首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of GDP on rod outer segment G-protein interactions   总被引:1,自引:0,他引:1  
The role of GDP has heretofore been little studied in the analysis of visual receptor G-protein (G) interactions. Here we use kinetically resolved absorption and light scattering spectroscopy, centrifugation, porous membrane filtration, and enzyme assay to compare the effectiveness of GDP with that of GTP or gamma-thio-guanosine-5'-triphosphate in the modulation of G-protein binding to rod disc membranes and activated receptor (R*). We also compare effectiveness of GDP with that of GTP in the separation of G alpha and G beta gamma subunits and in activation of effector, cGMP phosphodiesterase. We find that when different nucleotide affinities are taken into account, actions such as the release of G from R* binding, earlier ascribed to GTP alone, are also typical of GDP. The principal specific actions of GTP that occur only weakly or undetectably for GDP are, respectively, the release of G-protein subunits from the membrane into solution and activation of phosphodiesterase. While GDP, like GTP, releases G-protein binding to receptor, we argue that GDP cannot mediate G-protein subunit separation, even on the membrane surface. GDP retained on G-protein after GTP hydrolysis may function to prevent tight binding to quiescent receptors in a manner analogous to its action on G-protein binding to activated receptors. Weak binding of G.GDP may function to accelerate receptor catalyzed amplification during transduction.  相似文献   

2.
The G-protein-coupled receptor rhodopsin is activated by photoconversion of its covalently bound ligand 11-cis-retinal to the agonist all-trans-retinal. After light-induced isomerization and early photointermediates, the receptor reaches a G-protein-dependent equilibrium between active and inactive conformations distinguished by the protonation of key opsin residues. In this report, we study the role of the 9-methyl group of retinal, one of the crucial steric determinants of light activation. We find that when this group is removed, the protonation equilibrium is strongly shifted to the inactive conformation. The residually formed active species is very similar to the active form of normal rhodopsin, metarhodopsin II. It has a deprotonated Schiff base, binds to the retinal G-protein transducin, and is favored at acidic pH. Our data show that the normal proton transfer reactions are inhibited in 9-demethyl rhodopsin but are still mandatory for receptor activation. We propose that retinal and its 9-methyl group act as a scaffold for opsin to adjust key proton donor and acceptor side chains for the proton transfer reactions that stabilize the active conformation. The mechanism may also be applicable to related receptors and may thus explain the partial agonism of certain ligands.  相似文献   

3.
Pro258 in transmembrane domain (TMD) 6 of the bradykinin (BK) B2 receptor (B2R) is highly conserved among G-protein coupled receptors (GPCRs). Using mutagenesis, we show that Pro258 is required for normal trafficking of the receptor to the plasma membrane and that mutation of Pro258 to Ala or Leu but not Gly, enhances BK efficacy to induce receptor activation. Furthermore, P258A mutation suppresses the constitutive activity of a constitutively activated N113A-B2R mutant but preserves the antagonist to agonist efficacy shift previously observed on the N113A single mutant. Our data suggest that Pro258 in TMD6 is required for agonist-independent activation of the B2R and that straightening of TMD6 at the Pro-kink might favor G-protein coupling. It is also shown that Asn113 is a contact point of BK interaction and it is proposed that the release of a TMD3-TMD6 interaction involving Asn113 is crucial for the efficacy shift from antagonism toward agonism.  相似文献   

4.
The goal of this study was to elucidate the relationships between early ligand binding/receptor processing events and cellular responses for the N-formyl peptide receptor system on human neutrophils as a model of a GPCR system in a physiologically relevant context. Binding kinetics of N-formyl-methionyl-leucyl-phenylalanyl-phenylalanyl-lysine-fluorescein and N-formyl-valyl-leucyl-phenylalanyl-lysine-fluorescein to the N-formyl peptide receptor on human neutrophils were characterized and combined with previously published binding data for four other ligands. Binding was best fit by an interconverting two-receptor state model that included a low affinity receptor state that converted to a high affinity state. Response behaviors elicited at 37 degrees C by the six different agonists for the N-formyl peptide receptor were measured. Dose response curves for oxidant production, actin polymerization, and G-protein activation were obtained for each ligand; whereas all ligands showed equal efficacy for all three responses, the ED(50) values varied as much as 7000-fold. The level of agonism and rank order of potencies of ligands for actin and oxidant responses were the same as for the G-protein activation assay, suggesting that the differences in abilities of ligands to mediate responses were determined upstream of G-protein activation at the level of ligand-receptor interactions. The rate constants governing ligand binding and receptor affinity conversion were ligand-dependent. Analysis of the forward and reverse rate constants governing binding to the proposed signaling receptor state showed that it was of a similar energy for all six ligands, suggesting the hypothesis that ligand efficacy is dictated by the energy state of this ligand-receptor complex. However, the interconverting two-receptor state model was not sufficient to predict response potency, suggesting the presence of receptor states not discriminated by the binding data.  相似文献   

5.
Reconstitution of high-affinity agonist binding at the beta2-adrenoceptor (beta2AR) expressed in Sf9 insect cells requires a large excess of the stimulatory G-protein of adenylyl cyclase, Gsalpha, relative to receptor [R. Seifert, T. W. Lee, V. T. Lam & B. K. Kobilka, (1998) Eur. J. Biochem. 255, 369-382]. In a fusion protein of the beta2AR and Gsalpha (beta2AR-Gsalpha), which has only a 1 : 1 stoichiometry of receptor and G-protein, high-affinity agonist binding and agonist-stimulated GTP hydrolysis, guanosine 5'-O-(3-thiotriphosphate) (GTP[S]) binding and adenylyl cyclase (AC) activation are more efficient than in the nonfused coexpression system. In order to analyze the stability of the receptor/G-protein interaction, we constructed a fusion protein with a thrombin-cleavage site between beta2AR and Gsalpha (beta2AR-TS-Gsalpha). beta2AR-TS-Gsalpha efficiently reconstituted high-affinity agonist binding, agonist-stimulated GTP hydrolysis, GTP[S] binding and AC activation. Thrombin cleaves approximately 70% of beta2AR-TS-Gsalpha molecules in Sf9 membranes. Thrombin cleavage did not impair high-affinity agonist binding and GTP[S] binding but strongly reduced ligand-regulated GTPase activity and AC activity. We conclude that fusion of the beta2AR to Gsalpha promotes tight physical association of the two partners and that this association remains stable for a single activation/deactivation cycle even after cleavage of the link between the receptor and G-protein. Dilution of Gsalpha in the membrane and release of activated Gsalpha into the cytosol can both prevent cleaved beta2AR-TS-Gsalpha from undergoing multiple activation/deactivation cycles.  相似文献   

6.
The mechanism of interaction of the G-protein of retinal rods with rhodopsin and with nucleotides has been investigated using two independent techniques, light-scattering and direct binding measurements with labeled nucleotides. Binding of photoexcited rhodopsin (R*) and nucleotides are shown to be antagonist, and three conformations of the G-protein are described, each of which is proposed to be related to a different level of light-scattering, as follows: (a) the "dark" state, stable in the absence of photoexcited rhodopsin, in which the nucleotide site is poorly accessible and has a high affinity (dissociation constants, 0.1 microM for GDP and 0.01 microM for GppNHp); (b) the R*-bound state in which the nucleotide site is rapidly accessible with a lower affinity (dissociation constants, about 20 microM for GDP and GTP; 20-100 microM for GppNHp). Binding of R* to the G-protein therefore enables rapid binding or exchange of the nucleotide; this in turn reduces the affinity of the G-protein for R* (dissociation constants, 0.2 microM for G-protein with GDP bound and 2-10 microM for G-protein with GppNHp bound, compared to 1 nM in absence of bound nucleotide); and (c) the third state, the activator of the phosphodiesterase. In the presence of GTP, an additional irreversible and fast step, which is proposed to be the dissociation of alpha-GTP from beta gamma, is shown to occur; a steady state equilibrium is obtained, and the dissociation constant measured between GTP and this third state of the G-protein in the presence of R* is an apparent constant which depends on the rate of transconformation between the first two states and on the rate of GTP hydrolysis. The minimum value of this apparent dissociation constant for GTP (0.05-0.1 (microM) is obtained at high levels of illumination. Finally, some results (number of nucleotide sites and saturation of the rate of the light-scattering signal) suggest an oligomeric association of the G-protein.  相似文献   

7.
Activation of several receptor types is followed by their binding to a G-protein. Prior to transmission of the agonist signal, the G-protein which had affinity for guanosine 5-diphosphate (GDP) binds guanosine 5-triphosphate (GTP) instead. Because evidence exists that several agonist groups activate their receptors by reduction, we evaluated whether the nucleotide associated with G-proteins could enhance electron flow. Using a model system of ferrous iron and ferric cytochrome c, it was determined that substitution of GTP for GDP led to an enhanced reduction of ferric cytochrome c. These results support the concept that cellular activation by certain receptors may involve reductive activation with the participation of GTP and G-proteins. We speculate that GTP, when bound to G-protein, can facilitate electron transfer perhaps from the receptor or the G-protein to the catalytic subunit of the adenylate cyclase enzyme.  相似文献   

8.
The collision coupling model describes interactions between receptors and G-proteins as first requiring the molecules to find each other by diffusion. A variety of experimental data on G-protein activation have been interpreted as suggesting (or not) the compartmentalization of receptors and/or G-proteins in addition to a collision coupling mechanism. In this work, we use a mathematical model of G-protein activation via collision coupling but without compartmentalization to demonstrate that these disparate observations do not imply the existence of such compartments. In experiments with GTP analogs (commonly GTPγS), the extent of G-protein activation is predicted to be a function of both receptor number and the rate of GTP analog hydrolysis. The sensitivity of G-protein activation to receptor number is shown to be dependent upon the assay used, with the sensitivity of phosphate production assays (GTPase) >GTPγS-binding assays >cAMP inhibition assays. Finally, the amount of competition or crosstalk between receptor species activating the same type of G-proteins is predicted to depend on receptor and G-protein number, but in some (common) experimental regimes this dependence is expected to be minimal. Taken together, these observations suggest that the collision coupling model, without compartments of receptors and/or G-proteins, is sufficient to explain a variety of observations in literature data.  相似文献   

9.
A Monte Carlo study of the dynamics of G-protein activation.   总被引:7,自引:1,他引:6       下载免费PDF全文
To link quantitatively the cell surface binding of ligand to receptor with the production of cellular responses, it may be necessary to explore early events in signal transduction such as G-protein activation. Two different model frameworks relating receptor/ligand binding to G-protein activation are examined. In the first framework, a simple ordinary differential equation model is used to describe receptor/ligand binding and G-protein activation. In the second framework, the events leading to G-protein activation are simulated using a dynamic Monte Carlo model. In both models, reactions between ligand-bound receptors and G-proteins are assumed to be diffusion-limited. The Monte Carlo model predicts two regimes of G-protein activation, depending upon whether the lifetime of a receptor/ligand complex is long or short compared with the time needed for diffusional encounters of complexes and G-proteins. When the lifetime of a complex is relatively short compared with the diffusion time, the movement of ligand among free receptors by binding and unbinding ("switching") significantly enhances G-protein activation. Receptor antagonists dramatically reduce G-protein activation and, thus, signal transduction in this case, and significant clustering of active G-proteins near receptor/ligand complexes results. The simple ordinary differential equation model poorly predicts G-protein activation for this situation. In the alternative case, when diffusion is relatively fast, ligand movement among receptors is less important and the simple ordinary differential equation model and Monte Carlo model results are similar. In this case, there is little clustering of active G-proteins near receptor/ligand complexes. Results also indicate that as the GTPase activity of the alpha-subunit decreases, the steady-state level of alpha-GTP increases, although temporal sensitivity is compromised.  相似文献   

10.
The majority of intracellular signalling cascades in higher eukaryotes are initiated by GPCRs (G-protein-coupled receptors). Hundreds of GPCRs signal through a handful of trimeric G-proteins, raising the issue of signal specificity. In the present paper, we illustrate a simple kinetic model of G-protein signalling. This model shows that stable production of significant amounts of free Galpha(GTP) (GTP-bound Galpha subunit) and betagamma is only one of multiple modes of behaviour of the G-protein system upon activation. Other modes, previously uncharacterized, are sustained production of betagamma without significant levels of Galpha(GTP) and transient production of Galpha(GTP) with sustained betagamma. The system can flip between different modes upon changes in conditions. This model demonstrates further that the negative feedback of receptor uncoupling or internalization, when combined with a positive feedback within the G-protein cycle, under a broad range of conditions results not in termination of the response but in relaxed oscillations in GPCR signalling. This variety of G-protein responses may serve to encode signal specificity in GPCR signal transduction.  相似文献   

11.
12.
According to the two-state model of G-protein-coupled receptor (GPCR) activation, GPCRs isomerize from an inactive (R) state to an active (R*) state. In the R* state, GPCRs activate G-proteins. Agonist-independent R/R* isomerization is referred to as constitutive activity and results in an increase in basal G-protein activity, i.e. GDP/GTP exchange. Agonists stabilize the R* state and further increase, whereas inverse agonists stabilize the R state and decrease, basal G-protein activity. Constitutive activity is observed in numerous wild-type GPCRs and disease-causing GPCR mutants with increased constitutive activity. The human formyl peptide receptor (FPR) exists in several isoforms (FPR-26, FPR-98 and FPR-G6) and activates chemotaxis and cytotoxic cell functions of phagocytes through G(i)-proteins. Studies in HL-60 leukemia cell membranes demonstrated inhibitory effects of Na(+) and pertussis toxin on basal G(i)-protein activity, suggesting that the FPR is constitutively active. However, since HL-60 cells express several constitutively active chemoattractant receptors, analysis of constitutive FPR activity was difficult. Sf9 insect cells do not express chemoattractant receptors and G(i)-proteins and provide a sensitive reconstitution system for FPR/G(i)-protein coupling. Such expression studies showed that FPR-26 is much more constitutively active than FPR-98 and FPR-G6 as assessed by the relative inhibitory effects of Na(+) and of the inverse agonist cyclosporin H on basal G(i)-protein activity. Site-directed mutagenesis studies suggest that the E346A exchange in the C-terminus critically determines dimerization and constitutive activity of FPR. Moreover, N-glycosylation of the N-terminus seems to be important for constitutive FPR activity. Finally, we discuss some future directions of research.  相似文献   

13.
cGMP influences guanine nucleotide binding to frog photoreceptor G-protein   总被引:2,自引:0,他引:2  
A rapid light-induced decrease in cGMP is thought to play a role in regulating the permeability or light sensitivity of photoreceptor membranes. Photo-excited rhodopsin activates a guanine nucleotide-binding protein (G-protein) by catalyzing the exchange of bound GDP for GTP. This G-protein X GTP complex activates the phosphodiesterase resulting in a decrease in cGMP concentration. We have observed two processes in vitro which may be relevant for the regulation of G-protein activation. First, we have found that free GDP binds to G-protein with an affinity similar to that of GTP. These two nucleotides appear to compete for a common site. Since G-protein X GDP does not activate phosphodiesterase, light-induced changes in the GTP/GDP ratio known to occur on illumination may serve to reduce G-protein activation and hence reduce phosphodiesterase activation. Second, addition of cGMP in the presence of equimolar GTP and GDP causes GTP binding to G-protein to be enhanced compared to GDP binding. This effect increases as the cGMP concentration is increased from 0.05 to 2 mM. Thus, light-induced decreases in cGMP concentration may also act as a feedback control in reducing G-protein activation. One or both of these processes may be involved in the desensitization (light adaptation) of rod photoreceptors.  相似文献   

14.
Activation of phospholipase C by angiotensin II in vascular smooth muscle has been postulated to be mediated by an unidentified GTP-binding protein (G-protein). Using a permeabilized preparation of myo-[3H]inositol-labelled cultured vascular smooth muscle cells, we examined the ability of a non-hydrolysable analogue of GTP, guanosine 5'-[gamma-thio]triphosphate (GTP[S]), to stimulate inositol phosphate formation. GTP[S] (5 min exposure) stimulated inositol polyphosphate release by up to 3.8-fold in a dose-dependent manner, with an EC50 (concn. producing half-maximal stimulation) of approx. 50 microM. Inositol bisphosphate (IP2) and inositol trisphosphate (IP3) accumulations were also stimulated by NaF (5-20 mM). Furthermore, angiotensin II-induced inositol phosphate formation could be potentiated by a submaximal concentration of GTP[S] (10 microM), and this treatment appeared to interfere with the normal termination mechanism of the initial hormonal signal. The G-protein mediating angiotensin II-stimulated phospholipase C activation was insensitive to pertussis toxin at an exposure time and concentration which were sufficient to completely ADP-ribosylate all available substrate (100 ng/ml, 16 h). In contrast, a similar incubation with cholera toxin markedly inhibited angiotensin II-stimulated IP2 and IP3 release by 67 +/- 6% and 62 +/- 6% respectively. Cholera toxin appeared to inhibit angiotensin II stimulation of phospholipase C by a dual mechanism: it caused a 45% decrease in angiotensin II receptor number, and also inhibited G-protein transduction as assessed by GTP[S]-stimulated IP2 formation. This latter inhibition may be secondary to an increase in cyclic AMP, since it could be simulated by addition of dibutyryl cyclic AMP. Thus angiotensin II-stimulated inositol phosphate formation is cholera-toxin-sensitive, and is mediated by a pertussis-toxin-insensitive G-protein, which may be involved directly in termination of early signal generation.  相似文献   

15.
Recently, interest in the enzyme nucleoside diphosphate kinase (EC2.7.4.6) has increased as a result of its possible involvement in cell proliferation and development. Since NDP kinase is one of the major sources of GTP in cells, it has been suggested that the effects of an altered NDP kinase activity on cellular processes might be the result of altered transmembrane signal transduction via guanine nucleotide-binding proteins (G-proteins). In the cellular slime mould Dictyostelium discoideum, extracellular cAMP induces an increase of phospholipase C activity via a surface cAMP receptor and G-proteins. In this paper it is demonstrated that part of the cellular NDP kinase is associated with the membrane and stimulated by cell surface cAMP receptors. The GTP produced by the action of NDP kinase is capable of activating G-proteins as monitored by altered G-protein-receptor interaction and the activation of the effector enzyme phospholipase C. Furthermore, specific monoclonal antibodies inhibit the effect of NDP kinase on G-protein activation. These results suggest that receptor-stimulated NDP kinase contributes to the mediation of hormone action by producing GTP for the activation of GTP-binding proteins.  相似文献   

16.
Agents that activate cannabinoid receptor pathways have been tested as treatments for cachexia, nausea or neuropathic pain in HIV-1/AIDS patients. The cannabinoid receptors (CB(1)R and CB(2)R) and the HIV-1 co-receptors, CCR5 and CXCR4, all signal via Gαi-coupled pathways. We hypothesized that drugs targeting cannabinoid receptors modulate chemokine co-receptor function and regulate HIV-1 infectivity. We found that agonism of CB(2)R, but not CB(1)R, reduced infection in primary CD4+ T cells following cell-free and cell-to-cell transmission of CXCR4-tropic virus. As this change in viral permissiveness was most pronounced in unstimulated T cells, we investigated the effect of CB(2)R agonism on to CXCR4-induced signaling following binding of chemokine or virus to the co-receptor. We found that CB(2)R agonism decreased CXCR4-activation mediated G-protein activity and MAPK phosphorylation. Furthermore, CB(2)R agonism altered the cytoskeletal architecture of resting CD4+ T cells by decreasing F-actin levels. Our findings suggest that CB(2)R activation in CD4+ T cells can inhibit actin reorganization and impair productive infection following cell-free or cell-associated viral acquisition of CXCR4-tropic HIV-1 in resting cells. Therefore, the clinical use of CB(2)R agonists in the treatment of AIDS symptoms may also exert beneficial adjunctive antiviral effects against CXCR4-tropic viruses in late stages of HIV-1 infection.  相似文献   

17.
Heterotrimeric guanine-nucleotide-binding proteins (G proteins) act as molecular switches in signaling pathways by coupling the activation of heptahelical receptors at the cell surface to intracellular responses. In the resting state, the G-protein alpha subunit (Galpha) binds GDP and Gbetagamma. Receptors activate G proteins by catalyzing GTP for GDP exchange on Galpha, leading to a structural change in the Galpha(GTP) and Gbetagamma subunits that allows the activation of a variety of downstream effector proteins. The G protein returns to the resting conformation following GTP hydrolysis and subunit re-association. As the G-protein cycle progresses, the Galpha subunit traverses through a series of conformational changes. Crystallographic studies of G proteins in many of these conformations have provided substantial insight into the structures of these proteins, the GTP-induced structural changes in Galpha, how these changes may lead to subunit dissociation and allow Galpha and Gbetagamma to activate effector proteins, as well as the mechanism of GTP hydrolysis. However, relatively little is known about the receptor-G protein complex and how this interaction leads to GDP release from Galpha. This article reviews the structural determinants of the function of heterotrimeric G proteins in mammalian systems at each point in the G-protein cycle with special emphasis on the mechanism of receptor-mediated G-protein activation. The receptor-G protein complex has proven to be a difficult target for crystallography, and several biophysical and computational approaches are discussed that complement the currently available structural information to improve models of this interaction. Additionally, these approaches enable the study of G-protein dynamics in solution, which is becoming an increasingly appreciated component of all aspects of G-protein signaling.  相似文献   

18.
G-protein oncogenes in acromegaly.   总被引:1,自引:0,他引:1  
A Spada  L Vallar 《Hormone research》1992,38(1-2):90-93
G-proteins belong to a family of proteins which share the common properties of GTP binding and hydrolysis. Heterotrimeric G-proteins are composed of alpha-, beta- and gamma-subunits. The alpha-subunit which differs from one G-protein to another contains the GDP/GTP binding site and has intrinsic GTPase activity. The receptor occupancy causes displacement of bound GDP by GTP, dissociation of free beta gamma-dimer and alpha-GTP complex, interaction of the activated alpha-GTP complex with intracellular effectors, such as enzymes and ion channels. The turn off of the reaction is due to the GTPase activity which causes the hydrolysis of GTP to GDP. G-proteins are essential for transferring hormonal signals from cell surface receptors to intracellular effectors. Since G-proteins generate intracellular effectors involved in cell growth, G-protein genes have the propensity to be converted into oncogenes. In fact, mutations in the alpha-subunit of Gs (the G-protein involved in the activation of adenylyl cyclase) have been demonstrated in 40% of human GH secreting pituitary adenomas. Single amino acid substitutions replacing Arg 201 with either Cys or His or Gln 227 with either Arg or Leu cause constitutive activation of adenylyl cyclase by inhibiting GTPase (gsp oncogene). The same mutations were identified in about 10% of thyroid adenomas and in the McCune-Albright syndrome.  相似文献   

19.
Functional coupling of the human thrombin receptor PAR1 (protease-activated receptor 1) with the retinal rod G-protein transducin (Gt, a member of the Gi family) was studied in a reconstituted system of membranes from Sf9 cells expressing the thrombin receptor and purified Gt from bovine rod outer segments. TRAP6-agonist-activated PAR1 interacts productively with the distant G-protein. Agonist-dependent Gt activation was measured using a real-time fluorimetric GTP[S]-binding assay and membranes from Sf9 cells. To characterize nucleotide-exchange catalysis by PAR1, we analyzed dependence on nucleotides, temperature and pH. Activation was inhibited by low GDP concentrations (IC50 = 5.2 +/- 1.5 microM at 5 microM GTP[S]), indicating that receptor-Gt coupling, followed by instantaneous GDP release, is rate limiting under the conditions (25 degrees C). Arrhenius plots of the temperature dependence reflect an apparent Ea of 60 +/- 3.5 kJ.mol-1. Evaluation of the pH/rate profiles of Gt activation indicates that the activating conformation of the receptor is determined by protonation of a titratable group with an apparent pKa of 6.4. This supports the idea that the active state of agonist-bound PAR1 depends on forced protonation, indicating possible analogies to the scheme established for rhodopsin.  相似文献   

20.
Signaling through G-protein coupled receptors is one of the most prevalent and important methods of transmitting information to the inside of cells. Many mathematical models have been proposed to describe this type of signal transduction, and the ternary complex (ligand/receptor/G-protein) model and its derivatives are among the most widely accepted. Current versions of these equilibrium models include both active (i.e. signaling) and inactive conformations of the receptor, but do not include the dynamics of G-protein activation or receptor desensitization. Yet understanding how these dynamic events effect response behavior is crucial to determining ligand efficacy. We developed a mathematical model for G-protein coupled receptor signaling that includes G-protein activation and receptor desensitization, and used it to predict how activation and desensitization would change if either the conformational selectivity (the effect of ligand binding on the distribution of active and inactive receptor states) or the desensitization rate constant was ligand-specific. In addition, the model was used to explore the implications of measuring responses far downstream from G-protein activation. By comparing the experimental data from the beta(2)-adrenergic, micro-opioid, D(1)dopamine, and neutrophil N -formyl peptide receptors with the predictions of our model, we found that the conformational selectivity is the predominant factor in determining the amounts of activation and desensitization caused by a particular ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号