首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cells in tissues and organs are continuously subjected to oxidative stress and free radicals on a daily basis. This free radical attack has exogenous or endogenous (intracellular) origin. The cells withstand and counteract this occurrence by the use of several and different defense mechanisms ranging from free radical scavengers like glutathione (GSH), vitamins C and E and antioxidant enzymes like catalase, superoxide dismutase and various peroxidases to sophisticated and elaborate DNA repair mechanisms. The outcome of this dynamic equilibrium is usually the induction of oxidatively induced DNA damage and a variety of lesions of small to high importance and dangerous for the cell i.e. isolated base lesions or single strand breaks (SSBs) to complex lesions like double strand breaks (DSBs) and other non-DSB oxidatively generated clustered DNA lesions (OCDLs). The accumulation of DNA damage through misrepair or incomplete repair may lead to mutagenesis and consequently transformation particularly if combined with a deficient apoptotic pathway. In this review, we present the current status of knowledge and evidence on the mechanisms and involvement of intracellular oxidative stress and DNA damage in human malignancy evolution and possible use of these parameters as cancer biomarkers. At the same time, we discuss controversies related to potential artifacts inherent to specific methodologies used for the measurement of oxidatively induced DNA lesions in human cells or tissues.  相似文献   

2.
Humans are daily exposed to background radiation and various sources of oxidative stress. My research has focused in the last 12 years on the effects of ionizing radiation on DNA, which is considered as the key target of radiation in the cell. Ionizing radiation and endogenous cellular oxidative stress can also induce closely spaced oxidatively induced DNA lesions called "clusters" of DNA damage or locally multiply damage sites, as first introduced by John Ward. I am now interested in the repair mechanisms of clustered DNA damage, which is considered as the most difficult for the cell to repair. A main part of my research is devoted to evaluating the role of clustered DNA damage in the promotion of carcinogenesis in vitro and in vivo . Currently in my laboratory, there are two main ongoing projects. (1) Study of the role of BRCA1 and DNA-dependent protein kinase catalytic subunit repair proteins in the processing of clustered DNA damage in human cancer cells. For this project, we use several tumor cell lines, such as breast cancer cell lines MCF-7 and HCC1937 (BRCA1 deficient) and human glioblastoma cells MO59J/K; and (2) Possible use of DNA damage clusters as novel cancer biomarkers for prognostic and therapeutic applications related to modulation of oxidative stress. In this project human tumor and mice tissues are being used.  相似文献   

3.
Oxidatively-induced clustered DNA lesions are considered the signature of any ionizing radiation like the ones human beings are exposed daily from various environmental sources (medical X-rays, radon, etc.). To evaluate the role of BRCA1 deficiencies in the mitigation of radiation-induced toxicity and chromosomal instability we have used two human breast cancer cell lines, the BRCA1 deficient HCC1937 cells and as a control the BRCA1 wild-type MCF-7 cells. As an additional control for the DNA damage repair measurements, the HCC1937 cells with partially reconstituted BRCA1 expression were used. Since clustered DNA damage is considered the signature of ionizing radiation, we have measured the repair of double strand breaks (DSBs), non-DSB bistranded oxidative clustered DNA lesions (OCDLs) as well as single strand breaks (SSBs) in cells exposed to radiotherapy-relevant γ-ray doses. Parallel measurements were performed in the accumulation of chromatid and isochromatid breaks. For the measurement of OCDL repair, we have used a novel adaptation of the denaturing single cell gel electrophoresis (Comet assay) and pulsed field gel electrophoresis with Escherichia coli repair enzymes as DNA damage probes. Independent monitoring of the γ-H2AX foci was also performed while metaphase chromatid lesions were measured as an indicator of chromosomal instability. HCC1937 cells showed a significant accumulation of all types of DNA damage and chromatid breaks compared to MCF-7 while BRCA1 partial expression contributed significantly in the overall repair of OCDLs. These results further support the biological significance of repair resistant clustered DNA damage leading to chromosomal instability. The current results combined with previous findings on the minimized ability of base clusters to induce cell death (mainly induced by DSBs), enhance the potential association of OCDLs with breast cancer development especially in the case of a BRCA1 deficiency leading to the survival of breast cells carrying a high load of unrepaired DNA damage clusters.  相似文献   

4.
Bistranded oxidative clustered DNA lesions are closely spaced lesions (1-10 bp) that challenge the DNA repair mechanisms and are associated with genomic instability. The endogenous levels of oxidative clustered DNA lesions in cells of human cancer cell lines or in animal tissues remain unknown, and these lesions may persist for a long time after irradiation. We measured the different types of DNA clusters in cells of two human cell lines, MCF-7 and MCF-10A, and in skin obtained from mice exposed to either 12.5 Gy or sham X radiation. For the detection and measurement of oxidative clustered DNA lesions, we used adaptations of number average length analysis, constant-field agarose gel electrophoresis, putrescine, and the repair enzymes APE1, OGG1 (human) and Nth1 (E. coli). Increased levels of all cluster types were detected in skin tissue from animals exposed to radiation at 20 weeks postirradiation. The level of endogenous (no radiation treatment) oxidative clustered DNA lesions was higher in MCF-7 cells compared to nonmalignant MCF-10A cells. To the best of our knowledge, this is the first study to demonstrate persistence of oxidative clustered DNA lesions for up to 20 weeks in animal tissues exposed to radiation and to detect these clusters in human breast cancer cells. This may underscore the biological significance of clustered DNA lesions.  相似文献   

5.
6.
Hibernation is an established strategy used by some homeothermic organisms to survive cold environments. In true hibernation, the core body temperature of an animal may drop to below 0°C and metabolic activity almost cease. The phenomenon of hibernation in humans is receiving renewed interest since several cases of victims exhibiting core body temperatures as low as 13.7°C have been revived with minimal lasting deficits. In addition, local cooling during radiotherapy has resulted in normal tissue protection. The experiments described in this paper were prompted by the results of a very limited pilot study, which showed a suppressed DNA repair response of mouse lymphocytes collected from animals subjected to 7-Gy total body irradiation under hypothermic (13°C) conditions, compared to normothermic controls. Here we report that human BJ-hTERT cells exhibited a pronounced radioprotective effect on clonogenic survival when cooled to 13°C during and 12h after irradiation. Mild hypothermia at 20 and 30°C also resulted in some radioprotection. The neutral comet assay revealed an apparent lack on double strand break (DSB) rejoining at 13°C. Extension of the mouse lymphocyte study to ex vivo-irradiated human lymphocytes confirmed lower levels of induced phosphorylated H2AX (γ-H2AX) and persistence of the lesions at hypothermia compared to the normal temperature. Parallel studies of radiation-induced oxidatively clustered DNA lesions (OCDLs) revealed partial repair at 13°C compared to the rapid repair at 37°C. For both γ-H2AX foci and OCDLs, the return of lymphocytes to 37°C resulted in the resumption of normal repair kinetics. These results, as well as observations made by others and reviewed in this study, have implications for understanding the radiobiology and protective mechanisms underlying hypothermia and potential opportunities for exploitation in terms of protecting normal tissues against radiation.  相似文献   

7.
Oxidatively induced stress and DNA damage have been associated with various human pathophysiological conditions, including cancer and aging. Complex DNA damage such as double-strand breaks (DSBs) and non-DSB bistranded oxidatively induced clustered DNA lesions (OCDL) (two or more DNA lesions within a short DNA fragment of 1-10 bp on opposing DNA strands) are hypothesized to be repair-resistant lesions challenging the repair mechanisms of the cell. To evaluate the induction and processing of complex DNA damage in breast cancer cells exposed to radiotherapy-relevant gamma-ray doses, we measured single-strand breaks (SSBs), DSBs, and OCDL in MCF-7 and HCC1937 malignant cells as well as MCF-10A nonmalignant human breast cells. For the detection and measurement of SSBs, DSBs, and OCDL, we used the alkaline single-cell gel electrophoresis, gamma-H2AX assay, and an adaptation of pulsed-field gel electrophoresis with E. coli repair enzymes as DNA damage probes. Increased levels for most types of DNA damage were detected in MCF-7 cells while the processing of DSBs and OCDL was deficient in these cells compared to MCF-10A cells. Furthermore, the total antioxidant capacity of MCF-7 cells was lower compared to their nonmalignant counterparts. These findings point to the important role of complex DNA damage in breast cancer and its potential association with breast cancer development especially in the case of deficient BRCA1 expression.  相似文献   

8.
Carcinogenesis may involve overproduction of oxygen-derived species including free radicals, which are capable of damaging DNA and other biomolecules in vivo. Increased DNA damage contributes to genetic instability and promote the development of malignancy. We hypothesized that the repair of oxidatively induced DNA base damage may be modulated in colorectal malignant tumors, resulting in lower levels of DNA base lesions than in surrounding pathologically normal tissues. To test this hypothesis, we investigated oxidatively induced DNA damage in cancerous tissues and their surrounding normal tissues of patients with colorectal cancer. The levels of oxidatively induced DNA lesions such as 4,6-diamino-5-formamidopyrimidine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, 8-hydroxyguanine and (5'S)-8,5'-cyclo-2'-deoxyadenosine were measured by gas chromatography/isotope-dilution mass spectrometry and liquid chromatography/isotope-dilution tandem mass spectrometry. We found that the levels of these DNA lesions were significantly lower in cancerous colorectal tissues than those in surrounding non-cancerous tissues. In addition, the level of DNA lesions varied between colon and rectum tissues, being lower in the former than in the latter. The results strongly suggest upregulation of DNA repair in malignant colorectal tumors that may contribute to the resistance to therapeutic agents affecting the disease outcome and patient survival. The type of DNA base lesions identified in this work suggests the upregulation of both base excision and nucleotide excision pathways. Development of DNA repair inhibitors targeting both repair pathways may be considered for selective killing of malignant tumors in colorectal cancer.  相似文献   

9.
Posttranslational modification of PCNA by ubiquitin plays an important role in coordinating the processes of DNA damage tolerance during DNA replication. The monoubiquitination of PCNA was shown to facilitate the switch between the replicative DNA polymerase with the low-fidelity polymerase eta (η) to bypass UV-induced DNA lesions during replication. Here, we show that in response to oxidative stress, PCNA becomes transiently monoubiquitinated in an?S phase- and USP1-independent manner. Moreover, Polη interacts with mUb-PCNA at sites of oxidative DNA damage via its PCNA-binding and ubiquitin-binding motifs. Strikingly, while functional base excision repair is not required for this modification of PCNA or Polη recruitment to chromatin, the?presence of hMsh2-hMsh6 is indispensable. Our findings highlight an alternative pathway in response to oxidative DNA damage that may coordinate the removal of oxidatively induced clustered DNA lesions and could explain the high levels of oxidized DNA lesions in MSH2-deficient cells.  相似文献   

10.
Bistranded complex DNA damage, i.e., double-strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions, is hypothesized to challenge the repair mechanisms of the cell and consequently the genomic integrity. The oxidative clustered DNA lesions may be persistent and may accumulate in human cancer cells for long times after irradiation. To evaluate the detection and possible accumulation of oxidative clustered DNA lesions in leukemia cells exposed to doses equivalent to those used in radiotherapy, we measured the induction of DSBs and three different types of oxidative clustered DNA lesions in NALM-6 cells, a human acute lymphoblastic leukemia (ALL) pre-B cell line, after exposure to (137)Cs gamma rays. For the detection and measurement of DSBs and oxidative clustered DNA lesions, we used an adaptation of the neutral comet assay (single-cell gel electrophoresis) using E. coli repair enzymes (Endo IV, Fpg and Endo III) as enzymatic probes. We found a linear dose response for the induction of DSBs and oxidative clustered DNA lesions. Clustered DNA lesions were more prevalent than prompt DSBs. For each DSB induced by radiation, approximately 2.5 oxidative clustered DNA lesions were detected. To our knowledge, this is the first study to demonstrate the detection and linear induction of oxidative clustered DNA lesions with radiation dose in an ALL cell line. These results point to the biological significance of clustered DNA lesions.  相似文献   

11.
A number of antitumor drugs act via the oxidation of nuclear material in the tumor cell. It is therefore important to know if tumor cells can effectively and precisely cope not only with oxidatively induced DNA damage, but also with nuclear protein oxidation. In this study, we investigated the endogenous degradation of oxidatively damaged histones in K562 human leukemic cells after oxidative challenge and demonstrated a link to the overall cellular stress response pathways by poly-ADP-ribose-polymerase (PARP). After an oxidative challenge, endogenous nuclear protein degradation, as well as histone degradation, was enhanced. Among the histone fractions, histone H1 revealed the highest degradation rate, and more than 85% of the total degraded H1 disappeared in the first 30 min after oxidative challenge. Short-term degradation of histones up to 30 min, as well as long-term degradation up to 48 h after oxidative challenge, was significantly reduced in the presence of the PARP inhibitor 3-aminobenzamide, and nearly completely abrogated by the selective proteasome inhibitor lactacystin. Immunoprecipitation experiments indicated that the proteasome specifically degraded oxidized histones. Thus, we show that the nuclear proteosome system in tumor cells is capable of preventing the accumulation of oxidized proteins in this compartment and may suggest further treatment strategies to effectively interfere with the protein "repair" and replacement strategies of tumor cells.  相似文献   

12.
Measurement of the products of oxidatively damaged DNA in urine is a frequently used means by which oxidative stress may be assessed non-invasively. We believe that urinary DNA lesions, in addition to being biomarkers of oxidative stress, can potentially provide more specific information, for example, a reflection of repair activity. We used high-performance liquid chromatography prepurification, with gas chromatography-mass spectrometry (LC-GC-MS) and ELISA to the analysis of a number of oxidative [e.g., 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), 8-oxo-7,8-dihydro-guanine, 5-(hydroxymethyl)uracil], non-oxidative (cyclobutane thymine dimers) and oligomeric DNA products in urine. We analysed spot urine samples from 20 healthy subjects, and 20 age- and sex-matched cancer patients. Mononuclear cell DNA 8-oxodG levels were assessed by LC-EC. The data support our proposal that urinary DNA lesion products are predominantly derived from DNA repair. Furthermore, analysis of DNA and urinary 8-oxodG in cancer patients and controls suggested reduced repair activity towards this lesion marker in these patients.  相似文献   

13.
Bisphenol A (BPA) is a biologically active industrial chemical used in production of consumer products. BPA has become a target of intense public scrutiny following concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer. Recent studies link BPA with the generation of reactive oxygen species, and base excision repair (BER) is responsible for removing oxidatively induced DNA lesions. Yet, the relationship between BPA and BER has yet to be examined. Further, the ubiquitous nature of BPA allows continuous exposure of the human genome concurrent with the normal endogenous and exogenous insults to the genome, and this co-exposure may impact the DNA damage response and repair. To determine the effect of BPA exposure on base excision repair of oxidatively induced DNA damage, cells compromised in double-strand break repair were treated with BPA alone or co-exposed with either potassium bromate (KBrO3) or laser irradiation as oxidative damaging agents. In experiments with KBrO3, co-treatment with BPA partially reversed the KBrO3-induced cytotoxicity observed in these cells, and this was coincident with an increase in guanine base lesions in genomic DNA. The improvement in cell survival and the increase in oxidatively induced DNA base lesions were reminiscent of previous results with alkyl adenine DNA glycosylase-deficient cells, suggesting that BPA may prevent initiation of repair of oxidized base lesions. With laser irradiation-induced DNA damage, treatment with BPA suppressed DNA repair as revealed by several indicators. These results are consistent with the hypothesis that BPA can induce a suppression of oxidized base lesion DNA repair by the base excision repair pathway.  相似文献   

14.
DNA-dependent protein kinase (DNA-PK) is a key non-homologous-end-joining (NHEJ) nuclear serine/threonine protein kinase involved in various DNA metabolic and damage signaling pathways contributing to the maintenance of genomic stability and prevention of cancer. To examine the role of DNA-PK in processing of non-DSB clustered DNA damage, we have used three models of DNA-PK deficiency, i.e., chemical inactivation of its kinase activity by the novel inhibitors IC86621 and NU7026, knockdown and complete absence of the protein in human breast cancer (MCF-7) and glioblastoma cell lines (MO59-J/K). A compromised DNA-PK repair pathway led to the accumulation of clustered DNA lesions induced by γ-rays. Tumor cells lacking protein expression or with inhibited kinase activity showed a marked decrease in their ability to process oxidatively induced non-DSB clustered DNA lesions measured using a modified version of pulsed-field gel electrophoresis or single-cell gel electrophoresis (comet assay). In all cases, DNA-PK inactivation led to a higher level of lesion persistence even after 24–72 h of repair. We suggest a model in which DNA-PK deficiency affects the processing of these clusters first by compromising base excision repair and second by the presence of catalytically inactive DNA-PK inhibiting the efficient processing of these lesions owing to the failure of DNA-PK to disassociate from the DNA ends. The information rendered will be important for understanding not only cancer etiology in the presence of an NHEJ deficiency but also cancer treatments based on the induction of oxidative stress and inhibition of cluster repair.  相似文献   

15.
Mitochondrial and nuclear DNA were isolated from the livers of young (6-7 month) and old (23-24 month) Wistar rats and the levels of 10 different oxidatively induced lesions were analyzed by gas chromatography/mass spectrometry. This is the first study to measure several different oxidatively induced base lesions in both mitochondrial and nuclear DNA as a function of age. No significant age effects were observed for any lesion. Furthermore, contrary to expectations, we did not observe elevated levels of oxidatively induced base lesions in mitochondrial DNA. This contrasts with 50-fold differences reported for several lesions between mitochondrial and nuclear DNA from porcine liver (Zastawny et al., Free Radic. Biol. Med. 24:722-725, 1998). The fact that different lesion levels are observed even when similar techniques are employed emphasizes that the role of oxidative mitochondrial DNA damage and its repair in aging must continue to be the subject of intense investigation. Questions concerning endogenous levels of damage should be revisited as existing methods are improved and new methods become available.  相似文献   

16.
Breast cancer is a leading cause of cancer deaths in women. Although the causes of this disease are largely unknown, inefficient repair of oxidatively induced DNA lesions has been thought to play a major role in the transformation of normal breast tissue to malignant breast tissue. Previous studies have revealed higher levels of 8-hydroxyguanine in malignant breast tissue compared to non-malignant breast tissue. Furthermore, some breast cancer cell lines have greatly reduced capacity to repair this lesion suggesting that oxidatively induced DNA lesions may be elevated in breast cancer cells. We used liquid chromatography/mass spectrometry and gas chromatography/mass spectrometry to measure the levels of 8-hydroxy-2’-deoxyadenosine, (5’S)-8,5’-cyclo-2’-deoxyadenosine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, and 4,6-diamino-5-formamidopyrimidine in MCF-7 and HCC1937 breast cancer cell lines before and after exposure to H2O2 followed by a DNA repair period. We show that H2O2-treated HCC1937 and MCF-7 cell lines accumulate significantly higher levels of these lesions than the untreated cells despite a 1 h repair period. In contrast, the four lesions did not accumulate to any significant level in H2O2-treated non-malignant cell lines, AG11134 and HCC1937BL. Furthermore, MCF-7 and HCC1937 cell lines were deficient in the excision repair of all the four lesions studied. These results suggest that oxidatively induced DNA damage and its repair may be critical in the etiology of breast cancer.  相似文献   

17.
Mutations in breast and ovarian cancer susceptibility genes BRCA1 and BRCA2 predispose women to a high risk of these cancers. Here, we show that lymphoblasts of women with BRCA1 mutations who had been diagnosed with breast cancer are deficient in the repair of some products of oxidative DNA damage, namely, 8-hydroxy-2'-deoxyguanosine and 8,5'-cyclopurine-2'-deoxynucleosides. Cultured lymphoblasts from 10 individuals with BRCA1 mutations and those from 5 control individuals were exposed to 5 Gy of ionizing radiation to induce oxidative DNA damage and then allowed to repair this damage. DNA samples isolated from these cells were analyzed by liquid chromatography/mass spectrometry and gas chromatography/mass spectrometry to measure 8-hydroxy-2'-deoxyguanosine, (5'-S)-8,5'-cyclo-2'-deoxyadenosine, (5'-R)-8,5'-cyclo-2'-deoxyguanosine, and (5'-S)-8,5'-cyclo-2'-deoxyguanosine. After irradiation and a subsequent period of repair, no significant accumulation of these lesions was observed in the DNA from control cells. In contrast, cells with BRCA1 mutations accumulated statistically significant levels of these lesions in their DNA, providing evidence of a deficiency in DNA repair. In addition, a commonly used breast tumor cell line exhibited the same effect when compared to a relevant control cell line. The data suggest that BRCA1 plays a role in cellular repair of oxidatively induced DNA lesions. The failure of cells with BRCA1 mutations to repair 8,5'-cyclopurine-2'-deoxynucleosides indicates the involvement of BRCA1 in nucleotide-excision repair of oxidative DNA damage. This work suggest that accumulation of these lesions may lead to a high rate of mutations and to deleterious changes in gene expression, increasing breast cancer risk and contributing to breast carcinogenesis.  相似文献   

18.
During the last three decades there was an increasing interest for developing biomarkers of oxidative stress. Therefore, efforts have been made to develop sensitive methods aimed at measuring cellular levels of oxidatively generated DNA lesions. Initially, most attention had focused on 8-oxo-7,8-dihydro-2'- deoxyguanosine (8-oxodGuo) probably because reliable analytical methods (mostly HPLC coupled to electrochemical detection) were available since mid-eighties to detect that lesion at the cellular level. With the recent development of more versatile analytical (using mass spectrometric detection) and biochemical assays (such as the comet assay) efforts are currently made to measure simultaneously several DNA lesions. The main degradation pathways of the four main pyrimidine (thymine, cytosine) and purine (adenine, guanine) bases mediated by hydroxyl radical (?OH), one-electron oxidants and singlet oxygen (1O2) have been also studied in detail and results indicate that other DNA modification than 8-oxodGuo could represent suitable biomarkers of oxidative stress. In this review article, the main oxidative degradation products of DNA will be presented together with their mechanisms of formation. Then the developed methods aimed at measuring cellular levels of oxidatively generated DNA lesions will be critically reviewed based on their specificity, versatility and sensitivity. Illustration of the powerfulness of the described methods will be demonstrated using quantification of DNA lesions in cells exposed to ionizing radiations. In addition, recent work highlighting the possible formation of complex DNA lesions will be reported and commented regarding the possibility of using such complex damage as potential biomarkers of oxidative stress.  相似文献   

19.
Sage E  Harrison L 《Mutation research》2011,711(1-2):123-133
A clustered DNA lesion, also known as a multiply damaged site, is defined as ≥ 2 damages in the DNA within 1-2 helical turns. Only ionizing radiation and certain chemicals introduce DNA damage in the genome in this non-random way. What is now clear is that the lethality of a damaging agent is not just related to the types of DNA lesions introduced, but also to how the damage is distributed in the DNA. Clustered DNA lesions were first hypothesized to exist in the 1990s, and work has progressed where these complex lesions have been characterized and measured in irradiated as well as in non-irradiated cells. A clustered lesion can consist of single as well as double strand breaks, base damage and abasic sites, and the damages can be situated on the same strand or opposing strands. They include tandem lesions, double strand break (DSB) clusters and non-DSB clusters, and base excision repair as well as the DSB repair pathways can be required to remove these complex lesions. Due to the plethora of oxidative damage induced by ionizing radiation, and the repair proteins involved in their removal from the DNA, it has been necessary to study how repair systems handle these lesions using synthetic DNA damage. This review focuses on the repair process and mutagenic consequences of clustered lesions in yeast and mammalian cells. By examining the studies on synthetic clustered lesions, and the effects of low vs high LET radiation on mammalian cells or tissues, it is possible to extrapolate the potential biological relevance of these clustered lesions to the killing of tumor cells by radiotherapy and chemotherapy, and to the risk of cancer in non-tumor cells, and this will be discussed.  相似文献   

20.
Oxidatively induced damage to DNA results in a plethora of lesions comprising modified bases and sugars, DNA–protein cross-links, tandem lesions, strand breaks, and clustered lesions. Formamidopyrimidines, 4,6-diamino-5-formamidopyrimidine (FapyAde) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua), are among the major lesions generated in DNA by hydroxyl radical attack, UV radiation, or photosensitization under numerous in vitro and in vivo conditions. They are formed by one-electron reduction of C8–OH-adduct radicals of purines and thus have a common precursor with 8-hydroxypurines generated upon one-electron oxidation. Methodologies using mass spectrometry exist to accurately measure FapyAde and FapyGua in vitro and in vivo. Formamidopyrimidines are repaired by base excision repair. Numerous prokaryotic and eukaryotic DNA glycosylases are highly specific for removal of these lesions from DNA in the first step of this repair pathway, indicating their biological importance. FapyAde and FapyGua are bypassed by DNA polymerases with the insertion of the wrong intact base opposite them, leading to mutagenesis. In mammalian cells, the mutagenicity of FapyGua exceeds that of 8-hydroxyguanine, which is thought to be the most mutagenic of the oxidatively induced lesions in DNA. The background and formation levels of the former in vitro and in vivo equal or exceed those of the latter under various conditions. FapyAde and FapyGua exist in living cells at significant background levels and are abundantly generated upon exposure to oxidative stress. Mice lacking the genes that encode specific DNA glycosylases accumulate these lesions in different organs and, in some cases, exhibit a series of pathological conditions including metabolic syndrome and cancer. Animals exposed to environmental toxins accumulate formamidopyrimidines in their organs. Here, we extensively review the mechanisms of formation, measurement, repair, and biological effects of formamidopyrimidines that have been investigated in the past 50 years. Our goal is to emphasize the importance of these neglected lesions in many biological and disease processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号