共查询到20条相似文献,搜索用时 15 毫秒
2.
3.
4.
5.
6.
Mitochondria are the major site of cellular iron utilization for the synthesis of essential cofactors such as iron-sulfur clusters and haem. In the present study, we provide evidence that GTP in the mitochondrial matrix is involved in organellar iron homoeostasis. A mutant of yeast Saccharomyces cerevisiae lacking the mitochondrial GTP/GDP carrier protein (Ggc1p) exhibits decreased levels of matrix GTP and increased levels of matrix GDP [Vozza, Blanco, Palmieri and Palmieri (2004) J. Biol. Chem. 279, 20850-20857]. This mutant (previously called yhm1) also manifests high cellular iron uptake and tremendous iron accumulation within mitochondria [Lesuisse, Lyver, Knight and Dancis (2004) Biochem. J. 378, 599-607]. The reason for these two very different phenotypic defects of the same yeast mutant has so far remained elusive. We show that in vivo targeting of a human nucleoside diphosphate kinase (Nm23-H4), which converts ATP into GTP, to the matrix of ggc1 mutants restores normal iron regulation. Thus the role of Ggc1p in iron metabolism is mediated by effects on GTP/GDP levels in the mitochondrial matrix. 相似文献
7.
Camille Link Julia D. Knopf Oriana Marques Marius K. Lemberg Martina U. Muckenthaler 《Biochimica et Biophysica Acta (BBA)/General Subjects》2021,1865(3):129829
BackgroundIron export via the transport protein ferroportin (Fpn) plays a critical role in the regulation of dietary iron absorption and iron recycling in macrophages. Fpn plasma membrane expression is controlled by the hepatic iron-regulated hormone hepcidin in response to high iron availability and inflammation. Hepcidin binds to the central cavity of the Fpn transporter to block iron export either directly or by inducing Fpn internalization and lysosomal degradation. Here, we investigated whether iron deficiency affects Fpn protein turnover.MethodsWe ectopically expressed Fpn in HeLa cells and used cycloheximide chase experiments to study basal and hepcidin-induced Fpn degradation under extracellular and intracellular iron deficiency.Conclusions/General significanceWe show that iron deficiency does not affect basal Fpn turnover but causes a significant delay in hepcidin-induced degradation when cytosolic iron levels are low. These data have important mechanistic implications supporting the hypothesis that iron export is required for efficient targeting of Fpn by hepcidin. Additionally, we show that Fpn degradation is not involved in protecting cells from intracellular iron deficiency. 相似文献
8.
Friedreich's ataxia (FRDA) results from cellular damage caused by a deficiency in the mitochondrial matrix protein frataxin. To address the effect of frataxin deficiency on mitochondrial iron chemistry, the heavy mitochondrial fraction (HMF) was isolated from primary fibroblasts from FRDA affected and unaffected individuals. X-ray absorption spectroscopy was used to characterize the chemical form of iron. Near K-edge spectra were fitted with a series of model iron compounds to determine the proportion of each iron species. Most of the iron in both affected and unaffected fibroblasts was ferrihydrite. The iron K-edge from unaffected HMFs were best fitted with poorly organized ferrihydrite modeled by frataxin whereas HMFs from affected cells were best fitted with highly organized ferrihydrite modeled by ferritin. Both had several minor iron species but these did not differ consistently with disease. Since the iron K-edge spectra of ferritin and frataxin are very similar, we present additional evidence for the presence of ferritin-bound iron in HMF. The predominant ferritin subunit in HMFs from affected cells resembled mitochondrial ferritin (MtFt) in size and antigenicity. Western blotting of native gels showed that HMF from affected cells had 3-fold more holoferritin containing stainable iron. We conclude that most of the iron in fibroblast HMF from both affected and unaffected cells is ferrihydrite but only FRDA affected cells mineralize significant iron in mitochondrial ferritin. 相似文献
9.
Since mitochondria are closed spaces in the cell, metabolite traffic across the mitochondrial membrane is needed to accomplish energy metabolism. The mitochondrial carriers play this function by uniport, symport and antiport processes. We give here a survey of about 50 transport processes catalysed by more than 30 carriers with a survey of the methods used to investigate metabolite transport in isolated mammalian mitochondria. The role of mitochondria in metabolic pathways including ammoniogenesis, amino acid metabolism, mitochondrial shuttles etc. is also reported in more detail, mainly in the light of the existence of new transport processes. 相似文献
10.
NaCl is the most abundant salt in salinity-affected land. The ability of plants to sift the water table, limit NaCl uptake, compartmentalise Na?/Cl? ions and prevent negative ionic and osmotic effects on cell function, are the foundations of salinity tolerance mechanisms. In this review, we show that although the quantitative response of respiratory rate to changes in salt concentration is complex, the properties of respiratory processes are crucial for tolerance during ion exclusion and tissue tolerance. We consider whole-plant gas exchange and carbon balance analysis alongside the salt responses of mitochondrial properties and genetic studies manipulating respiratory processes. We showcase the importance of efficient ATP generation, dampened reactive oxygen species and mitochondrial osmolytes for salinity tolerance in plants. 相似文献
11.
The role of mitochondrial oxidative stress in aging 总被引:8,自引:0,他引:8
12.
Mühlenhoff U Stadler JA Richhardt N Seubert A Eickhorst T Schweyen RJ Lill R Wiesenberger G 《The Journal of biological chemistry》2003,278(42):40612-40620
The yeast genes MRS3 and MRS4 encode two members of the mitochondrial carrier family with high sequence similarity. To elucidate their function we utilized genome-wide expression profiling and found that both deletion and overexpression of MRS3/4 lead to up-regulation of several genes of the "iron regulon." We therefore analyzed the two major iron-utilizing processes, heme formation and Fe/S protein biosynthesis in vivo, in organello (intact mitochondria), and in vitro (mitochondrial extracts). Radiolabeling of yeast cells with 55Fe revealed a clear correlation between MRS3/4 expression levels and the efficiency of these biosynthetic reactions indicating a role of the carriers in utilization and/or transport of iron in vivo. Similar effects on both heme formation and Fe/S protein biosynthesis were seen in organello using mitochondria isolated from cells grown under iron-limiting conditions. The correlation between MRS3/4 expression levels and the efficiency of the two iron-utilizing processes was lost upon detergent lysis of mitochondria. As no significant changes in the mitochondrial membrane potential were observed upon overexpression or deletion of MRS3/4, our results suggest that Mrs3/4p carriers are directly involved in mitochondrial iron uptake. Mrs3/4p function in mitochondrial iron transport becomes evident under iron-limiting conditions only, indicating that the two carriers do not represent the sole system for mitochondrial iron acquisition. 相似文献
13.
Considerable cumulative evidence has accrued suggesting a vital role for mitochondrial function in optimizing photosynthesis. Both pharmacological approaches using respiratory inhibitors and reverse genetic approaches have recently underscored the high degree of interconnection between photosynthesis and respiration--the major pathways of energy production which are largely confined to the plastid and mitochondria, respectively. Here recent studies into the nature of these interactions are reviewed, with particular focus on (i) the recently described link between the mitochondrial electron transport chain activity, ascorbate biosynthesis, and photosynthesis; and (ii) the contribution of mitochondrial metabolism to the photorespiratory process. Whilst there is increasing evidence of a role for ascorbate in co-ordinating the rates of respiration and photosynthesis, some data are presented here for plants grown under extreme environmental conditions that suggest that this relationship is not absolute. It thus seems likely that interactions between these compartments are perhaps more numerous and complicated than previously thought. This observation suggests that although the elucidation of the genetic bases of both photorespiration and the Wheeler-Smirnoff pathway of ascorbate biosynthesis has recently been completed, much further research is probably necessary in order to understand fully how energy metabolism is co-ordinated in the illuminated leaf. 相似文献
14.
15.
16.
Rouault TA 《Nature chemical biology》2006,2(8):406-414
17.
铁调素(hepcidin)是由肝脏分泌的一种肽类激素,它通过改变细胞膜上ferroportin的水平而调节全身铁代谢。Ferroportin是唯一已知的哺乳动物中的铁外排通道,它表达在小肠细胞的基底外侧膜和巨噬细胞的质膜上。铁调素结合ferroportin导致其在溶酶体内降解,从而减少铁从饮食的吸收和巨噬细胞铁的释放。Hemojuvelin(HJV)是一种glycosylphosphatidylinositol(GPI)相连的膜蛋白,它作为骨形态发生蛋白(BMP)的共受体可以激活肝细胞Smad信号通路和铁调素表达。除了表达在细胞膜上,hemojuvelin还可以被切割并分泌到胞外,形成可溶性蛋白。由furin切割产生的可溶性HJV可以选择性地结合到BMP配体,抑制内源性BMP诱导的铁调素表达。TMPRSS6也被认为可以切割细胞膜上HJV并影响铁调素的表达。最近的研究表明,HJV还可能参与脂肪组织对铁代谢的调控。综述了近期对细胞膜HJV和可溶性HJV如何调节铁调素的表达与铁代谢的研究结果,并对这一研究领域需要填补的空白进行了初步探讨。 相似文献
18.
Kunji ER 《FEBS letters》2004,578(3):239-244
We have identified a novel CARD-containing protein from EST database. BinCARD (Bcl10-interacting protein with CARD). BinCARD was ubiquitously expressed. Co-immunoprecipitation, In vitro binding, mammalian two-hybrid, and immunostaining assays revealed that BinCARD interacted with Bcl10 through CARD. BinCARD potently suppressed NF-kappa B activation induced by Bcl10 and decreased the amounts of phosphorylated Bcl10. Mutations at the residue Leu17 or Leu65, which is highly conserved in CARD, abolished the inhibitory effects of BinCARD on both Bcl10-induced activation of NF-kappa B and phosphorylation of Bcl10. Further, expression of BinCARD inhibited Bcl10 phosphorylation induced by T cell activation signal. These results suggest that BinCARD interacts with Bcl10 to inhibit Bcl10-mediated activation of NF-kappa B and to suppress Bcl10 phosphorylation. 相似文献
19.
20.
The various pathologies in ataxia telangiectasia (A-T) patients including T-cell lymphomagenesis have been attributed to defects in the DNA damage response pathway because ATM, the gene mutated in this disease, is a key mediator of this process. Analysis of Atm-deficient thymocytes in mice reveals that the absence of this gene results in altered mitochondrial homeostasis, a phenomenon that appears to result from abnormal mitophagy engagement. Interestingly, allelic loss of the autophagic gene Becn1 delays tumorigenesis in Atm-null mice presumably by reversing the mitochondrial abnormalities and not by improving the DNA damage response (DDR) pathway. Thus, ATM plays a critical role in modulating mitochondrial homeostasis perhaps by regulating mitophagy. 相似文献