首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Spontaneous neuronal activity plays an important role in development. However, the mechanism that underlies the long-term spontaneous developmental change of cultured neuronal networks in vitro is not well understood. To investigate the contribution of inhibitory and excitatory connections to the development of neuronal networks, dissociated neurons from an embryonic rat hippocampal formation were cultured on a multi-electrode array plate and spontaneous activities were recorded by multi-channel system. These spontaneous activities were compared to bicuculline-induced firings, which were recorded by 60 electrodes simultaneously from 1 to 14 weeks in vitro (WIV). The phenomena showed that the spontaneous firing activities changed from an initial pattern of synchronized bursts to a later pattern of high frequency random spikes. The bicuculline-induced firing activities transformed from a pattern of synchronized bursts throughout all active sites in 3 WIV, to a pattern of local synchronized or random spikes appearing in the intervals of synchronized bursts after 11 WIV, while the firing rate hardly changed. Kynurenic acid, a broad-spectrum glutamate receptor antagonist, blocked all activities while CNQX inhibited only the local synchronized or random spikes. These suggest that the inhibitory connection was age-dependent degraded in vitro and the developmental spontaneous firing pattern was built by the homeostatic balance of the excitatory-inhibitory connection networks. Long-term cultures on MEA provided a useful tool to measure the relationship between spontaneous developmental change and pharmacological influence in vitro.  相似文献   

2.
Chen C  Chen L  Lin Y  Zeng S  Luo Q 《Bio Systems》2006,85(2):137-143
Many neural networks in mammalian central nervous system (CNS) fire single spike and complex spike burst. In fact, the conditions for triggering burst are not well understood. In the paper multi-electrode arrays (MEA) are used to record the spontaneous electrophysiological activities of cultured rat hippocampal neuronal network for a long time. After about 3 weeks culture, a transition from single spike to burst is observed in several networks. All of these spikes fire quickly before burst begins. The firing rate during the burst is lower than that just before the burst, but differences of inter-spike intervals (ISIs) between two firing patterns are not clear. Moreover, the electrical activities on neighboring electrodes show strong synchrony during the burst activities. In a word, the generation of the burst requires that network should have a sufficient level of excitation as well as a balance of synaptic inhibition.  相似文献   

3.
Developing networks of neural systems can exhibit spontaneous, synchronous activities called neural bursts, which can be important in the organization of functional neural circuits. Before the network matures, the activity level of a burst can reverberate in repeated rise-and-falls in periods of hundreds of milliseconds following an initial wave-like propagation of spiking activity, while the burst itself lasts for seconds. To investigate the spatiotemporal structure of the reverberatory bursts, we culture dissociated, rat cortical neurons on a high-density multi-electrode array to record the dynamics of neural activity over the growth and maturation of the network. We find the synchrony of the spiking significantly reduced following the initial wave and the activities become broadly distributed spatially. The synchrony recovers as the system reverberates until the end of the burst. Using a propagation model we infer the spreading speed of the spiking activity, which increases as the culture ages. We perform computer simulations of the system using a physiological model of spiking networks in two spatial dimensions and find the parameters that reproduce the observed resynchronization of spiking in the bursts. An analysis of the simulated dynamics suggests that the depletion of synaptic resources causes the resynchronization. The spatial propagation dynamics of the simulations match well with observations over the course of a burst and point to an interplay of the synaptic efficacy and the noisy neural self-activation in producing the morphology of the bursts.  相似文献   

4.
With the growing recognition that rhythmic and oscillatory patterns are widespread in the brain and play important roles in all aspects of the function of our nervous system, there has been a resurgence of interest in neuronal synchronized bursting activity. Here, we were interested in understanding the development of synchronized bursts as information-bearing neuronal activity patterns. For that, we have monitored the morphological organization and spontaneous activity of neuronal networks cultured on multielectrode-arrays during their self-executed evolvement from a mixture of dissociated cells into an active network. Complex collective network electrical activity evolved from sporadic firing patterns of the single neurons. On the system (network) level, the activity was marked by bursting events with interneuronal synchronization and nonarbitrary temporal ordering. We quantified these individual-to-collective activity transitions using newly-developed system level quantitative measures of time series regularity and complexity. We found that individual neuronal activity before synchronization was characterized by high regularity and low complexity. During neuronal wiring, there was a transient period of reorganization marked by low regularity, which then leads to coemergence of elevated regularity and functional (nonstochastic) complexity. We further investigated the morphology-activity interplay by modeling artificial neuronal networks with different topological organizations and connectivity schemes. The simulations support our experimental results by showing increased levels of complexity of neuronal activity patterns when neurons are wired up and organized in clusters (similar to mature real networks), as well as network-level activity regulation once collective activity forms.  相似文献   

5.
We study spike–burst neural activity and investigate its transitions to synchronized states under electrical coupling. Our reported results include the following: (1) Synchronization of spike–burst activity is a multi-time scale phenomenon and burst synchrony is easier to achieve than spike synchrony. (2) Synchrony of networks with time-delayed connections can be achieved at lower coupling strengths than within the same network with instantaneous couplings. (3) The introduction of parameter dispersion into the network destroys the existence of synchrony in the strict sense, but the network dynamics in major regimes of the parameter space can still be effectively captured by a mean field approach if the couplings are excitatory. Our results on synchronization of spiking networks are general of nature and will aid in the development of minimal models of neuronal populations. The latter are the building blocks of large scale brain networks relevant for cognitive processing.  相似文献   

6.
基于最大锋电位间隔的爆发检测自适应算法   总被引:4,自引:0,他引:4  
在各种类型的培养神经元网络、哺乳动物中枢神经系统和切片中,都可以观察到爆发。爆发是空间-时间放电模式的重要特征,它由一系列高频率发放的连续动作电位组成,由于在时间尺度上的复杂性,使其辨识和探测存在许多困难。自适应算法利用爆发外部锋电位间隔超过爆发内部锋电位间隔的累加和识别爆发本身。基于该算法原理,以爆发内部最大锋电位间隔参数作为确定爆发的约束条件,改进爆发检测自适应算法。实验结果表明,改进算法可以有效地避免爆发的漏检和错检,较准确地检测出神经元的爆发活动,确定爆发活动的数目和持续时间等,爆发检测的平均准确率为93.8%,比原自适应算法提高了35.3%。  相似文献   

7.
Cortical pyramidal cells fire single spikes and complex spike bursts. However, neither the conditions necessary for triggering complex spikes, nor their computational function are well understood. CA1 pyramidal cell burst activity was examined in behaving rats. The fraction of bursts was not reliably higher in place field centers, but rather in places where discharge frequency was 6-7 Hz. Burst probability was lower and bursts were shorter after recent spiking activity than after prolonged periods of silence (100 ms-1 s). Burst initiation probability and burst length were correlated with extracellular spike amplitude and with intracellular action potential rising slope. We suggest that bursts may function as "conditional synchrony detectors," signaling strong afferent synchrony after neuronal silence, and that single spikes triggered by a weak input may suppress bursts evoked by a subsequent strong input.  相似文献   

8.
Zhou W  Li X  Liu M  Zhao Y  Zhu G  Luo Q 《Bio Systems》2009,95(1):61-66
Homeostatic plasticity plays a critical role in the stability of neuronal activities. Here, with high-density hippocampal networks cultured on multi-electrode arrays (MEAs), the transformation of spontaneous neuronal firing patterns induced by 1microM tetrodotoxin was clarified. Once tetrodotoxin was washed out after a 4-h treatment, spontaneous activities rose significantly with spike rate increasing approximately three times, and synchronized burst oscillations appeared throughout the network, with the cross-correlation coefficient between the active sites rising from 0.06+/-0.03 to 0.27+/-0.05. The long-term recording showed that the oscillations lasted for more than 4h before the network recovered. These results suggest that short-term treatment by tetrodotoxin may induce the homeostatically enhanced neuronal excitability, and that the spontaneous synchronized oscillations should be an indicator of homeostatic plasticity in cultured neuronal network. Furthermore, the non-invasive and long-term recording with MEAs as a novel sensing system is identified to be appropriate for pharmacological investigations of neuronal plasticity at the network level.  相似文献   

9.
Most neuronal networks, even in the absence of external stimuli, produce spontaneous bursts of spikes separated by periods of reduced activity. The origin and functional role of these neuronal events are still unclear. The present work shows that the spontaneous activity of two very different networks, intact leech ganglia and dissociated cultures of rat hippocampal neurons, share several features. Indeed, in both networks: i) the inter-spike intervals distribution of the spontaneous firing of single neurons is either regular or periodic or bursting, with the fraction of bursting neurons depending on the network activity; ii) bursts of spontaneous spikes have the same broad distributions of size and duration; iii) the degree of correlated activity increases with the bin width, and the power spectrum of the network firing rate has a 1/f behavior at low frequencies, indicating the existence of long-range temporal correlations; iv) the activity of excitatory synaptic pathways mediated by NMDA receptors is necessary for the onset of the long-range correlations and for the presence of large bursts; v) blockage of inhibitory synaptic pathways mediated by GABA(A) receptors causes instead an increase in the correlation among neurons and leads to a burst distribution composed only of very small and very large bursts. These results suggest that the spontaneous electrical activity in neuronal networks with different architectures and functions can have very similar properties and common dynamics.  相似文献   

10.
Using two-cell and 50-cell networks of square-wave bursters, we studied how excitatory coupling of individual neurons affects the bursting output of the network. Our results show that the effects of synaptic excitation vs. electrical coupling are distinct. Increasing excitatory synaptic coupling generally increases burst duration. Electrical coupling also increases burst duration for low to moderate values, but at sufficiently strong values promotes a switch to highly synchronous bursts where further increases in electrical or synaptic coupling have a minimal effect on burst duration. These effects are largely mediated by spike synchrony, which is determined by the stability of the in-phase spiking solution during the burst. Even when both coupling mechanisms are strong, one form (in-phase or anti-phase) of spike synchrony will determine the burst dynamics, resulting in a sharp boundary in the space of the coupling parameters. This boundary exists in both two cell and network simulations. We use these results to interpret the effects of gap-junction blockers on the neuronal circuitry that underlies respiration.  相似文献   

11.
How do neurons encode and store information for long periods of time? Recurring patterns of activity have been reported in various cortical structures and were suggested to play a role in information processing and memory. To study the potential role of bursts of action potentials in memory mechanisms, we investigated patterns of spontaneous multi-single-unit activity in dissociated rat cortical cultures in vitro. Spontaneous spikes were recorded from networks of approximately 50 000 neurons and glia cultured on a grid of 60 extracellular substrate- embedded electrodes (multi-electrode arrays). These networks expressed spontaneous culture- wide bursting from approximately one week in vitro. During bursts, a large portion of the active electrodes showed elevated levels of firing. Spatiotemporal activity patterns within spontaneous bursts were clustered using a correlation-based clustering algorithm, and the occurrences of these burst clusters were tracked over several hours. This analysis revealed spatiotemporally diverse bursts occurring in well-defined patterns, which remained stable for several hours. Activity evoked by strong local tetanic stimulation resulted in significant changes in the occurrences of spontaneous bursts belonging to different clusters, indicating that the dynamical flow of information in the neuronal network had been altered. The diversity of spatiotemporal structure and long-term stability of spontaneous bursts together with their plastic nature strongly suggests that such network patterns could be used as codes for information transfer and the expression of memories stored in cortical networks.  相似文献   

12.
Spontaneous and evoked neuronal activity of the medical septum-diagonal band complex (MS-DB) has been investigated in slices from the brain of hibernating and active ground squirrels, as well as guinea pigs. In all experimental groups, the majority of the MS-DB neurones exhibited high regular of rhythmic burst spontaneous activity which persisted even after synaptic blockade in half of the neuronal population. Under the same conditions, the activity of the surrounding structures was completely suppressed. The density of the spontaneously active neurones in the slices, as well as the mean frequency of discharges in the MS-DB of hibernating ground squirrels, were significantly higher than in active ground squirrels and guinea pigs. Stimulation of the medial forebrain bundle evoked initial suppression of the activity in the majority of MS-DB units; in many of them, the suppression was followed by a burst discharge. Neurones with background rhythmic burst activity always reacted by resetting the spontaneous bursts. In total, 50-60% of the MS-DB neurones in active ground squirrels and guinea pigs reacted by post-inhibitory bursts, whereas in hibernating animals these responses were observed nearly in all neurones. Threshold values of the stimulating current were lower in hibernating animals; the intraburst density of spikes was increased.  相似文献   

13.
Mutual excitation between two neurons is generally thought to raise the excitation level of each neuron or, if they are both bursty, to act to synchronize their bursts. If only one is bursty, it can induce synchronized bursts in the other cell. Here we show that two nonbursty cells can be induced to burst in synchrony by mutual excitatory synaptic connections, provided the presynaptic threshold for graded synaptic transmission ateach synapse is at a different level. This mechanism may operate in a recently discovered network in the lobster Homarus gammarus.By a duality between presynaptic threshold and injected current, we also show that two identical, nonbursty, mutual excitatory cells could be induced to burst in synchrony by injecting differing amounts of current inthe two cells. Finally we show that differential oscillations betweentwo mutual excitatory cells could be stopped by a slow-tailedhyperpolarizing current pulse into one cell or a slow-taileddepolarizing pulse into the other.  相似文献   

14.
Hippocampal CA1 neurons exposed to zero-[Ca(2+)] solutions can generate periodic spontaneous synchronized activity in the absence of synaptic function. Experiments using hippocampal slices showed that, after exposure to zero-[Ca(2+)](0) solution, CA1 pyramidal cells depolarized 5-10 mV and started firing spontaneous action potentials. Spontaneous single neuron activity appeared in singlets or was grouped into bursts of two or three action potentials. A 16-compartment, 23-variable cable model of a CA1 pyramidal neuron was developed to study mechanisms of spontaneous neuronal bursting in a calcium-free extracellular solution. In the model, five active currents (a fast sodium current, a persistent sodium current, an A-type transient potassium current, a delayed rectifier potassium current, and a muscarinic potassium current) are included in the somatic compartment. The model simulates the spontaneous bursting behavior of neurons in calcium-free solutions. The mechanisms underlying several aspects of bursting are studied, including the generation of triplet bursts, spike duration, burst termination, after-depolarization behavior, and the prolonged inactive period between bursts. We show that the small persistent sodium current can play a key role in spontaneous CA1 activity in zero-calcium solutions. In particular, it is necessary for the generation of an after-depolarizing potential and prolongs both individual bursts and the interburst interval.  相似文献   

15.
Human induced pluripotent stem cell (hiPSC)-derived neurons may be effectively used for drug discovery and cell-based therapy. However, the immaturity of cultured human iPSC-derived neurons and the lack of established functional evaluation methods are problematic. We here used a multi-electrode array (MEA) system to investigate the effects of the co-culture of rat astrocytes with hiPSC-derived neurons on the long-term culture, spontaneous firing activity, and drug responsiveness effects. The co-culture facilitated the long-term culture of hiPSC-derived neurons for >3 months and long-term spontaneous firing activity was also observed. After >3 months of culture, we observed synchronous burst firing activity due to synapse transmission within neuronal networks. Compared with rat neurons, hiPSC-derived neurons required longer time to mature functionally. Furthermore, addition of the synapse antagonists bicuculline and 6-cyano-7-nitroquinoxaline-2,3-dione induced significant changes in the firing rate. In conclusion, we used a MEA system to demonstrate that the co-culture of hiPSC-derived neurons with rat astrocytes is an effective method for studying the function of human neuronal cells, which could be used for drug screening.  相似文献   

16.
Regeneration of damaged central nervous systems (CNS) is an important topic in neuroscience and neuroengineering. Grafting new neurons derived from pluripotent stem cells into damaged regions can be done to restore functions after injury. Little is known, however, about network-wide interactions between stem-cell-derived neurons and CNS neurons. In this study, we developed a co-culture method of stem cell-derived neuronal networks and CNS networks and observed spontaneous activity in the co-culture samples. By using a microfabricated poly(dimethylsiloxane) device having two culture compartments and 20 connecting microconduits, we are able to compartmentalize P19-derived neurons and mouse cortical neurons and connect them via the microconduits. Furthermore, we combined the co-culture device and a microelectrode array (MEA)-based recording system and recorded spontaneous activity in the co-cultured networks. We found that periodic synchronized bursting spreading over both neuronal networks occurred during the second week in vitro and that P19-derived neurons in the co-cultured networks had different developmental processes compared with those grown in monoculture. These findings suggest that functional interactions form between P19-dervived neurons and mouse cortical neurons and that the co-culture method is useful for exploring the network-wide integrations between stem cell-derived neurons and CNS neurons.  相似文献   

17.
During brain development, before sensory systems become functional, neuronal networks spontaneously generate repetitive bursts of neuronal activity, which are typically synchronized across many neurons. Such activity patterns have been described on the level of networks and cells, but the fine-structure of inputs received by an individual neuron during spontaneous network activity has not been studied. Here, we used calcium imaging to record activity at many synapses of hippocampal pyramidal neurons simultaneously to establish the activity patterns in the majority of synapses of an entire cell. Analysis of the spatiotemporal patterns of synaptic activity revealed a fine-scale connectivity rule: neighboring synapses (<16?μm intersynapse distance) are more likely to be coactive than synapses that are farther away from each other. Blocking spiking activity or NMDA receptor activation revealed that the clustering of synaptic inputs required neuronal activity, demonstrating a role of developmentally expressed spontaneous activity for connecting neurons with subcellular precision.  相似文献   

18.
One of the most specific and exhibited features in the electrical activity of dissociated cultured neural networks (NNs) is the phenomenon of synchronized bursts, whose profiles vary widely in shape, width and firing rate. On the way to understanding the organization and behavior of biological NNs, we reproduced those features with random connectivity network models with 5,000 neurons. While the common approach to induce bursting behavior in neuronal network models is noise injection, there is experimental evidence suggesting the existence of pacemaker-like neurons. In our simulations noise did evoke bursts, but with an unrealistically gentle rising slope. We show that a small subset of ‘pacemaker’ neurons can trigger bursts with a more realistic profile. We found that adding pacemaker-like neurons as well as adaptive synapses yield burst features (shape, width, and height of the main phase) in the same ranges as obtained experimentally. Finally, we demonstrate how changes in network connectivity, transmission delays, and excitatory fraction influence network burst features quantitatively.  相似文献   

19.
A hallmark pattern of activity in developing nervous systems is spontaneous, synchronized network activity. Synchronized activity has been observed in intact spinal cord, brainstem, retina, cortex and dissociated neuronal culture preparations. During periods of spontaneous activity, neurons depolarize to fire single or bursts of action potentials, activating many ion channels. Depolarization activates voltage-gated calcium channels on dendrites and spines that mediate calcium influx. Highly synchronized electrical activity has been measured from local neuronal networks using field electrodes. This technique enables high temporal sampling rates but lower spatial resolution due to integrated read-out of multiple neurons at one electrode. Single cell resolution of neuronal activity is possible using patch-clamp electrophysiology on single neurons to measure firing activity. However, the ability to measure from a network is limited to the number of neurons patched simultaneously, and typically is only one or two neurons. The use of calcium-dependent fluorescent indicator dyes has enabled the measurement of synchronized activity across a network of cells. This technique gives both high spatial resolution and sufficient temporal sampling to record spontaneous activity of the developing network.A key feature of newly-forming cortical and hippocampal networks during pre- and early postnatal development is spontaneous, synchronized neuronal activity (Katz & Shatz, 1996; Khaziphov & Luhmann, 2006). This correlated network activity is believed to be essential for the generation of functional circuits in the developing nervous system (Spitzer, 2006). In both primate and rodent brain, early electrical and calcium network waves are observed pre- and postnatally in vivo and in vitro (Adelsberger et al., 2005; Garaschuk et al., 2000; Lamblin et al., 1999). These early activity patterns, which are known to control several developmental processes including neuronal differentiation, synaptogenesis and plasticity (Rakic & Komuro, 1995; Spitzer et al., 2004) are of critical importance for the correct development and maturation of the cortical circuitry.In this JoVE video, we demonstrate the methods used to image spontaneous activity in developing cortical networks. Calcium-sensitive indicators, such as Fura 2-AM ester diffuse across the cell membrane where intracellular esterase activity cleaves the AM esters to leave the cell-impermeant form of indicator dye. The impermeant form of indicator has carboxylic acid groups which are able to then detect and bind calcium ions intracellularly.. The fluorescence of the calcium-sensitive dye is transiently altered upon binding to calcium. Single or multi-photon imaging techniques are used to measure the change in photons being emitted from the dye, and thus indicate an alteration in intracellular calcium. Furthermore, these calcium-dependent indicators can be combined with other fluorescent markers to investigate cell types within the active network.  相似文献   

20.
神经元网络是大脑执行高级认知行为的结构基础,研究证明学习记忆及神经退行性疾病与神经元网络可塑性密切相关。因此,揭示调控和改变神经元网络可塑性的机制对理解神经系统信息交互以及疾病治疗具有重大意义。目前,基于微电极阵列(microelectrode array, MEA)培养的神经元网络是体外探究学习和记忆机制的理想模型,同时针对该模型的研究为预防和治疗神经退行性疾病提供了独特的视角。本文综述了基于MEA采集体外培养神经元网络的放电信号来构建功能网络的相关研究,分别从二维神经元网络和三维脑类器官发育,以及开环和闭环电刺激对神经元网络可塑性影响的角度,总结了体外培养神经元网络可塑性的相关研究,最后对该方向的应用前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号