首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Myotonic dystrophy type 2 (DM2) is a subtype of the myotonic dystrophies, caused by expansion of a tetranucleotide CCTG repeat in intron 1 of the zinc finger protein 9 (ZNF9) gene. The expansions are extremely unstable and variable, ranging from 75-11,000 CCTG repeats. This unprecedented repeat size and somatic heterogeneity make molecular diagnosis of DM2 difficult, and yield variable clinical phenotypes. To better understand the mutational origin and instability of the ZNF9 CCTG repeat, we analyzed the repeat configuration and flanking regions in 26 primate species. The 3'-end of an AluSx element, flanked by target site duplications (5'-ACTRCCAR-3'or 5'-ACTRCCARTTA-3'), followed the CCTG repeat, suggesting that the repeat was originally derived from the Alu element insertion. In addition, our results revealed lineage-specific repetitive motifs: pyrimidine (CT)-rich repeat motifs in New World monkeys, dinucleotide (TG) repeat motifs in Old World monkeys and gibbons, and dinucleotide (TG) and tetranucleotide (TCTG and/or CCTG) repeat motifs in great apes and humans. Moreover, these di- and tetra-nucleotide repeat motifs arose from the poly (A) tail of the AluSx element, and evolved into unstable CCTG repeats during primate evolution. Alu elements are known to be the source of microsatellite repeats responsible for two other repeat expansion disorders: Friedreich ataxia and spinocerebellar ataxia type 10. Taken together, these findings raise questions as to the mechanism(s) by which Alu-mediated repeats developed into the large, extremely unstable expansions common to these three disorders.  相似文献   

2.
3.
The L1 Ta subfamily of long interspersed elements (LINEs) consists exclusively of human-specific L1 elements. Polymerase chain reaction-based screening in nonhuman primate genomes of the orthologous sites for 249 human L1 Ta elements resulted in the recovery of various types of sequence variants for approximately 12% of these loci. Sequence analysis was employed to capture the nature of the observed variation and to determine the levels of gene conversion and insertion site homoplasy associated with LINE elements. Half of the orthologous loci differed from the predicted sizes due to localized sequence variants that occurred as a result of common mutational processes in ancestral sequences, often including regions containing simple sequence repeats. Additional sequence variation included genomic deletions that occurred upon L1 insertion, as well as successive mobile element insertions that accumulated within a single locus over evolutionary time. Parallel independent mobile element insertions at orthologous loci in distinct species may introduce homoplasy into retroelement-based phylogenetic and population genetic data. We estimate the overall frequency of parallel independent insertion events at L1 insertion sites in seven different primate species to be very low (0.52%). In addition, no cases of insertion site homoplasy involved the integration of a second L1 element at any of the loci, but rather largely involved secondary insertions of Alu elements. No independent mobile element insertion events were found at orthologous loci in the human and chimpanzee genomes. Therefore, L1 insertion polymorphisms appear to be essentially homoplasy free characters well suited for the study of population genetics and phylogenetic relationships within closely related species.  相似文献   

4.
Summary There are several hundred thousand members of the Alu repeat family in the human genome. Those Alu elements sequenced to date appear to fit into subfamilies. A novel Alu has been found in an intron of the human CAD gene: it appears to be due to rearrangement between Alu repeats belonging to two different subfamilies. Further sequence data from this intron suggest that the Alu element may have rearranged prior to its entry into the CAD gene. Such findings indicate that, in addition to single nucleotide substitutions and deletions, DNA rearrangments may be a factor in generating the diversity of Alu repeats found in primate genomes.  相似文献   

5.
Insertions, substitutions, and the origin of microsatellites   总被引:7,自引:0,他引:7  
This paper uses data from the Human Gene Mutation Database to contrast two hypotheses for the origin of short DNA repeats: substitutions and insertions that duplicate adjacent sequences. Because substitutions are much more common than insertions, they are the dominant source of new 2-repeat loci. Insertions are rarer, but over 70% of the 2-4 base insertion mutations are duplications of adjacent sequences, and over half of these generate new repeat regions. Insertions contribute fewer new repeat loci than substitutions, but their relative importance increases rapidly with repeat number so that all new 4-5-repeat mutations come from insertions, as do all 3-repeat mutations of tetranucleotide repeats. This suggests that the process of repeat duplication that dominates microsatellite evolution at high repeat numbers is also important very early in microsatellite evolution. This result sheds light on the puzzle of the origin of short tandem repeats. It also suggests that most short insertion mutations derive from a slippage-like process during replication.  相似文献   

6.
Taking advantage of the polymorphism created by the presence or the absence of a LINE-1 repeat in intron 12 of the mouse serum albumin-encoding gene, we sequenced the repeat (Alb-L1Md), as well as the flanking regions in BALB/c DNA. The empty insertion site in a wild-type mouse of the same species Mus domesticus was amplified using PCR and sequenced. The Alb-L1Md was truncated at its 5' end and bordered by two 14-bp repeats, which represented the duplication of the empty insertion site. The absence of mutations in the two direct repeats as well as in the poly(dA) tail suggests that the Alb-L1Md sequence had been inserted very recently. On the basis of the insertion sequence of intron 12 and of the sequence of the consensus L1Md repeat, 5' of the insertion, we discuss a model of integration of full-length L1Md-RNA leading to the truncation of the inserted repeat.  相似文献   

7.
Fabry disease, an inborn error of glycosphingolipid catabolism, results from mutations in the X-linked gene encoding the lysosomal enzyme, alpha-galactosidase A (EC 3.2.1.22). Six alpha-galactosidase A gene rearrangements that cause Fabry disease were investigated to assess the role of Alu repetitive elements and short direct and/or inverted repeats in the generation of these germinal mutations. The breakpoints of five partial gene deletions and one partial gene duplication were determined by either cloning and sequencing the mutant gene from an affected hemizygote, or by polymerase chain reaction amplifying and sequencing the genomic region containing the novel junction. Although the alpha-galactosidase A gene contains 12 Alu repetitive elements (representing approximately 30% of the 12-kilobase (kb) gene or approximately 1 Alu/1.0 kb), only one deletion resulted from an Alu-Alu recombination. The remaining five rearrangements involved illegitimate recombinational events between short direct repeats of 2 to 6 base pairs (bp) at the deletion or duplication breakpoints. Of these rearrangements, one had a 3' short direct repeat within an Alu element, while another was unusual having two deletions of 1.7 kb and 14 bp separated by a 151-bp inverted sequence. These findings suggested that slipped mispairing or intrachromosomal exchanges involving short direct repeats were responsible for the generation of most of these gene rearrangements. There were no inverted repeat sequences or alternating purine-pyrimidine regions which may have predisposed the gene to these rearrangements. Intriguingly, the tetranucleotide CCAG and the trinucleotide CAG (or their respective complements, CTGG and CTG) occurred within or adjacent to the direct repeats at the 5' breakpoints in three and four of the five alpha-galactosidase A gene rearrangements, respectively, suggesting a possible functional role in these illegitimate recombinational events. These studies indicate that short direct repeats are important in the formation of gene rearrangements, even in human genes like alpha-galactosidase A that are rich in Alu repetitive elements.  相似文献   

8.
The phi-screen, a method of phylogenetic screening, can be employed to detect repetitive sequence families that differentially hybridize between closely related species. Such differences may involve sequence divergence or variations in copy number, including total presence versus absence of a family of repeated DNA. We present the results of a phi-screen comparing the human genome to that of the prosimian, Galago crassicaudatus. Three human repetitive families that are divergent or not present in galago have been detected. One of these families is described in detail; it is similar among the anthropoids but is present in a lower copy number and/or divergent form in prosimians. The family is clearly related to the transposon-like human element (THE) described by Paulson et al. (1985). THEs have long terminal repeats reminiscent of retroviruses but are unique in that they have no sequence similarity to known mammalian retroviruses. The sequence of a solo long terminal repeat, found unassociated with THE internal sequence, is presented. This family member, THE p2, is bordered by a 5-bp target-site repeat and is interrupted by the insertion of an Alu element. A solo THE element sequenced by Wiginton et al. (1986) contains an insertion of Alu at precisely the same position as does THE p2.   相似文献   

9.
The Alu Ya-lineage is a group of related, short interspersed elements (SINEs) found in primates. This lineage includes subfamilies Ya1-Ya5, Ya5a2 and others. Some of these subfamilies are still actively mobilizing in the human genome. We have analyzed 2482 elements that reside in the human genome draft sequence and focused our analyses on the 2318 human autosomal Ya Alu elements. A total of 1470 autosomal loci were subjected to polymerase chain reaction (PCR)-based assays that allow analysis of individual Ya-lineage Alu elements. About 22% (313/1452) of the Ya-lineage Alu elements were polymorphic for the insertion presence on human autosomes. Less than 0.01% (5/1452) of the Ya-lineage loci analyzed displayed insertions in orthologous loci in non-human primate genomes. DNA sequence analysis of the orthologous inserts showed that the orthologous loci contained older pre-existing Y, Sc or Sq Alu subfamily elements that were the result of parallel forward insertions or involved in gene conversion events in the human lineage. This study is the largest analysis of a group of "young", evolutionarily related human subfamilies. The size, evolutionary age and variable allele insertion frequencies of several of these subfamilies makes members of the Ya-lineage useful tools for human population studies and primate phylogenetics.  相似文献   

10.
Summary The haploid genomes of all known primates have two or more adult -globin genes contained within tandemly arranged duplication units. Although the tandem duplication event generating these -globin loci is believed to occur prior to the divergence of primates, a number of length polymorphisms exist within the loci among different primate species. In order to understand the molecular basis of these length polymorphisms, we have cloned and determined the nucleotide sequence of a major portion of the rhesus monkey adult -globin locus. Sequence comparison to human suggests that the length difference between the adult -globin loci of human and Old World monkey is the result of one or more DNA recombination processes, all of which appeared to be related to the transposition of Alu family repeats. First, the finding of a monomeric Alu family repeat at the junction between nonhomology block I and homology block Y of the 2 genecontaining unit in rhesus macaque suggests that the dimeric Alu family repeat, Alu 3, at the orthologous position in human was generated by insertion of a monomeric Alu family repeat into the 3 end of another preexisting Alu family repeat. Second, two Alu family repeats, Alu 1 and Alu 2, exist in human at the 3 end of each of the two X homology blocks, respectively. However, this pair of paralogous Alu family repeats is absent at the corresponding positions in rhesus macaques. This raises interesting questions regarding the evolutionary origin of Alu 1 and Alu 2. Finally, DNA sequences immediately downstream from the insertion site of Alu 2 are completely different between human and rhesus macaque. This last event is similar to DNA rearrangements occurring nearby transposable element(s) in the chromosomes of bacteria, yeast, and plant cells. Its possible role in accelerating the genomic evolution of noncoding or spacer DNA is discussed.  相似文献   

11.
The Alu repetitive family of short interspersed elements (SINEs) in primates can be subdivided into distinct subfamilies by specific diagnostic nucleotide changes. The older subfamilies are generally very abundant, while the younger subfamilies have fewer copies. Some of the youngest Alu elements are absent in the orthologous loci of nonhuman primates, indicative of recent retroposition events, the primary mode of SINE evolution. PCR analysis of one young Alu subfamily (Sb2) member found in the low-density lipoprotein receptor gene apparently revealed the presence of this element in the green monkey, orangutan, gorilla, and chimpanzee genomes, as well as the human genome. However, sequence analysis of these genomes revealed a highly mutated, older, primate-specific Alu element was present at this position in the nonhuman primates. Comparison of the flanking DNA sequences upstream of this Alu insertion corresponded to evolution expected for standard primate phylogeny, but comparison of the Alu repeat sequences revealed that the human element departed from this phylogeny. The change in the human sequence apparently occurred by a gene conversion event only within the Alu element itself, converting it from one of the oldest to one of the youngest Alu subfamilies. Although gene conversions of Alu elements are clearly very rare, this finding shows that such events can occur and contribute to specific cases of SINE subfamily evolution.  相似文献   

12.
M C Edwards  R A Gibbs 《Genomics》1992,14(3):590-597
The molecular phylogeny of Alu and other repeated sequences in the human genome provides clues to events during primate evolution. A subclass of human Alu's has been previously identified as dimorphic insertions within members of the medium reiteration frequency (mer) class of repeats, reflecting the complicated sequence of insertion and radiation events leading to the current human genome structure. One dimorphic Alu is located within a previously unidentified mer family member, in the first intron of the human T4 (CD4) gene. The insertion (Alu+ allele) has a frequency of approximately 70% in Europeans and Africans and is homozygous in 20 Asian samples. Polymerase chain reaction amplification, direct DNA sequencing, and Southern analysis using oligonucleotide probes revealed that the Alu- allele was derived from the Alu+ allele by loss of part of the inserted sequence. Comparison with a tightly linked marker within the human genome and studies of baboon DNA samples revealed that the original insertion was a relatively early event in primate evolution, but that the Alu sequence loss leading to the dimorphism has occurred much more recently. Loss of Alu insertions therefore represents one mechanism for the generation of human Alu dimorphisms.  相似文献   

13.
Numerous flanking nucleotide sequences from two primate interspersed repetitive DNA families have been aligned to determine the integration site preferences of each repetitive family. This analysis indicates that both the human Alu and galago Monomer families were preferentially inserted into short d(A+T)-rich regions. Moreover, both primate repeat families demonstrated an orientation specific integration with respect to dA-rich sequences within the flanking direct repeats. These observations suggest that a common mechanism exists for the insertion of many repetitive DNA families into new genomic sites. A modified mechanism for site-specific integration of primate repetitive DNA sequences is provided which requires insertion into dA-rich sequences in the genome. This model is consistent with the observed relationship between galago Type II subfamilies suggesting that they have arisen not by mere mutation but by independent integration events.  相似文献   

14.
A genomic cosmid library was used to develop seven highly polymorphic microsatellite markers for the Mexican spotted owl (Strix occidentalis lucida). These are the first reported microsatellite markers derived from this species. The cloned and sequenced repeat motifs include a triplet repeat of (AAT)n, two tetranucleotide repeats of (GATA)n, a tetranucleotide repeat of (ATCC)n, a compound repeat of (GA)n(GATA)n and the two pentanucleotide repeats (AGAAT)n and (ATTTT)n. The microsatellites described represent six presumably independent loci with the two pentanucleotide repeats having originated from a single cosmid. Primer pairs allow locus‐specific amplification of each marker from Mexican spotted owl genomic DNA.  相似文献   

15.
Recent studies have shown the non-random distribution of microsatellite motifs between genomic regions within a particular species. This study investigates such microsatellite distributions in the genome of the economically important abalone Haliotis midae, via a bioinformatic survey. In particular, the association of specific repeat motifs to coding regions and transposable elements is investigated. An understanding of microsatellite genomic distribution will facilitate more efficient use and development of this popular molecular marker. A bias toward di- and tetranucleotide repeats was found in the H. midae genome. CA microsatellite units were the most abundant repeat motif, but were notably underrepresented in genic regions where GAGT repeats predominate. Approximately 17.5% and 21% of the microsatellites showed gene and/or transposable element associations, respectively. This could explain the high genomic frequencies of particular motifs across the genome and may allude to a possible functional role. The data presented in this study are the first to demonstrate such non-random dispersal of microsatellites in abalone and support previous findings arguing in favor of non-random distribution of repeat motifs.  相似文献   

16.
In a recent study, we reported that the combined average mutation rate of 10 di-, 6 tri-, and 8 tetranucleotide repeats in Drosophila melanogaster was 6.3 x 10(-6) mutations per locus per generation, a rate substantially below that of microsatellite repeat units in mammals studied to date (range = 10(-2)-10(-5) per locus per generation). To obtain a more precise estimate of mutation rate for dinucleotide repeat motifs alone, we assayed 39 new dinucleotide repeat microsatellite loci in the mutation accumulation lines from our earlier study. Our estimate of mutation rate for a total of 49 dinucleotide repeats is 9.3 x 10(-6) per locus per generation, only slightly higher than the estimate from our earlier study. We also estimated the relative difference in microsatellite mutation rate among di-, tri-, and tetranucleotide repeats in the genome of D. melanogaster using a method based on population variation, and we found that tri- and tetranucleotide repeats mutate at rates 6.4 and 8.4 times slower than that of dinucleotide repeats, respectively. The slower mutation rates of tri- and tetranucleotide repeats appear to be associated with a relatively short repeat unit length of these repeat motifs in the genome of D. melanogaster. A positive correlation between repeat unit length and allelic variation suggests that mutation rate increases as the repeat unit lengths of microsatellites increase.   相似文献   

17.
L M Erickson  H S Kim  N Maeda 《Genomics》1992,14(4):948-958
To investigate the nature of the recombination that generated the haptoglobin three-gene cluster in Old World primates, we sequenced the region between the second gene (HPR) and the third gene (HPP) in chimpanzees (15 kb), as well as the region 3' to the cluster in humans (14 kb). Comparison to the previously sequenced human haptoglobin (HP) and HPR genes showed that the junction point between HP and HPR in humans (junction 1) was not identical to the junction point between the HPR and HPP genes of the chimpanzee (junction 2). An Alu sequence was found at each junction, but both Alu sequences lacked short direct repeats of the flanking genomic DNA. The lack of direct repeats implies that both junction Alu sequences are the products of recombination between different Alu elements. In addition, other insertion and deletion events are clustered in the regions near the junction Alu sequences. The observation that Alu sequences define the junctions between genes in the haptoglobin gene cluster emphasizes the importance of Alu sequences in the evolution of multigene families.  相似文献   

18.
19.
Summary Polymerase chain reaction and direct sequencing were used to investigate an amplified DNA fragment containing the suspected polymorphic site of all known intragenic restriction fragment length polymorphisms (RFLPs) within the human tissue-type plasminogen activator (TPA) gene. Sequence data obtained showed that these RFLPs were all generated by the presence or absence of one of the two Alu sequences located in intron h of the human TPA gene. Furthermore, one of the direct repeats flanking this Alu sequence was absent in the minor allele. In addition to indicating the presence of an Alu insertion in an ancestral human TPA gene, these findings suggest a slip-replication mechanism for the deletion of this Alu repeat, once inserted into the gene. As both alleles have been observed in similar frequencies among different ethnic groups, the insertion or subsequent deletion of this Alu sequence in the human TPA gene must have occurred early in human evolution.  相似文献   

20.
We have isolated, sequenced, and characterized a single-copy B creatine kinase pseudogene. The chromosomal assignment of this gene is 16p13 and a unique sequence probe from this locus detects EcoRI restriction fragment length polymorphisms of 7.8 and 5.4 kb. In 26 unrelated individuals, the frequencies for the 7.8- and 5.4-kb B creatine kinase pseudogene alleles were calculated to be 17.3 and 82.7%, respectively. The B creatine kinase pseudogene is interrupted by a 904-bp DNA insertion composed of three Alu repeat sequences in tandem flanked by an 18-bp direct repeat, derived from the pseudogene sequence. Nucleotide sequence analysis of the Alu elements suggests that the Alu sequences were incorporated into this locus in three separate integration events. Several complex clustered Alu repeat sequences without defined integration borders have been previously identified at different genomic loci. This is the first evidence that complex tandem Alu elements can integrate in an apparently serial manner in the human genome and supports the contention that Alu repeats integrate nonrandomly into the human genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号