首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Epigenetic inheritance is a key element in the adaptation of organisms to a rapidly changing environment without stably changing their DNA sequence. The necessary changes in its gene expression profiles are frequently associated with variations in chromatin structure. The conformation of chromatin is profoundly influenced by the post-translational modification of the histone proteins, the incorporation of histone variants, the activity of nucleosome remodelling factors and the association of non-histone chromatin proteins. Although the hierarchy of these factors is still not fully understood, genetic experiments suggest that histone-modifying enzymes play a major causal role in setting up a particular chromatin structure. In this article, the recent progress that was made to understand the molecular mechanisms of the targeting and regulation of histone modifiers and its implication for epigenetic inheritance are reviewed.  相似文献   

2.
Cells proliferate by division into similar daughter cells, a process that lies at the heart of cell biology. Extensive research on cell division has led to the identification of the many components and control elements of the molecular machinery underlying cellular division. Here we provide a brief review of prokaryotic and eukaryotic cell division and emphasize how new approaches such as systems and synthetic biology can provide valuable new insight.  相似文献   

3.
4.
Introduction: Chromatin remodeling complexes play important roles in the control of genome regulation in both normal and diseased states, and are therefore critical components for the regulation of epigenetic states in cells. Given the role epigenetics plays in cancer, for example, chromatin remodeling complexes are routinely targeted for therapeutic intervention.

Areas covered: Protein mass spectrometry and proteomics are powerful technologies used to study and understand chromatin remodeling. While impressive progress has been made in this area, there remain significant challenges in the application of proteomic technologies to the study of chromatin remodeling. As parts of large multi-subunit complexes that can be heavily modified with dynamic post-translational modifications, challenges in the study of chromatin remodeling complexes include defining the content, determining the regulation, and studying the dynamics of the complexes under different cellular states.

Expert commentary: Impwortant considerations in the study of chromatin remodeling complexes include the complexity of sample preparation, the choice of proteomic methods for the analysis of samples, and data analysis challenges. Continued research in these three areas promise to yield even greater insights into the biology of chromatin remodeling and epigenetics and the dynamics of these systems in human health and cancer.  相似文献   


5.
Callebaut I  Mornon JP 《Biochimie》2012,94(9):2006-2012
Polycomb complexes function as enforcers of epigenetically repressed state, balanced by an antagonist state mediated by Trithorax. Using sensitive methods of sequence analysis, we show here that Polycomb-like proteins (PCLs) contain a tandem of intimately associated domains, which we named PWAPA and which is also present in ASH2L, a member of the Trithorax group. Polycomb-like proteins and ASH2L belong to the PCR2 and MLL histone methyltransferase complexes, respectively. A PWAPA cassette is also present in ATAC2, a component of the ATAC histone acetyltransferase complex. The recently solved structure of the PWAPA tandem of ASH2L has revealed that it consist in a PHD-like finger followed by a helix-winged-helix (WH) domain, able to bind DNA. The modeling of the 3D structure of the different members of the PWAPA family suggests that the PHD-like finger might be able, at least for some proteins of the family, to bind methylated marks on histones. The PWAPA PHD/WH cassette might thus be involved in the combined recognition of DNA and specific (perhaps methylation) mark(s) on histones, thereby allowing the recruitment of specific chromatin-modifying activities at these sites. The observations reported here should help to unravel the exact role played by the PWAPA cassette in the different proteins of the PWAPA family, and especially in the antagonistic activities of PcG and TrxG proteins.  相似文献   

6.
Chromatin state of a 2-Mb region harboring Rit1/Bcl11b on mouse chromosome 12 was examined using two distinct methods. One is ChIP assay examining the degree of enrichment with histone H3 methylated at lysine 9 (H3-mLys9) in chromatin and the other is H/E (heterochromatin/euchromatin) assay that measures a chromatin condensation state by using centrifugation. The ChIP assay showed that a 50-kb interval covering the gene and an upstream region constituted chromatin enriched with unmethylated H3-mLys9 in cells expressing Rit1 compared to cells not expressing Rit1. In contrast, regions other than the 50-kb interval did not show much difference in the enrichment between the two different types of cells. On the other hand, H/E assay of two expressing and two non-expressing tissues provided compatible fractionation patterns, suggesting that the chromatin condensation state detected by H/E assay is correlated with the chromatin state controlled by histone H3 tail modification linked to gene expression. These results indicate that the centrifugation-based H/E assay should provide a new approach to the regulation of chromatin structure with respect to its condensation state, complementing ChIP assays.  相似文献   

7.
8.
SCOPE: In the second part of a two-part review, the ubiquity and universality of epigenetic systems is emphasized, and attention is drawn to the key roles they play, ranging from transducing environmental signals to altering gene expression, genomic architecture and defence. KEY ISSUES: The importance of transience versus heritability in epigenetic marks is examined, as are the potential for stable epigenetic marks to contribute to plant evolution, and the mechanisms generating novel epigenetic variation, such as stress and interspecific hybridization. FUTURE PROSPECTS: It is suggested that the ramifications of epigenetics in plant biology are immense, yet unappreciated. In contrast to the ease with which the DNA sequence can be studied, studying the complex patterns inherent in epigenetics poses many problems. Greater knowledge of patterns of epigenetic variation may be informative in taxonomy and systematics, as well as population biology and conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号