species as a result of local adaptation. Here, we studied how multiple climate variables influence trait values in Arabidopsis thaliana grown under common conditions. We examined 9 climate variables and 29 traits related to vegetative growth rate in 44 global A. thaliana accessions grown at ambient or elevated CO2 concentration ([CO2]) and applied a multiple regression analysis. We found that genetic variations in the traits related to growth rates were associated with various climate variables. At ambient [CO2], plant size was positively correlated with precipitation in the original habitat. This may be a result of larger biomass investment in roots at the initial stage in plants adapting to a lower precipitation. Stomatal conductance and photosynthetic nitrogen use efficiency were negatively correlated with vapor pressure deficit, probably as a result of the trade-off between photosynthetic water- and nitrogen-use efficiency. These results suggest that precipitation and air humidity influence belowground and aboveground traits, respectively. Elevated [CO2] altered climate dependences in some of the studied traits. The CO2 response of relative growth rate was negatively correlated with altitude, indicating that plants inhabiting a higher altitude have less plasticity to changing [CO2]. These results are useful not only for understanding evolutionary process but also to predict the plant species that are favored under future global change.  相似文献   

3.
We studied the relationship between genome size and ploidy level variation and plant traits for the reed grass Phragmites australis. Using a common garden approach on a global collection of populations in Aarhus, Denmark, we investigated the influence of monoploid genome size and ploidy level on the expression of P. australis growth, nutrition and herbivore-defense traits and whether monoploid genome size and ploidy level play different roles in plant trait expression. We found that both monoploid genome size and latitude of origin contributed to variation in traits that we studied for P. australis, with latitude of origin being generally a better predictor of trait values and that ploidy level and its interaction with monoploid genome size and latitude of origin also contributed to trait variation. We also found that for four traits, tetraploids and octoploids had different relationships with the monoploid genome size. While for tetraploids stem height and leaf water content showed a positive relationship with monoploid genome size, octoploids had a negative relationship with monoploid genome size for stem height and no relationship for leaf water content. As genome size within octoploids increased, the number of aphids colonizing leaves decreased, whereas for tetraploids there was a quadratic, though non-significant, relationship. Generally we found that tetraploids were taller, chemically better defended, had a greater number of stems, higher leaf water content, and supported more aphids than octoploids. Our results suggest trade-offs among plant traits mediated by genome size and ploidy with respect to fitness and defense. We also found that the latitude of plant origin is a significant determinant of trait expression suggesting local adaptation. Global climate change may favor some genome size and ploidy variants that can tolerate stressful environments due to greater phenotypic plasticity and to fitness traits that vary with cytotype which may lead to changes in population genome sizes and/or ploidy structure, particularly at species’ range limits.  相似文献   

4.
Some introduced species spread rapidly beyond their native range and into novel habitats mediated by a high degree of phenotypic plasticity and/or rapid evolutionary responses. In this context, clonality has been described as a significant factor contributing to invasiveness. We studied the abiotic environment and the responses of different tussock architecture traits of the invasive cordgrass Spartina densiflora Brongn. (Poaceae). A common garden experiment and field studies of S. densiflora in salt marshes across a wide latitudinal gradient from California (USA) to British Columbia (Canada) provided a model system for an integrated study of the potential mechanisms underlying the response of invasive S. densiflora populations to changes in environmental conditions. Our results showed that S. densiflora is able to adjust to widely variable climate (specifically, air temperature and the duration of the growing season) and sediment conditions (specifically, texture and hypoxia) through phenotypical plastic key functional tussock traits (e.g. shoot density, height, above- and below-ground biomass allocation patterns). Root biomass increased in coarser sediments in contrast to rhizomes, which were more abundant in finer sediments. Above-ground biomass and leaf area index increased mainly with air temperature during summer, and more robust (taller and wider) shoots were associated with more oxygenated sediments. In view of our results, S. densiflora appears to be a halophyte with a high degree of phenotypic plasticity that would enable it to respond successfully to changes in the abiotic conditions of salt marshes driven by global climate change, such as increasing salinity and temperatures.  相似文献   

5.
The environmental conditions in the new ranges of introduced plant species are often different from the conditions in their native ranges, and invasive plant species have been assumed to adapt to different environmental conditions by rapid ecological evolution in the invasive range after the introduction. Another interpretation of the change in plant traits after their introduction, however, is ecological fitting, which is based on the inherently high phenotypic plasticity of the species rather than on evolution. The Mediterranean haplotype M1 lineage of the wetland grass Phragmites australis was introduced to the coastal wetlands along the Gulf Coast of North America, where it is exposed to a different climate compared to its original range. The climate in the native range is arid or temperate with dry and hot summers, whereas the climate in the introduced range is warmer and has a higher and more uniform precipitation than that in the native range. This warmer and more humid environment is likely to pose different selection pressures to the plants in the introduced range and thus cause rapid evolutionary change and phenotypic differentiation in the introduced range. Here, we compared phenotypic traits of the M1 lineage from the native and introduced ranges in a common garden experiment to study the processes assisting the successful spread in the introduced range. Overall, the native and introduced groups were similar, but we detected a few phenotypic traits that diverged. Ecological fitting could be the fundamental mechanism by which the P. australis M1 lineage survives and spreads in the introduced Gulf Coast region. However, further research is needed to assess how the diverging traits observed in our study in Denmark (lower photosynthetic rates, lower chlorophylls concentration and higher leaf K concentration for the introduced than for the native genotypes) are expressed in the two ranges.  相似文献   

6.
Studies examining species range shifts in the face of climate change have consistently found that response patterns are complex and varied, suggesting that ecological traits might be affecting species response. However, knowledge of how the traits of a species determine its response to climate change is still poorly understood. Here we investigate the role of species-specific climate niche breadth in forecasting bumblebee (Bombus spp.) responses to regional climate warming in the Cantabrian Range (north-western Iberian Peninsula). Climate niche breadth was defined using known data for occurrences of specific species at their continental (i.e., European) scale of distribution. For each bumblebee species, climate niche breadth was found to be related to (1) the elevational range shifts of species between their historical (1988–1989) and recent (2007–2009) distribution and (2) the variation in the climatic conditions of the localities they inhabited (i.e., the local climate space) between both study periods. Our results show a strong relationship between climate niche breadth, particularly thermal niche breadth, and the response of bumblebee species to climate warming, but only when this response was determined as variations in local climate space. The main conclusions of our work are thus twofold. First, variations in the climatic conditions underlying range shifts are useful in making accurate assessments of the impact of climate change on species distributions. Second, climate niche breadth is a particularly informative ecological trait for forecasting variations in species responses to climate change.  相似文献   

7.
Antarctica is one of the less prone environments for plant invasions, nevertheless a growing number of non-native species have been registered in the last decades with negative effects on native flora. Here we assessed adaptive phenotypic plasticity in three photoprotective traits (non-photochemical quenching, total soluble sugars, and de-epoxidation state of xanthophylls cycle), and fitness-related traits (maximum quantum yield, photosynthetic rate and total biomass) in the invasive species Poa annua and Deschampsia antarctica under current conditions of water availability and those projected by climate change models. In addition, two manipulative experiments in controlled and field conditions were conducted to evaluate the competitive ability and survival of both species under current and climate change conditions. Moreover, we performed an experiment with different water availabilities to assess cell damage as a potential mechanism involved in the competitive ability deployed in both species. Finally, was assessed the plasticity and biomass of both species subject to factorial abiotic scenarios (water × temperature, and water × nutrients) ranging from current to climate change condition. Overall, results showed that P. annua had greater phenotypic plasticity in photoprotective strategies, higher performance, and greater competitive ability and survival than D. antarctica under current and climate change conditions. Also, cell damage, assessed by lipid peroxidation, was significantly greater in D. antarctica when grown in presence of P. annua compared when grown alone. Finally, P. annua showed a greater plasticity and biomass than D. antarctica under the factorial abiotic scenarios, being more evident under a climate change scenario (i.e., higher soil moisture). Our study suggests that the high adaptive plasticity and competitive ability deployed by P. annua under current and climate change conditions allows it to cope with harsh abiotic conditions and could help explain its successful invasion in the Antarctica.  相似文献   

8.
Rising global temperatures are suggested to be drivers of shifts in tree species ranges. The resulting changes in community composition may negatively impact forest ecosystem function. However, long‐term shifts in tree species ranges remain poorly documented. We test for shifts in the northern range limits of 16 temperate tree species in Quebec, Canada, using forest inventory data spanning three decades, 15° of longitude and 7° of latitude. Range shifts were correlated with climate warming and dispersal traits to understand potential mechanisms underlying changes. Shifts were calculated as the change in the 95th percentile of latitudinal occurrence between two inventory periods (1970–1978, 2000–2012) and for two life stages: saplings and adults. We also examined sapling and adult range offsets within each inventory, and changes in the offset through time. Tree species ranges shifted predominantly northward, although species responses varied. As expected shifts were greater for tree saplings, 0.34 km yr?1, than for adults, 0.13 km yr?1. Range limits were generally further north for adults compared to saplings, but the difference diminished through time, consistent with patterns observed for range shifts within each life stage. This suggests caution should be exercised when interpreting geographic range offsets between life stages as evidence of range shifts in the absence of temporal data. Species latitudinal velocities were on average <50% of the velocity required to equal the spatial velocity of climate change and were mostly unrelated to dispersal traits. Finally, our results add to the body of evidence suggesting tree species are mostly limited in their capacity to track climate warming, supporting concerns that warming will negatively impact the functioning of forest ecosystems.  相似文献   

9.
Many predictions of how climate change will impact biodiversity have focused on range shifts using species‐wide climate tolerances, an approach that ignores the demographic mechanisms that enable species to attain broad geographic distributions. But these mechanisms matter, as responses to climate change could fundamentally differ depending on the contributions of life‐history plasticity vs. local adaptation to species‐wide climate tolerances. In particular, if local adaptation to climate is strong, populations across a species’ range—not only those at the trailing range edge—could decline sharply with global climate change. Indeed, faster rates of climate change in many high latitude regions could combine with local adaptation to generate sharper declines well away from trailing edges. Combining 15 years of demographic data from field populations across North America with growth chamber warming experiments, we show that growth and survival in a widespread tundra plant show compensatory responses to warming throughout the species’ latitudinal range, buffering overall performance across a range of temperatures. However, populations also differ in their temperature responses, consistent with adaptation to local climate, especially growing season temperature. In particular, warming begins to negatively impact plant growth at cooler temperatures for plants from colder, northern populations than for those from warmer, southern populations, both in the field and in growth chambers. Furthermore, the individuals and maternal families with the fastest growth also have the lowest water use efficiency at all temperatures, suggesting that a trade‐off between growth and water use efficiency could further constrain responses to forecasted warming and drying. Taken together, these results suggest that populations throughout species’ ranges could be at risk of decline with continued climate change, and that the focus on trailing edge populations risks overlooking the largest potential impacts of climate change on species’ abundance and distribution.  相似文献   

10.
To face summer drought and wildfire in Mediterranean-type ecosystems, plants adopt different strategies that involve considerable rearrangements of biomass allocation and physiological activity. This paper analyses morphological and physiological traits in seedlings of three oak species (Quercus ilex, Quercus trojana and Quercus virgiliana) co-occurring under natural conditions. The aim of this study was to evaluate species-specific characteristics and the response of these oak seedlings to drought stress and fire treatment. Seedlings were kept in a growth chamber that mimicked natural environmental conditions. All three species showed a good degree of tolerance to drought and fire treatments. Differences in specific biomass allocation patterns and physiological traits resulted in phenotypic differences between species. In Q. ilex, drought tolerance depended upon adjustment of the allocation pattern. Q. trojana seedlings undergoing mild to severe drought presented a higher photosystem II (PSII) efficiency than control seedlings. Moreover, Q. trojana showed a very large root system, which corresponded to higher soil area exploitation, and bigger leaf midrib vascular bundles than the other two species. Morphological and physiological performances indicated Q. trojana as the most tolerant to drought and fire. These characteristics contribute to a high recruitment potential of Q. trojana seedlings, which might be the reason for the dominance of this species under natural conditions. Drought increase as a result of climate change is expected to favour Q. trojana, leading to an increase in its spatial distribution.  相似文献   

11.
Biochronologies provide important insights into the growth responses of fishes to past variability in physical and biological environments and, in so doing, allow modelling of likely responses to climate change in the future. We examined spatial variability in the key drivers of inter-annual growth patterns of a widespread, tropical snapper, Lutjanus bohar, at similar tropical latitudes on the north-western and north-eastern coasts of the continent of Australia. For this study, we developed biochronologies from otoliths that provided proxies of somatic growth and these were analysed using mixed-effects models to examine the historical drivers of growth. Our analyses demonstrated that growth patterns of fish were driven by different climatic and biological factors in each region, including Pacific Ocean climate indices, regional sea level and the size structure of the fish community. Our results showed that the local oceanographic and biological context of reef systems strongly influenced the growth of L. bohar and that a single age-related growth trend cannot be assumed for separate populations of this species that are likely to experience different environmental conditions. Generalised predictions about the growth response of fishes to climate change will thus require adequate characterisation of the spatial variability in growth determinants likely to be found throughout the range of species that have cosmopolitan distributions.  相似文献   

12.
Factors that influence reproduction in nectar-feeding non-flying mammals are poorly described. We investigated factors that may influence the breeding traits of the eastern pygmy-possum (Cercartetus nanus), a small (25 g) nectar-feeding marsupial from eastern Australia. Females at our coastal site produced 1–3 litters (frequently of 5–6 young) over an 8-month period within the flowering period of the dominant food plant (Banksia ericifolia). The number of lactating females over time was highly correlated (R?=?0.9) with the abundance of flowers on B. ericifolia, suggesting that flower availability has a substantial influence on breeding. To assess the generality of these findings and investigate whether elevation or latitude influence breeding in this species, we examined the breeding traits previously described at three other locations. Females on the tableland 70 km away produced one litter of 3–4 young over a 4-month period within the flowering period of B. ericifolia, the dominant food plant. At other coastal and tableland locations 500 km away, coastal females produced larger numbered litters more often than tableland females. A hypothesis relating to minimum temperature appears the most plausible explanation for this pattern that reflects elevation but not latitude. The mean minimum temperature drops below 5 °C for 2–5 months each year at the tableland locations but not at all at the coastal locations. Low temperatures are known to reduce nectar secretion in the dominant food plants. Thus, although the breeding traits of the eastern pygmy-possum are influenced by flowering in their dominant food plants, low temperature appears to impose a constraint on reproductive output.  相似文献   

13.
Intraspecific variation in genotypically determined traits can influence ecosystem processes. Therefore, the impact of climate change on ecosystems may depend, in part, on the distribution of plant genotypes. Here we experimentally assess effects of climate warming and excess nitrogen supply on litter decomposition using 12 genotypes of a cosmopolitan foundation species collected across a 2100 km latitudinal gradient and grown in a common garden. Genotypically determined litter‐chemistry traits varied substantially within and among geographic regions, which strongly affected decomposition and the magnitude of warming effects, as warming accelerated litter mass loss of high‐nutrient, but not low‐nutrient, genotypes. Although increased nitrogen supply alone had no effect on decomposition, it strongly accelerated litter mass loss of all genotypes when combined with warming. Rates of microbial respiration associated with the leaf litter showed nearly identical responses as litter mass loss. These results highlight the importance of interactive effects of environmental factors and suggest that loss or gain of genetic variation associated with key phenotypic traits can buffer, or exacerbate, the impact of global change on ecosystem process rates in the future.  相似文献   

14.
Climate change‐driven shifts in species ranges are ongoing and expected to increase. However, life‐history traits may interact with climate to influence species ranges, potentially accelerating or slowing range shifts in response to climate change. Tropical mangroves have expanded their ranges poleward in the last three decades. Here, we report on a shift at the range edge in life‐history traits related to reproduction and dispersal. With a common garden experiment and field observations, we show that Rhizophora mangle individuals from northern populations reproduce at a younger age than those from southern populations. In a common garden at the northern range limit, 38% of individuals from the northernmost population were reproductive by age 2, but less than 10% of individuals from the southernmost population were reproductive by the same age, with intermediate amounts of reproduction from intermediate latitudes. Field observations show a similar pattern of younger reproductive individuals toward the northern range limit. We also demonstrate a shift toward larger propagule size in populations at the leading range edge, which may aid seedling growth. The substantial increase in precocious reproduction at the leading edge of the R. mangle range could accelerate population growth and hasten the expansion of mangroves into salt marshes.  相似文献   

15.
Subtropical forests in montane ecosystems grow under a wide range of environmental conditions. However, little is known about the growth responses of subtropical trees to climate along ecological gradients. To assess how, and to what extent climate controls tree growth, we analyzed tree responses to climate for 15 chronologies from 4 different species (Schinopsis lorentzii, Juglans australis, Cedrela lilloi, Alnus acuminata) across a variety of environments in subtropical forests from northwestern Argentina (22–28°S, 64–66°W). Using correlation and principal component analysis, site and species differences in tree-growth responses to precipitation and temperature were determined along the elevation gradient from the dry-warm Chaco lowlands to the wet-cool montane Yungas. Our results show that species responses differ according to the severity in climate conditions along the elevation gradient. At sites with unfavorable conditions, mainly located at the extremes of the environmental gradient, responses of different species to climate variations are similar; in contrast, at sites with relatively mild conditions, tree growth displays a large variety of responses reflecting differences in both local environmental conditions and species physiology. Our research suggests that individualistic responses to environmental variability would determine differences in the type and timing of the responses of dominant trees to climate, which ultimately may shift species’ assemblages in montane subtropical regions of South America under future climate changes.  相似文献   

16.
Phaseolus lunatus is the second economically most important species of the genus Phaseolus. It carries out N fixation through symbiosis with rhizobia. However, it is unclear whether P. lunatus can nodulate with native rhizobia from soils where this legume is not native or was not cultivated previously. Thus, this study assessed the ability of 14 geographically distant lima bean genotypes to nodulate with rhizobia from three California agricultural soils: without a history of legumes or P. lunatus cultivation, with a history of legumes as a cover crop, and with a history of P. lunatus cultivation. Nodulation only occurred on genotypes grown in the soil with a history of P. lunatus planting. The analysis of variance of nodulation traits showed that the genotype effect was highly significant in all the traits measured. Shoot biomass had a higher correlation with nodule size and nodule weight than with nodule number. In addition, shoot biomass and leaf N content were positively correlated with nodule coloration and with nodule position close to the main root of the plant. This study suggests that agricultural soils from California do not appear to have native rhizobia able to nodulate P. lunatus, which suggests the need to inoculate, at least initially, the seeds at planting in order to establish the population of rhizobia. Also, geographically distant lima bean genotypes have different responses to nodulating bacteria and it suggests that future studies to test these genotypes across different environments should be pursued.  相似文献   

17.
When large herbivores exert selection on their prey plant species, co‐occurring, non‐prey species may experience selection through non‐trophic indirect effects. Such selection is likely common where herbivores are overabundant. Yet, empirical studies of non‐trophic indirect effects as drivers of non‐prey trait evolution are lacking. Here we test for adaptive shifts in life history traits in an unpalatable species, Arisaema triphyllum, a common forest perennial that is unique because it exhibits size‐dependent sex switching. We collected A. triphyllum from six sites that experience a gradient in abiotic stress caused by deer browse pressure on prey plant species that generate indirect effects. We grew A. triphyllum from these sites in a common garden for five years to evaluate life history predictions linking strong indirect effects and abiotic stress to changes in life history traits: flowering onset size threshold, female flowering size threshold, relative growth rate (RGR), biomass allocation, and asexual reproduction. Despite observed differences among phenotypes in the field, expression of flowering onset size threshold, biomass allocation, and asexual reproduction did not differ among the six populations in the garden, indicating common plastic responses. In contrast, A. triphyllum collected from sites experiencing the two highest deer impacts exhibited smaller female flowering size thresholds and the highest RGR. Responses in these traits support the predictions of adaptive divergence in response to indirect effects. Our results reinforce the idea that non‐trophic indirect effects of large herbivores can elicit evolutionary responses in some traits of non‐prey species. In general, life history traits of unpalatable species may be cryptically adapting to stressful indirect effects where large herbivores are overabundant.  相似文献   

18.
It has been suggested that in plant invasions, species may develop intrinsically higher gas exchange and growth rates, and greater nitrogen uptake and allocation to shoots, in their invasive range than in their native habitat under excess nutrients. In this study, native populations of two old world Phragmites australis phylogeographic groups (EU and MED) were compared with their invasive populations in North America [NAint (M) and NAint (Delta)] under unlimited nutrient availability and identical environmental conditions in a common garden. We expected that both introduced groups would have higher growth, nitrogen uptake and allocation, and gas exchange rates than their native groups, but that these enhanced traits would have evolved in different ways in the two introduced ranges, because of different evolutionary histories. Biomass, leaf area, leaf nitrogen concentrations (NH4 + and NO3 ?) and transpiration rates increased in introduced versus native groups, whereas differences in SLA, leaf pigment concentrations and assimilation rates were due to phylogeographic origins. Despite intrinsic differences in the allocation of C and N in leaves, shoots and rhizome due to phylogeographic origin, the introduced groups invested more biomass in above-ground tissues than roots and rhizomes. Our results support the concept that invasive populations develop enhanced morphological, physiological and biomass traits in their new ranges that may assist their competiveness under nutrient-enriched conditions, however the ecophysiological processes leading to these changes can be different and depend on the evolutionary history of the genotypes.  相似文献   

19.
Rapid global deforestation has forced many of the world’s primates to live in fragmented habitats, making the understanding of their behavioral responses to degraded and fragmented habitats a key challenge for their future protection and management. The black-and-white snub-nosed monkey (Rhinopithecus bieti) is an endangered species endemic to southwest China. The forest habitat ranges from near-continuous to fragmented. In this study, we investigated the activity budget and diet of a R. bieti population that live in an isolated and degraded habitat patch at Mt. Lasha in Yunnan Province, near the current southern limit of the species. We used our data along with data from six other sites in more-continuous habitats across its range to model factors that predict stress, including feeding effort and time feeding on lichens against potential predictive parameters. Models showed feeding effort across all sites increased with increasing altitude and latitude, and with decreasing food species diversity. There was also a strong positive relationship between feeding effort and time feeding lichens. The Mt. Lasha R. bieti population exploited a total of 36 food species, spending 80.2% of feeding time feeding on lichens, Bryoria spp. and Usnea longissima. These figures are more comparable to those living in the north than those living in the mid- and southern part of the species’ range. Given the models for feeding effort and time feeding on lichens, the unexpectedly high time spend feeding on lichens and feeding effort relative to latitude and elevation are suggestive of a stressed population at Mt. Lasha.  相似文献   

20.
Cereal crops including maize (Zea mays L.) are inhabited by non-disease causing microbes known as endophytes that can promote plant growth, aid in host nutrient acquisition and promote host pathogen resistance. Screening endophytes for beneficial traits in planta using large, slow-growing cereals is challenging, thus a rapid but relevant in planta system is needed. Here, we propose that turfgrasses can be used as high-throughput assay systems for screening cereal microbes for beneficial nutrient traits. Turfgrasses are genetic relatives of cereals, but small with fast growth rates; they can be grown in test tubes under sterile conditions on defined media. Five turfgrass genotypes were evaluated for traits ideal for assaying endophytes with nutrient acquisition traits. Based on these criteria, annual ryegrass (Lolium multiflorum) was selected as a high-throughput assay system. Annual ryegrass was then used to test a collection of maize endophytes for their ability to promote plant biomass in the absence of nitrogen. Out of 75 bacterial endophytes tested, one strain (an Enterobacter sp) consistently promoted root and shoot biomass. We discuss the potential of annual ryegrass as a model assay system to test cereal endophytes for acquisition of various nutrients, changes in root/shoot architecture as well as anti-pathogen traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号