首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to examine the role of NADPH oxidase on superoxide radical production under waterlogging in mung bean (Vigna radiata) cvs. T 44 (tolerant) and Pusa Baisakhi (PB) (susceptible), and wild species Vigna luteola. Two days of waterlogging caused decline in superoxide radical (O2 ·−) contents in all the genotypes, however, further waterlogging up to 8 d caused significant increase in O2 ·− contents. In control and revived plants O2 ·− contents were higher in PB, while under waterlogging stress T 44 and V. luteola showed greater increases in the O2 ·− contents. During waterlogging the increase in O2 ·− content was found to be due to the diphenylene iodonium chloridesensitive NADPH oxidase (NOX). This was further confirmed by the waterlogging induced increase in NOX activity, which was higher in tolerant genotypes T 44 and V. luteola compared with PB. Gene expression studies showed enhanced expression of NOX in the roots of waterlogged V. luteola and T 44, while little expression was observed in control or treated plants of PB. PCR band products were cloned and sequenced, and partial cDNAs of NOX was obtained. Results suggest that increase in O2 ·− content during waterlogging could be due to the induction of membrane linked NOX.  相似文献   

2.
The objective of this study was to examine the role of nitrate reductase, nitric oxide and non-symbiotic hemoglobin in imparting waterlogging tolerance in mung bean genotypes. Experiment was conducted with two cultivated mung bean [Vigna radiata (L.) Wilczek] genotypes T 44 (tolerant) and Pusa Baisakhi (susceptible) and a highly tolerant wild species Vigna luteola (Jacq.) Benth. The content of nitric oxide increased up to 6 d of waterlogging in Vigna luteola and T 44, and up to 4 d of treatment in Pusa Baisakhi. Increase in nitrate reductase (NR) activity was observed only up to 4 d of waterlogging in Vigna luteola and T 44, and up to 2 d of treatment in Pusa Baisakhi, and thereafter the activity decreased in all the genotypes. The increase in NO content and NR activity was greater in Vigna luteola and T 44 than in Pusa Baisakhi. Non-symbiotic hemoglobin (NSHb) and cNR mRNA expressions were observed only in waterlogging treated roots of Vigna luteola and T 44, while very little expression was observed in control plants of Vigna luteola and T 44, and in control and waterlogged plants of Pusa Baisakhi. PCR bands of Hb and cNR were cloned, and nucleotide and deduced amino acid sequences were obtained and conserved regions and domains were identified using database.  相似文献   

3.
A study was conducted to examine the physiological response of contrasting mung bean (Vigna radiata) genotypes viz., T 44 & MH–96–1 (tolerant) and Pusa Baisakhi & MH–1K–24 (sensitive) under waterlogging conditions. Plants were waterlogged at vegetative stage (30 days after sowing) for 3, 6 and 9 days. Waterlogging resulted in decreased leaf area, crop growth rate, root growth and nodules number, membrane stability index, photosynthesis rate, chlorophyll and carotenoid contents, flowering rate, pod setting, yield and altered dry matter partitioning. Sensitive genotypes showed large reductions in aforementioned physiological traits and slow recovery in photosynthesis rate. On the other hand, tolerant genotypes maintained higher photosynthetic rate, chlorophylls and carotenoids, growth rate, membrane stability and fast photosynthetic recovery under waterlogging. After 9 days of exposure to waterlogging, photosynthetic rate and yield losses in most sensitive genotype (MH-1K-24) were 83 and 85 %, respectively. On an average, photosynthetic loss at 3, 6 and 9 days of waterlogging was 43, 51, and 63 %, respectively, while grain yield loss was 20, 34 and 52 % respectively.  相似文献   

4.
The present investigation was undertaken to identify the possible mode of mechanism that could provide tolerance to maize (Zea mays L.) seedlings under waterlogging. Using cup method, a number of maize genotypes were screened on the basis of survival of the seedlings kept under waterlogging. Two tolerant (LM5 and Parkash) and three susceptible (PMH2, JH3459 and LM14) genotypes were selected for the present study. Activities of antioxidant and ethanolic fermentation enzymes and content of hydrogen peroxide (H2O2), glutathione and ascorbic acid were determined in roots of these genotypes after 72 h of waterlogging. Waterlogging treatment caused decline in activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in all the genotypes. However, only susceptible genotypes showed slight increase in glutathione reductase (GR) activity. Significant reduction in APX/GR ratio in susceptible genotypes might be the cause of their susceptibility to waterlogging. The tolerant seedlings had higher GR activity than susceptible genotypes under unstressed conditions. Stress led to decrease in H202 and increase in glutathione content of both tolerant and susceptible genotypes, but only tolerant genotypes exhibited increase in ascorbic acid under waterlogging conditions. In the tolerant genotypes, all the enzymes of anaerobic metabolism viz. alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH) and pyruvate decarboxylase (PDC) were upregulated under waterlogging, whereas in susceptible genotypes, only ADH was upregulated, suggesting that efficient upregulation of entire anaerobic metabolic machinery is essential for providing tolerance against waterlogging. The study provides a possible mechanism for waterlogging tolerance in maize.  相似文献   

5.
Plants of maize (Zea mays L.) were waterlogged for 7 d and irrigated (root application) or sprayed (foliar application) with 0, 1, 3 and 6 mg dm-3 of boron. The stability of leaf membranes was assessed by determining leakage of electrolytes from leaf discs exposed to heat (51 °C) and dehydration (40 % PEG). Leaf membranes were more stable to heat than to dehydration. The membranes of waterlogged plants were more injured than those of control plants. Waterlogging reduced contents of dry mass, chlorophyll, soluble proteins, total free amino acids and soluble sugars and leaf relative water content (RWC). Application of boron increased the stability of leaf membranes, chlorophyll, soluble sugars, soluble proteins, amino acids contents, leaf RWC and dry mass accumulation. Foliar boron application was more effective. Application of boron alleviated the deleterious effect of waterlogging. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Effects of water stress at pre-flowering stage were studied in three genotypes (RMO-40, Maru moth and CZM-32 E) of moth bean [Vigna aconitifolia (Jacq.) Marechal]. Increasing water stress progressively decreased plant water potential, leaf area, net photosynthetic rate, starch and soluble protein contents and nitrate reductase activity while contents of reducing sugars, total soluble sugar, free amino acids and free proline progressively increased. Significant genotypic differences were observed and genotype CZM-32-E displayed a better drought tolerance than other genotypes.  相似文献   

7.
Soil moisture is the main limiting factor for vegetation growth at shell ridges in the Yellow River Delta of China. The objective of this study was to explore the soil moisture response of photosynthetic parameters and transpiration in Tamarix chinensis Lour., a dominant species of shell ridges. Leaf photosynthetic light-response parameters and sap flow were measured across a gradient of relative soil water content (RWC), from drought (23%) to waterlogging (92%) conditions. Leaf photosynthetic efficiency and stem sap flow of T. chinensis showed a clear threshold response to soil moisture changes. Leaf net photosynthetic rate, water-use efficiency (WUE), light-saturation point, apparent quantum yield, maximum net photosynthetic rate, and dark respiration rate peaked at moderately high RWC, decreasing towards high and low values of RWC. However, peak or bottom RWC values substantially differed for various parameters. Excessively high or low RWC caused a significant reduction in the leaf photosynthetic capacity and WUE, while the high photosynthetic capacity and high WUE was obtained at RWC of 73%. With increasing waterlogging or drought stress, T. chinensis delayed the starting time for stem sap flow in the early morning and ended sap flow activity earlier during the day time in order to shorten a daily transpiration period and reduce the daily water consumption. The leaf photosynthetic capacity and WUE of T. chinensis were higher under drought stress than under waterlogging stress. Nevertheless, drought stress caused a larger reduction of daily water consumption compared to waterlogging, which was consistent with a higher drought tolerance and a poor tolerance to waterlogging in this species. This species was characterized by the low photosynthetic capacity and low WUE in the range of RWC between 44 and 92%. The RWC of 49–63% was the appropriate range of soil moisture for plant growth and efficient physiological water use of T. chinensis seedlings.  相似文献   

8.
Chandra  Amaresh  Bhatt  R.K. 《Photosynthetica》1998,35(2):255-258
In five genotypes of cowpea (Vigna unguiculata), the influence of salicylic acid (SA) on photosynthetic activity and biochemical constituents including peroxidase activity at the genotypic level was determined. After SA treatment the total free sugar content increased in IFC 8401 and IGFRI 450 genotypes, whereas the content of total leaf soluble proteins decreased significantly in IFC 902. The high chlorophyll (Chl) (a + b) content in IFC 902 showed a good correlation with the net photosynthetic rate (PN), as in this genotype a significant increase in PN was found after the SA treatment.  相似文献   

9.
Relative water content (RWC), leaf water potential (w) and osmotic potential (s), contents of chlorophyll (Chl) a, Chl b, soluble sugars, and seed quality (gum content) were used to evaluate the role of phosphorus in alleviation of the deleterious effect of water deficit in clusterbean (Cyamopsis tetragonoloba L. Taub). Under water stress, w, s, and Chl and gum contents decreased and soluble sugar contents increased. Phosphorus application increased Chl and sugar contents in control plants and ameliorated negative effects of water stress.  相似文献   

10.
Salinity and waterlogging are two stresses which in nature often occur simultaneously. In this work, effects of combined waterlogging and salinity stresses are studied on the anatomical alteration, changes of enzymatic antioxidant system and lipid peroxidation in Mentha aquatica L. plants. Seedlings were cultured in half-strength Hoagland medium 50 days after sowing, and were treated under combination of three waterlogging levels (well drained, moderately drained and waterlogging) and NaCl (0, 50, 100, 150 mM) for 30 days. Moderately drained and waterlogging conditions induced differently aerenchyma formation in roots of M. aquatica salt-treated and untreated plants. Moreover, stele diameter and endodermis layer were also affected by salt stress and waterlogging. Salt stress significantly decreased growth, relative water content (RWC), protein level, catalase (CAT) and polyphenol oxidase (PPO) activities, and increased proline content, MDA content, H2O2 level and activities of superoxide dismutase (SOD), peroxidase (POX), and ascorbate peroxidase (APX). Waterlogging in salt-untreated plants increased significantly growth parameters, RWC, protein content, antioxidant enzyme activity, and decreased proline content, H2O2 and MDA levels. In salt-treated plant, waterlogging caused strong induction of antioxidant enzymes activities especially at severe stress condition. These results suggest M. aquatica is a waterlogging tolerant plant due to significant increase of antioxidant activity, membrane stability and growth under water stress. High antioxidant capacity under waterlogging can be a protective strategy against oxidative damage, and help to salt stress alleviation.  相似文献   

11.
Physiological responses of two wheat (Triticum aestivum L.) genotypes (salt-tolerant DK961 and salt-sensitive JN17) to increased salt concentrations (50, 100, 150 mM NaCl: NaCl50, NaCl100, NaCl150) were studied. Photosynthetic capacity, irradiance response curves, contents of soluble sugars, proteins, and chlorophyll (Chl), K+/Na+ ratio, and activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) in flag leaves were measured on 7 d after anthesis. In control (NaCl0) plants, non-significant (p>0.05) differences were found in gas exchange and saturation irradiance (SI) between salt-tolerant (ST) and salt-sensitive (SS) wheat genotypes. However, we found higher soluble sugar and protein contents, K+/Na+ ratio, and antioxidant enzyme activities, but lower Chl content and yield in ST wheat. Salinity stresses remarkably increased soluble sugar and protein contents and the antioxidant activities, but decreased K+/Na+ ratio, Chl contents, SI, photosynthetic capacities, and yield, the extent being considerably larger in JN17 than DK961. Although the soluble sugar and protein contents and the antioxidant activities of JN17 elevated more evidently under salt stresses, those variables never reached the high levels of DK961. The antioxidant enzyme activities of SS wheat increased in NaCl50 and NaCl100, but decreased rapidly when the NaCl concentration reached 150 mM. Thus the ST wheat could maintain higher grain yield than the SS one by remaining higher osmoregulation and antioxidative abilities, which led to higher photosynthetic capacity. Hence the ST wheat could harmonize the relationship between CO2 assimilation (source) and the grain yield (sink) under the experimental conditions.  相似文献   

12.
An experiment was conducted with two contrasting pigeon pea (Cajanus cajan L.) genotypes, ICPL 84023 (tolerant) and ICP 7035 (susceptible), to study the physiological and molecular basis of waterlogging tolerance in relation to oxidative stress and antioxidant enzyme activities. Waterlogging resulted in visible yellowing and premature senescence of leaves, and greater decline in relative water content, chlorophyll content, and membrane stability index in ICP 7035 than in ICPL 84023. Superoxide radical and hydrogen peroxide contents increased at day 4 and 6 of waterlogging probably due to activation of NADPH-oxidase. O2 ·− production was inhibited, by diphenylene iodonium chloride, a specific inhibitor of NADPH oxidase and expression of NADPH oxidase-mRNA was increased under waterlogging condition in ICPL 84023. ICP 7035 showed higher contents of ROS in control condition and after recovery, however, during waterlogging the O2 ·− production was higher in ICPL 84023. Activities of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase and catalase increased under waterlogging more in ICPL 84023 than in ICP 7035. Cu/Zn-SOD and APX-mRNA expression in 24-h waterlogged plants showed enhanced expression in ICPL 84023 compared to ICP 7035. The cloning and sequencing of APX gene of tolerant and susceptible genotypes yielded cDNAs of 622 and 623 bp, having 95 % homology with each other and 92 % with the corresponding sequences of Vigna unguiculate APX-gene.  相似文献   

13.
Waterlogging is predicted to increase in both magnitude and frequency along with global warming, and will become one of the most severe adversities for crop production in many regions. Nitrogen is considered to be an effective up-regulatory nutrient for crops grown under stress and non-stress conditions. In this study, we try to evaluate N fertiliser effects on contents of carbohydrate and N dynamics, dry matter accumulation in shoot, yield under post-anthesis waterlogging. Waterlogging after anthesis significantly reduced grain yield due to decrease in thousand-kernel-weight and in grain number per spike. High N fertiliser application aggravated grain yield loss due to post-anthesis waterlogging. These yield losses were related to the decreases in dry matter accumulation, redistribution of stored photosynthate to the grain, and the conversion capacity from carbohydrate to starch in grain. The decrease in dry matter accumulation could be attributed to the reduced activities of Pn (photosynthesis) and SPS (sucrose phosphate synthase) in the flag leaf, while the low capacity in starch synthesis could be explained by the reduced activities of sucrose synthase (SS) and soluble starch synthase (SSS) in grain. Total N uptake in shoot was also reduced, which could contribute to the losses in biomass and yield by waterlogging. The decrease in Pn was inconsistent with the increase in N content in the flag leaf at high N fertiliser application under post-anthesis waterlogging.  相似文献   

14.
The experiment was conducted to investigate the formation of oxidative stress and the development of anti-oxidative enzymes in two barley genotypes differing in anoxia tolerance. Waterlogging led to significant reduction in root and shoot weight, green leaf area and tillers per plant, but tolerant Xiumai 3 was much less reduced than sensitive Gerdner. Malondialdehyde (MDA) content, an indicator of membrane lipid peroxidation, significantly increased in Gerdner when the plants were subjected to waterlogging, but remained little changed in Xiumai 3. Superoxide dismutase (SOD) activity was increased with waterlogging treatment and the sensitive cultivar had higher activity than the tolerant one during the experimental duration. At early stage of waterlogging treatment, both peroxidase (POD) and catalase (CAT) activities significantly increased in Xuimai 3, while obviously decreased in Gerdner. Moreover, both cultivars showed substantial increase in both POD and CAT with the progress of waterlogging exposure. Glutathione reductase (GR) activity was increased in both tolerant- and sensitive cultivars under waterlogging. It may be assumed from the current results that SOD activity appears to be not a constraining factor limiting the scavenging of ROS, and it is the change of POD and CAT activity under waterlogging that determine the status of oxidative stress. The difference between genotypes in waterlogging tolerance could be distinguished from the changed patterns of these enzymatic activities.  相似文献   

15.
This study was conducted to examine the extent of oxidative stress and the role of antioxidant enzymes on hypoxia tolerance in highly tolerant wild species Vigna luteola, and mung bean (Vigna radiata) cvs. T 44 (tolerant) and Pusa Baisakhi (susceptible). Two days of water-logging caused about 40–50% decline in superoxide radical (O2 ·−) and hydrogen peroxide (H2O2) contents in all the genotypes, however, further water-logging to 8 days caused significant increase in O2 ·− and H2O2 contents, and the values were 80–90% of the control values. In control and revived plants O2 ·− and H2O2 contents were higher in Pusa Baisakhi, while under water-logging stress T 44 and V. luteola showed greater increases in the O2 ·− and H2O2 contents. Hypoxia induced increase in superoxide dismutase, ascorbate peroxidase, and glutathione reductase activities were higher in T 44 and V. luteola compared with Pusa Baisakhi; and the increases in T 44 and V. luteola continued up to 8th day of water-logging, while in case of Pusa Baisakhi, the maximum increase was observed only on the 2nd day of water-logging. Gene expression studies showed enhanced expression of cytosolic-Cu/Zn-superoxide dismutase (SOD) and cytosolic-ascorbate peroxidase (APX) in the roots of waterlogged V. luteola and T 44, while little expression was observed in control or treated plants of Pusa Baisakhi. PCR band products were cloned and sequenced, and partial cDNAs of Cu/Zn-SOD and APX, respectively, were obtained. Results suggest that increase in the activity of antioxidant enzymes is to scavenge reactive oxygen species produced both during and after relief from water-logging stress.  相似文献   

16.
A pot experiment was conducted under natural conditions of screen house to evaluate the effect of saline irrigation given at flowering stage (30–35 DAS) on nodule functioning and their tolerance in two mungbean genotypes viz. Asha and Muskan based on various physiological traits. The pots containing sandy soil (Typic Torrispamments) were saturated with Cl-dominated saline irrigation to maintain ECe of 2.5, 5.0, 7.5 dS m−1 as compared to control. In both the genotypes osmotic potential (Ψs) and relative water content (RWC %) of nodules decreased significantly, while a sharp rise in proline and total soluble sugars contents were observed with the increasing level of saline irrigation after 10 and 20 days of treatment. A marked increase in hydrogen peroxide (H2O2), lipid peroxidation (MDA content) and relative stress injury (RSI %) was noticed in nodules which were much higher in Muskan. The decrease in Ψs of nodules was more pronounced in Asha than in Muskan, while reverse was true for RWC and proline accumulation. A sharp decline in acetylene reduction assay (ARA) for N2-fixation, leghemoglobin content and dry matter of the nodules was observed, but was more in Muskan than in Asha. Nitrogen (N) content declined while Na+/K+ ratio and Cl content increased significantly. The genotype Asha maintained better N2-fixing efficiency but lower Na+/K+ ratio and Cl content in nodules than Muskan. Though the nodule functioning was further deteriorated at 20 DAT in both the genotypes yet the tolerance capacity of nodules in Asha was better than in Muskan under saline conditions which is correlated with the compensatory mechanism i.e. osmoregulation in nodules.Key words: Leghemoglobin, Lipid peroxidation, Minerals, N2-ase activity, Vigna radiata, Water relations  相似文献   

17.
Waterlogging is one of the major stresses limiting crop production worldwide. The understanding of the mechanisms of plant adaptations to waterlogging stress helps improve plant tolerance to stress. In this study, physiological responses and morpho-anatomical adaptations of seven different barley genotypes were investigated under waterlogging stress. The results showed that the waterlogging-tolerant varieties (TX9425, Yerong, TF58) showed less reduction in plant height, SPAD (soil–plant analyses development analyses) value, tillers, shoot and root biomasses than did the waterlogging-sensitive varieties (Franklin, Naso Nijo, TF57). Under waterlogging stress condition, the tolerant genotypes also showed a much larger number of adventitious roots than did the sensitive genotypes. More intercellular spaces and better integrated chloroplast membrane structures were observed in the leaves of the waterlogging-tolerant cultivars, which is likely due to increased ethylene content, decreased ABA content and less accumulation of O2.?. The ability to form new adventitious roots and intercellular spaces in shoots can also be used as selection criteria in breeding barley for waterlogging tolerance.  相似文献   

18.
Effects of long-term sodium chloride salinity (100 and 200 mM NaCl; ECe = 6.85 and 12.3 dS m–1) were studied in tolerant (Kharchia 65, KRL 19) and susceptible (HD 2009, HD 2687) wheat genotypes. NaCl decreased relative water content (RWC), chlorophyll content (Chl), membrane stability index (MSI) and ascorbic acid (AA) content, and increased the contents of hydrogen peroxide, thiobarbituric acid reactive substances (TBARS), and activities of superoxide dismutase (SOD), ascorbate peroxidase (APOX) and glutathione reductase (GR). Kharchia 65 showed lowest decline in RWC, Chl, MSI and AA content, lowest increase in H2O2 and TBARS contents and higher increase in SOD and its isozymes, APOX and GR, while HD2687 showed the highest decrease in AA content, highest increase in H2O2 and TBARS contents and smallest increase in activities of antioxidant enzymes. KRL 19 and HD 2009 showed intermediate response both in terms of oxidative stress and antioxidant activity.  相似文献   

19.
Effect of soil salinity was studied in two maize (Zea mays L.) genotypes, DTP-w-c 9 (comparatively tolerant) and Prabhat (susceptible) under control and three levels of salinity at vegetative and anthesis stages during summer–rainy season. Salinity stress decreased relative water content (RWC), chlorophyll (Chl) and carotenoid (Car) contents, membrane stability index (MSI), potassium (K+) and calcium (Ca2+) contents, and increased the rate of superoxide radical (O2·−) production, contents of hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS) (measure of lipid peroxidation), proline, glycine-betaine, total soluble sugars, sodium (Na+), and Na+/K+ and Na+/Ca2+ ratios in both the genotypes. Activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR) increased up to S2 salinity level in both the genotypes, and up to highest salinity level (S3) in DTP-w-c 9 at the two stages. Salinity-induced decrease in RWC, Chl, Car, MSI, K+ and Ca2+ was significantly greater in Prabhat, which also recorded higher Na+ content and Na+/K+ and Na+/Ca2+ ratios than DTP-w-c 9. DTP-w-c 9 recorded higher contents of proline, glycine-betaine, total soluble sugars, K+, Ca2+, activity of SOD, APX, CAT, GR, and comparatively lower O2·−, H2O2 and TBARS contents compared to Prabhat. Results show that salinity tolerance of DTP-w-c 9, as manifested by less decrease in RWC, Chl, Car and MSI, is associated with maintenance of adequate levels of K+ and Ca2+, greater contents of osmolytes, higher antioxidant enzymes activity, and lower O2·−, H2O2, TBARS and Na+ contents than Prabhat.  相似文献   

20.
Pollution of the root environment with excess of Pb retarded shoot growth, decreased chlorophyll (Chl) content and reduced Chl stability (CSI) to heat. Plants growing in Pb polluted soil accumulated much more free amino acids and less soluble sugars than the control plants. Stability of leaf membranes to heat (51 °C) or dehydration stresses (40% polyethylene glycol, 6000) decreased in response to Pb pollution where the membranes of leaf discs excised from Pb-treated plants were damaged more than those taken from plants growing in Pb free soil. Supplying kinetin ameliorated the deleterious effects of Pb pollution on the parameters tested. Kinetin-treated plants had higher Chl, soluble sugars content and produced more biomass in their shoots. Also, kinetin increased leaf membrane stability especially in Pb-treated plants, effectively protected chlorophyll degradation by heat and increased Chl a and b stability index; the most effective concentration was 10 mg L–1. The effects of Pb and kinetin as well as their interaction (Pb × Kin) on the parameters tested were statistically significant. Applied kinetin had a dominant role (as indicated by 2) in affecting shoot growth, soluble sugars, Chl a and b contents, stability of leaf membranes to dehydration stress as well as the Chl stability index. Pb had a dominant role on total free amino acids (TAA) and leaf relative water content (RWC). The interaction between Kin × Pb influenced the stability of leaf membranes to heat stress in a major way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号