首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Most of the original forest and woodland cover on the western slopes of New South Wales and the northern plains of Victoria has been cleared for agriculture (wheat, sheep and cattle) and what remains is highly fragmented and modified by a long history of disturbance. Over the past three decades, native eucalypt trees and shrubs have been planted extensively in a part of this region to provide a range of environmental benefits. Our aim was to determine the extent to which these plantings could improve biological diversity in agricultural landscapes in south‐eastern Australia and to identify the variables influencing their effectiveness. We sampled birds at 120 sites encompassing the range of available patch sizes, stand ages, floristic and structural conditions, and habitat attributes for revegetated areas and remnants of native vegetation, and we compared these to nearby paddocks. Eucalypt plantings were found to provide significant improvements in bird population density compared with cleared or sparsely treed paddocks, and mixed eucalypt and shrub plantings had similar bird communities to remnant native forest and woodland in the region. Birds displayed a strong response to patch size, with both larger (≥5–20 ha) eucalypt plantings and larger (≥5–20 ha) remnants having more species and more individuals per unit area than smaller (<5 ha) patches of these vegetation types. Older (10–25 years) plantings had more bird species and individuals than young (<10 years) plantings. The distance from remnant forest and woodland (habitat connectivity) appeared to be an important variable influencing bird species richness in eucalypt plantings. The main differences were due to the greater numbers of species classified as woodland‐dependent in the larger‐sized patches of plantings and remnants. Eucalypt plantings provided useful habitat for at least 10 declining woodland‐dependent species, notably for the Speckled Warbler, Red‐capped Robin and Rufous Whistler. The Brown Treecreeper and Dusky Woodswallow appeared to be the species most limited by the extent of remnant forest and woodland in the region. Plantings of all shapes and sizes, especially those larger than 5 ha, have an important role to play in providing habitat for many bird species. Restoration efforts are more likely to be successful if eucalypt plantings are established near existing remnant vegetation.  相似文献   

2.
To combat global warming and biodiversity loss, we require effective forest restoration that encourages recovery of species diversity and ecosystem function to deliver essential ecosystem services, such as biomass accumulation. Further, understanding how and where to undertake restoration to achieve carbon sequestration and biodiversity conservation would provide an opportunity to finance ecosystem restoration under carbon markets. We surveyed 30 native mixed‐species plantings in subtropical forests and woodlands in Australia and used structural equation modeling to determine vegetation, soil, and climate variables most likely driving aboveground biomass accrual and bird richness and investigate the relationships between plant diversity, aboveground biomass accrual, and bird diversity. We focussed on woodland and forest‐dependent birds, and functional groups at risk of decline (insectivorous, understorey‐nesting, and small‐bodied birds). We found that mean moisture availability strongly limits aboveground biomass accrual and bird richness in restoration plantings, indicating potential synergies in choosing sites for carbon and biodiversity purposes. Counter to theory, woody plant richness was a poor direct predictor of aboveground biomass accrual, but was indirectly related via significant, positive effects of stand density. We also found no direct relationship between aboveground biomass accrual and bird richness, likely because of the strong effects of moisture availability on both variables. Instead, moisture availability and patch size strongly and positively influenced the richness of woodland and forest‐dependent birds. For understorey‐nesting birds, however, shrub cover and patch size predicted richness. Stand age or area of native vegetation surrounding the patch did not influence bird richness. Our results suggest that in subtropical biomes, planting larger patches to higher densities, ideally using a diversity of trees and shrubs (characteristics of ecological plantings) in more mesic locations will enhance the provision of carbon and biodiversity cobenefits. Further, ecological plantings will aid the rapid recovery of woodland and forest bird richness, with comparable aboveground biomass accrual to less diverse forestry plantations.  相似文献   

3.
Aim The woodland ecosystems of south‐eastern Australia have been extensively disturbed by agriculture and urbanization. Herein, the occurrence of birds in woodland remnants in three distinct landscapes was analysed to examine the effects of different types of landscape matrices on species richness vs. area and species richness vs. isolation relationships and individual species responses to woodland fragmentation. Location The study system comprised three distinct woodland landscapes of the northern Australian Capital Territory and bordering areas of New South Wales. These landscapes (termed agricultural, peri‐urban and urban) are located within 50 km of each other, have remnant fragments of similar age, size, isolation, woodland cover, elevation and climates. The major distinguishing feature of the three landscapes was the properties of the habitats surrounding the numerous woodland remnants. Methods Bird surveys, using an area‐search methodology, were conducted in 1999 and 2000 in 127 remnants in the three landscapes to determine bird species presence/absence. Each remnant was characterized by measures of remnant area, isolation and habitat complexity. To characterize differences between each landscape, we conducted an analysis of the amount of tree cover and human disturbance in each landscape using SPOT imagery and aerial photographs. Linear regressions of woodland‐dependent species richness vs. remnant area and remnant isolation for the three different landscapes were calculated to see if there were any apparent differences. Binomial logistic regressions were used to determine the relationships between the occurrence of each species and the size and isolation of woodland habitat, in each landscape. Results All the landscapes displayed a significant (P < 0.01) species vs. area relationship, but the slope of the urban relationship was significantly greater than those of the other landscapes. In contrast, only the agricultural landscape displayed a significant (P < 0.01) species richness vs. isolation relationship. When individual species were investigated, we found species that were: (1) apparently insensitive to reduction in remnant area and increase in isolation across all landscapes, (2) absent in small remnants in all landscapes, (3) absent in small remnants in all landscapes and also absent in isolated remnants in the agricultural landscape, (4) absent in isolated remnants in the agricultural landscape, and (5) absent in small remnants in the urban landscape. Threshold values (50% probability of occurrence) for area and isolation for individual species were highly variable across the three landscapes. Main conclusions These results indicate that woodland bird communities have a varying response to habitat fragmentation in different landscapes. Whilst we cannot be sure how representative our chosen landscapes are of other similarly composed landscapes, these results suggest that the type of landscape matrix may have a considerable influence on how bird species are affected by woodland fragmentation in the region. For instance, the properties of a matrix may influence both the resources available in the landscape as a whole for different bird species, and the connectivity (dispersal of birds), between woodland remnants. We encourage further research that examines these hypotheses and argue that the management of the matrix should be included in conservation strategies for fragmented landscapes.  相似文献   

4.
Summary Much of the tree and shrub planting that has been conducted on farms in Western Australia over the past three decades has not been done with the specific intention of creating habitat or conserving biodiversity, particularly commercially oriented monocultures like oil mallee plantings. However, such plantings may nonetheless provide some habitat resources for native plants and animals. This study assessed the habitat quality of farm plantings (most of which were not planted with the primary intention of biodiversity conservation) at 72 sites across a study region in the central wheatbelt of Western Australia. Widely accepted habitat metrics were used to compare the habitat resources provided by planted farmland vegetation with those provided by remnant woodland on the same farms. The impact of adjacency of plantings to woodland and, in the case of oil mallees, the planting configuration on predicted habitat quality is assessed. Condition Benchmarks for five local native vegetation communities are proposed. Farmland plantings achieved an average Vegetation Condition Score (VCS) of 46 out of a possible 100, while remnant woodland on the same farms scored an average 72. The average scores for farm plantings ranged from 38–59 depending on which of five natural vegetation communities was used as its benchmark, but farm plantings always scored significantly less than remnant woodland (P < 0.001). Mixed species plantings on average were rated more highly than oil mallees (e.g. scores of 42 and 36 respectively using the Wandoo benchmark) and adjacency to remnant woodland improved the score for mixed plantings, but not for oil mallees. Configuration of oil mallees as blocks or belts (i.e. as an alley farming system) had no impact on the VCS. Planted farmland vegetation fell short of remnant woodland in both floristic richness (51 planted native species in total compared with a total of more than 166 naturally occurring plant species in woodland) and structural diversity (with height, multiple vegetation strata, tree hollows and woody debris all absent in the relatively young 7–15‐year‐old farm plantings). Nonetheless farmland plantings do have measurable habitat values and recruitment and apparent recolonization of plantings with native plant species was observed. Habitat values might be expected to increase as the plantings age. The VCS approach, including the application of locally relevant Benchmarks is considered to be valuable for assessing potential habitat quality in farmland vegetation, particularly as a tool for engaging landholders and natural resource management practitioners.  相似文献   

5.
Vegetation restoration is considered as an important strategy for reversing biodiversity decline in agricultural areas. However, revegetated areas often lack key vegetation attributes like large old hollow‐bearing trees. As these trees take a long time to develop, artificial cavities such as nest boxes are sometimes provided to address lag effects. We conducted a 3‐year experiment using 150 nest boxes with 4 designs to quantify patterns of occupancy within 16 replanted areas and 14 patches of remnant old‐growth eucalypt woodland. We quantified patterns of occupancy of nest boxes in physically connected versus isolated remnants and plantings, and multiple covariate effects on nest box occupancy at the nest box, tree, patch, and landscape levels. Our analyses revealed a lower probability of nest box occupancy within remnants (vs. plantings) for 2 of the 6 response variables examined: any species and the Feral Honeybee. Nest boxes in connected remnants and plantings were more likely to be occupied than those in isolated plantings and remnants by any mammal and the Common Brushtail Possum. Nest boxes in restored woodlands are used by some hollow‐dependent fauna but principally already common species and not taxa of conservation concern. Nest boxes were also used by pest species. A key management consideration must be to create connected habitat to facilitate colonization of nest boxes by mammals. Approximately 15% of the cavity‐dependent vertebrates within the study area used next boxes, possibly because the diverse requirements of the array of other species were not met by the range of nest boxes deployed.  相似文献   

6.
Species occurrence is influenced by a range of factors including habitat attributes, climate, weather, and human landscape modification. These drivers are likely to interact, but their effects are frequently quantified independently. Here, we report the results of a 13‐year study of temperate woodland birds in south‐eastern Australia to quantify how different‐sized birds respond to the interacting effects of: (a) short‐term weather (rainfall and temperature in the 12 months preceding our surveys), (b) long‐term climate (average rainfall and maximum and minimum temperatures over the period 1970–2014), and (c) broad structural forms of vegetation (old‐growth woodland, regrowth woodland, and restoration plantings). We uncovered significant interactions between bird body size, vegetation type, climate, and weather. High short‐term rainfall was associated with decreased occurrence of large birds in old‐growth and regrowth woodland, but not in restoration plantings. Conversely, small bird occurrence peaked in wet years, but this effect was most pronounced in locations with a history of high rainfall, and was actually reversed (peak occurrence in dry years) in restoration plantings in dry climates. The occurrence of small birds was depressed—and large birds elevated—in hot years, except in restoration plantings which supported few large birds under these circumstances. Our investigation suggests that different mechanisms may underpin contrasting responses of small and large birds to the interacting effects of climate, weather, and vegetation type. A diversity of vegetation cover is needed across a landscape to promote the occurrence of different‐sized bird species in agriculture‐dominated landscapes, particularly under variable weather conditions. Climate change is predicted to lead to widespread drying of our study region, and restoration plantings—especially currently climatically wet areas—may become critically important for conserving bird species, particularly small‐bodied taxa.  相似文献   

7.
Pollinators and the pollination services they provide are critical for seed set and self‐sustainability of most flowering plants. Despite this, pollinators are rarely assessed in restored plant communities, where their services are largely assumed to re‐establish. Bird–pollinator richness, foraging, and interaction behavior were compared between natural and restored Banksia woodland sites in Western Australia to assess their re‐establishment in restored sites. These parameters were measured for natural communities of varying size and degree of fragmentation, and restored plant communities of high and low complexity for three years, in the summer and winter flowering of Banksia attenuata and B. menziesii, respectively. Bird visitor communities varied in composition, richness, foraging movement distances, and aggression among sites. Bird richness and abundance were lowest in fragmented remnants. Differences in the composition were associated with the size and degree of fragmentation in natural sites, but this did not differ between seasons. Restored sites and their adjacent natural sites had similar species composition, suggesting proximity supports pollinator re‐establishment. Pollinator foraging movements were influenced by the territorial behavior of different species. Using a network analysis approach, we found foraging behavior varied, with more frequent aggressive chases observed in restored sites, resulting in more movements out of the survey areas, than observed in natural sites. Aggressors were larger‐bodied Western Wattlebirds (Anthochaera chrysoptera) and New Holland Honeyeaters (Phylidonyris novaehollandiae) that dominated nectar resources, particularly in winter. Restored sites had re‐established pollination services, albeit with clear differences, as the degree of variability in the composition and behavior of bird pollinators for Banksias in the natural sites created a broad completion target against which restored sites were assessed. The abundance, diversity, and behavior of pollinator services to remnant and restored Banksia woodland sites were impacted by the size and degree of fragmentation, which in turn influenced bird–pollinator composition, and were further influenced by seasonal changes between summer and winter. Consideration of the spatial and temporal landscape context of restored sites, along with plant community diversity, is needed to ensure the maintenance of the effective movement of pollinators between natural remnant woodlands and restored sites.  相似文献   

8.
Increased production of bioenergy crops in North America is projected to exacerbate already heavy demands upon existing agricultural landscapes with potential to impact biodiversity negatively. Grassland specialist birds are an imperilled avifauna for which perennial-based, next-generation agroenergy feedstocks may provide suitable habitat. We take a multi-scaled spatial approach to evaluate the ability of two candidate second-generation agroenergy feedstocks (switchgrass, Panicum virgatum, and mixed grass–forb plantings) to act as spring migratory stopover habitat for birds. In total, we detected 35 bird species in mixed grass–forb plantings and switchgrass plantings, including grassland specialists and species of state and national conservation concern (e.g., Henslow’s Sparrow, Ammodramus henslowii). Some evidence indicated that patches with higher arthropod food availability attracted a greater diversity of migrant bird species, but species richness, total bird abundance, and the abundance of grassland specialist species were similar in fields planted with either feedstock. Species richness per unit area (species density) was relatively higher in switchgrass fields. The percent land cover of forest in landscapes surrounding study fields was negatively associated with bird species richness and species density. Habitat patch size and within-patch vegetation structure were unimportant in predicting the diversity or abundance of spring en route bird assemblages. Our results demonstrate that both switchgrass and mixed grass–forb plantings can attract diverse assemblages of migrant birds. As such, industrialized production of these feedstocks as agroenergy crops has the potential to provide a source of en route habitat for birds, particularly where fields are located in relatively unforested landscapes. Because industrialization of cellulosic biomass production will favor as yet unknown harvest and management regimes, predicting the ultimate value of perennial-based biomass plantings for spring migrants remains difficult.  相似文献   

9.
Abstract Bird assemblages generally are no longer regarded as stable entities, but rather as fluctuating in response to many factors. Australia's highly variable climate is likely to result in a high degree of dynamism in its bird assemblages, yet few studies have investigated variation on an inter‐annual temporal scale. We compared 2 year‐long samples of the bird assemblages of a series of highly fragmented buloke Allocasuarina luehmannii (Casuarinaceae) woodland remnants in south‐eastern Australia, the first sample taken in 1994–95 and the second in 2001–02. Bird densities were almost three times higher in the second period than in the first. Mean species richness also was significantly higher. Species richness of each individual site was unrelated between the 2 years. Minimum species turnover was 63% and was higher, on average, for migratory and nomadic than for sedentary species. Therefore, site‐level bird assemblage composition was markedly different between the two survey periods and, on average, the assemblage composition of each site bore greater resemblance to those of other sites in the same year than to that of the same site in the other survey period. Most species changed substantially in their distribution among remnants between the two periods. The change in distribution of most species did not differ significantly from that expected if the species had redistributed at random among the sites. This suggests that although the remnant vegetation of the area is highly fragmented with minimal interpatch connectivity, bird movements among remnants are relatively frequent. Inter‐annual variability in Australian bird assemblages may be higher than is commonly recognized. In such dynamic systems, we must be cautious when extrapolating from the findings of short‐term studies to longer temporal scales, especially in relation to conservation management. A greater understanding of the processes driving distributional patterns is likely to enable better predictions of species’ responses to habitat change.  相似文献   

10.
Native pollinators are increasingly needed on conventional farms yet rarely fostered via management. One solution is habitat restoration in marginal areas, but colonization may be constrained if resident pollinator richness is low or if restored areas fail to provide sufficient floral or nesting resources. We quantified restoration outcomes for native bees, and associated resources, on three conventional farms with forb‐grass prairie plantings on marginal areas of varying sizes, in a heavily farmed region of central North America. We tested bee abundance and richness in restored prairie versus the dominant habitats of the region—crops, forest remnants, and edges of fields and roads. Restored prairie supported 2× more species (95 of 119 total species) and 3× more bees (72% of captured individuals) compared to the other cover types. All richness and abundance differences among habitat types were associated with higher floral resources in restored prairie. Thirty percent of the bee species were unique to prairie, consistent with long‐distance dispersal but begging the question of origin given the absence of prairie regionally. Our results suggest that road and field edges may be the source, as these areas had more floral and nesting resources than forest or crop fields combined and supported 55% of all species despite covering only approximately 5% of the sampled farms. Habitat scarcity is not the only constraint on native bees in agricultural landscapes, with increasing concern over disease and chemicals. However, we observed that restored areas on marginal lands of conventional farms can support abundant and species‐rich populations of native bees.  相似文献   

11.
The value for biodiversity of large intact areas of native vegetation is well established. The biodiversity value of regrowth vegetation is also increasingly recognised worldwide. However, there can be different kinds of revegetation that have different origins. Are there differences in the richness and composition of biotic communities in different kinds of revegetation? The answer remains unknown or poorly known in many ecosystems. We examined the conservation value of different kinds of revegetation through a comparative study of birds in 193 sites surveyed over ten years in four growth types located in semi-cleared agricultural areas of south-eastern Australia. These growth types were resprout regrowth, seedling regrowth, plantings, and old growth.Our investigation produced several key findings: (1) Marked differences in the bird assemblages of plantings, resprout regrowth, seedling regrowth, and old growth. (2) Differences in the number of species detected significantly more often in the different growth types; 29 species for plantings, 25 for seedling regrowth, 20 for resprout regrowth, and 15 for old growth. (3) Many bird species of conservation concern were significantly more often recorded in resprout regrowth, seedling regrowth or plantings but no species of conservation concern were recorded most often in old growth. We suggest that differences in bird occurrence among different growth types are likely to be strongly associated with growth-type differences in stand structural complexity.Our findings suggest a range of vegetation growth types are likely to be required in a given farmland area to support the diverse array of bird species that have the potential to occur in Australian temperate woodland ecosystems. Our results also highlight the inherent conservation value of regrowth woodland and suggest that current policies which allow it to be cleared or thinned need to be carefully re-examined.  相似文献   

12.
Mountain forests deserve special attention from ecologists and conservation biologists given the ecosystem services they provide to society, and their threat under global change. In the subalpine region of the Andes, Polylepis woodlands occur as arboreal islands in a matrix of grassland and scrub. Due to overgrazing and burning, however, these woodland patches are believed to cover only 11% of their potential area in Bolivia, core area for Polylepis. We reviewed the knowledge on the species diversity for the Bolivian Polylepis woodland remnants, assessed the conservation status of the occurring species, determined their trophic niche, and related species richness with climatic variables and elevation. Based in 31 publications, we found 780 identified species occurring in Polylepis woodlands: 425 plants, 266 birds, 46 mammals, 35 butterflies and 8 reptiles. Ten of the 13 Bolivian Polylepis species, as well as 7 other plant species, 14 bird species and 4 mammal species were categorized as threatened or near threatened according to IUCN criteria. In general, plant species richness increased with increased precipitation and length of the growth season, while it decreased with increasing elevation. There was a positive relationship between bird species richness, precipitation and length of the growth season. The highest bird endemism in Polylepis woodland remnants occurred at intermediate elevations, temperatures and precipitation. Mammal species richness decreased with increasing maximum temperature. Finally, we discuss the most important knowledge gaps regarding biodiversity in Bolivian Polylepis woodland remnants.  相似文献   

13.
Evaluating the effectiveness of protected areas for sustaining biodiversity is crucial to achieving conservation outcomes. While studies of effectiveness have improved our understanding of protected‐area design and management, few investigations (< 5%) have quantified the ecological performance of reserves for conserving species. Here, we present an empirical evaluation of protected‐area effectiveness using long‐term measures of a vulnerable assemblage of species. We compare forest and woodland bird diversity in the Australian Capital Territory over 11 yr on protected and unprotected areas located in temperate eucalypt woodland and matched by key habitat attributes. We examine separately the response of birds to protected areas established prior to 1995 and after 1995 when fundamental changes were made to regional conservation policy. Bird diversity was measured in richness, occurrence of vulnerable species, individual species trajectories and functional trait groups. We found that protected areas were effective in maintaining woody vegetation cover in the study region, but were less effective in the protection of the target bird species assemblage. Protected areas were less species rich than unprotected areas, with significant declines in richness across sites protected prior to 1995. Small, specialised and vulnerable species showed stronger associations with unprotected areas than protected areas. Our findings indicate that recently established reserves (post‐1995) are performing similarly to unprotected woodland areas in terms of maintaining woodland bird diversity, and that both of these areas are more effective in the conservation of woodland bird populations than reserves established prior to 1995. We demonstrate that the conservation value of protected areas is strongly influenced by the physical characteristics, as well as the landscape context, of a given reserve and can diminish with changes in surrounding land use over time. Both protected areas and off‐reserve conservation schemes have important roles to play in securing species populations.  相似文献   

14.
The strong season-to-season variation (seasonality) in abiotic factors and productivity shape the changing patterns of species distribution and diversity throughout the year in temperate ecosystems. However, the determinants of seasonal changes within animal communities have rarely been explored, and the prognosis of community variation typically relies on identifying simple factors (e.g., mean temperature) that are assumed to have a constant effect throughout the year. Here we analyze the competing and changing roles of biotic (vegetation structure and phenology) and abiotic (temperature and elevation) factors in determining the richness and nestedness of montane Mediterranean oakwoods (central Spain) bird species in winter and spring. In winter, the most energy-demanding period, birds prefer mature forests with higher nocturnal temperatures where they can minimize thermoregulation costs during the long winter nights. In spring, which is the breeding season, spatial variation of species richness and nestedness is more deterministic than in winter. Breeding birds prefer lower forests with cooler temperatures at midday (presumably to avoid summer overheating stress), less unpredictable weather, and where trees develop leaves earlier (suggesting that birds, particularly those that prey on folivorous insects, would be able to breed early in the season). Thus, although both biotic and abiotic factors take part in the assemblage of local communities, the intervening specific components vary between seasons. For example, temperature—the factor most widely used to forecast future community changes—had opposite effects in winter than in spring. These results highlight the importance of fine-grained scale studies in accounting for temporal variation to understand both current and future regional biodiversity patterns.  相似文献   

15.
Cross-taxonomic surrogates can be feasible alternatives to direct measurements of biodiversity in conservation if validated with robust data and used with explicit goals. However, few studies of cross-taxonomic surrogates have examined how temporal changes in composition or richness in one taxon can drive variation in concordant patterns of diversity in another taxon, particularly in a dynamic and heavily modified landscape. We examined this problem by assessing changes in cross-taxonomic associations over time between the surrogate (birds) and target vertebrate taxa (mammals, reptiles) that demand high sampling effort, in a heterogeneous mosaic landscape comprising pine monoculture, eucalypt woodland remnants and agricultural land. Focussing on four study years (1999, 2001, 2011, 2013) from a dataset spanning 15 years, we: (1) investigated temporal changes in cross-taxonomic congruency among three animal taxa, (2) explored how temporal variation in composition and species richness of each taxon might account for variation in cross-taxonomic congruency, and (3) identified habitat structural variables that are strongly correlated with species composition of each taxon. We found the strength of cross-taxonomic congruency varied between taxa in response to both landscape context and over time. Among the three taxa, overall correlations were weak but were consistently positive and strongest between birds and mammals, while correlations involving reptiles were usually weak and negative. We also found that stronger species richness and composition correlations between birds and mammals were not only more prevalent in woodland remnants in the agricultural matrix, but they also increased in strength over time. Temporal shifts in species composition differed in rate and extent among the taxa even though these changes were significant over time, while important habitat structural correlates were seldom shared across taxa. Our study highlights the role of the landscape matrix and time in shaping animal communities and the resulting cross-taxonomic associations in the woodland remnants, especially after a major perturbation event (i.e. plantation establishment). In such dynamic landscapes, differing and taxon-specific shifts in diversity over time can influence the strength, direction and consistency of cross-taxonomic correlations, therefore posing a ‘temporal’ problem for the use of surrogates like birds in monitoring and assessments of biodiversity, and conservation management practices.  相似文献   

16.
Theobroma cacao plantings, when managed under the shade of rainforest trees, provide habitat for many resident and migratory bird species. We compared the bird diversity and community structure in organic cacao farms and nearby forest fragments throughout mainland Bocas del Toro, Panama. We used this dataset to ask the following questions: (1) How do bird communities using cacao habitat compare to communities of nearby forest fragments? (2) To what extent do Northern migratory birds use shaded cacao farms, and do communities of resident birds shift their abundances in cacao farms seasonally? (3) Do small scale changes in shade management of cacao farms affect bird diversity? Using fixed radius point counts and additional observations, we recorded 234 landbird species, with 102 species that were observed in both cacao and forest fragments, 86 species that were only observed in cacao farms, and 46 species that were restricted to forest fragments. Cacao farms were rich in canopy and edge species such as tanagers, flycatchers and migratory warblers, but understory insectivores were nearly absent from cacao farms. We observed 27 migratory species, with 18 species in cacao farms only, two species in forest only, and seven species that occurred in both habitats. In cacao farms, the diversity of birds was significantly greater where there was less intensive management of the canopy shade trees. Shade tree species richness was most important for explaining variance in bird diversity. Our study shows that shaded cacao farms in western Panama provide habitat for a wide variety of resident and migratory bird species. Considering current land use trends in the region, we suggest that action must be taken to prevent conversion away from shaded cacao farms to land uses with lower biodiversity conservation value.  相似文献   

17.
The natural vegetation of the Shire Highlands of Malawi has become fragmented because of human activities. As a consequence, some species of mammals have become locally extinct and the population numbers and geographical ranges of other species have declined. This study investigated the species richness of mammals on a commercial tobacco farm, and the importance of remnants of natural vegetation on farms for the conservation of mammals. The farm covered 180 ha and supported 44 species of mammals (equivalent to 66% of the species known to occur in the Shire Highlands at a similar altitude, and 24% of the total mammalian fauna of Malawi). Most of the species were bats (22 species) and rodents (13 species). The largest remnants of natural 'miombo' woodland supported more species and more individuals than smaller remnants. The high species richness was due, in part, to the variety of different habitats on the farm ('miombo' woodland, riverine forest, grassland, swamp, streams and dams), as well as to good conservation practices. The farm is especially important for the conservation of 13 species which are rare and/or have limited geographical ranges in Malawi. It is suggested that well-managed farms which contain remnants of natural vegetation can play a significant role in the conservation of mammals, and other vertebrates, in Central Africa.  相似文献   

18.
Aim To determine the factors influencing the distribution of birds in remnants in a fragmented agricultural landscape. Location Forty‐seven eucalypt remnants and six sites in continuous forest in the subhumid Midlands region of Tasmania, Australia. Methods Sites were censused over a two‐year period, and environmental data were collected for remnants. The avifauna of the sites was classified and ordinated. The abundances of bird species, and bird species composition, richness, abundance and diversity were related to environmental variables, using simple correlation and modelling. Results There were two distinct groups of sample sites, which sharply differed in species composition, richness, diversity and bird abundance, separated on the presence/absence of noisy miner (Manorina melanocephala Latham) colonies, remnant size, vegetation structural attributes and variables that reflected disturbance history. The approximate remnant size threshold for the change from one group to another was 20–30 ha. Remnant species richness and diversity were most strongly explained by remnant area and noisy miner abundance, with contributions from structural and isolation attributes in the second case. Segment richness was explained by precipitation, logging history and noisy miner abundance. Bird abundance was positively related to precipitation and negatively related to tree dieback. The 28 individual bird species models were highly individualistic, with vegetation structural variables, noisy miner abundance, climatic variables, variables related to isolation, area, variables related to floristics, disturbance variables, the nature of the matrix and remnant shape all being components in declining order of incidence. Age of the remnant did not relate to any of the dependent variables. Main conclusions Degraded and small remnants may have become more distinct in their avifaunal characteristics than might otherwise be the case, as a result of the establishment of colonies of an aggressive native bird, the noisy miner. The area, isolation and shape of remnants directly relate to the abundance of relatively few species, compared to vegetation attributes, climate and the abundance of the noisy miner. The nature of the matrix is important in the response of some species to fragmentation.  相似文献   

19.
The effectiveness of revegetation in providing habitat for fauna is expected to be determined both by within‐site factors and attributes of the landscape in which a revegetation site occurs. Most studies of fauna in revegetation have been conducted in landscapes that have been extensively cleared, modified or fragmented, and in Australia, predominantly in the southern temperate zone. We investigated how within‐site vegetation attributes and landscape context attributes were related to bird species richness and composition in a chronosequence of post‐mining rehabilitation sites within an otherwise intact landscape in tropical northern Australia. Our working hypothesis was that bird species richness in rehabilitating sites would be positively related to site vegetation structure and landscape context including (1) proximity to woodland and (2) the proportion of woodland within a 500‐m buffer of rehabilitation sites. Within each of 67 sites, we sampled vegetation once and surveyed for birds eight times over 16 months. Landscape context variables were calculated using GIS. There were large differences between bird assemblages of woodland and rehabilitation sites and between age classes of rehabilitation. Bird assemblages were strongly related to site vegetation attributes across all rehabilitation sites. Proximity to woodland was only related to bird assemblages in rehabilitation sites older than 4 years old. We conclude that the relative importance of landscape context and site variables at any point in time will be a function of how closely vegetation within the revegetation site matches the habitat resource requirements of individual species.  相似文献   

20.
Aim Broad‐scale spatial patterns of species richness are very strongly correlated with climatic variables. If there is a causal link, i.e. if climate directly or indirectly determines patterns of richness, then when the climatic variables change, richness should change in the manner that spatial correlations between richness and climate would predict. The present study tests this prediction using seasonal changes in climatic variables and bird richness. Location We used a grid of equal area quadrats (37 000 km2) covering North and Central America as far south as Nicaragua. Methods Summer and winter bird distribution data were drawn from monographs and field guides. Climatic data came from published sources. We also used remotely sensed NDVI (normalized difference vegetation index — a measure of greenness). Results Bird species richness changes temporally (between summer and winter) in a manner that is close to, but statistically distinguishable from, the change one would predict from models relating the spatial variation in richness at a single time to climatic variables. If one further takes into account the seasonal changes in NDVI and within‐season variability of temperature and precipitation, then winter and summer richness follow congruent, statistically indistinguishable patterns. Main conclusions Our results are consistent with the hypothesis that climatic variables (temperature and precipitation) and vegetation cover directly or indirectly influence patterns of bird species richness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号