共查询到20条相似文献,搜索用时 15 毫秒
1.
Nelersa CM Barreras H Runko E Ricard J Shi Y Glass SJ Bixby JL Lemmon VP Liebl DJ 《Journal of biomolecular screening》2012,17(6):785-795
Small-molecule compounds (SMCs) can provide an inexpensive and selective approach to modifying biological responses. High-content analysis (HCA) of SMC libraries can help identify candidate molecules that inhibit or activate cellular responses. In particular, regulation of cell death has important implications for many pathological conditions. Dependence receptors are a new classification of proapoptotic membrane receptors that, unlike classic death receptors, initiate apoptotic signals in the absence of their ligands. EphA4 has recently been identified as a dependence receptor that may have important functions in conditions as disparate as cancer biology and CNS injury and disease. To screen potential candidate SMCs that inhibit or activate EphA4-induced cell death, HCA of an SMC library was performed using stable EphA4-expressing NIH 3T3 cells. Our results describe a high-content method for screening dependence receptor-signaling pathways and demonstrate that several candidate SMCs can inhibit EphA4-mediated cell death. 相似文献
2.
Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins, have a variety of roles in the developing and adult central nervous system that require direct cell–cell interactions; including regulating axon path finding, cell proliferation, migration and synaptic plasticity. Recently, we identified a novel pro-survival role for ephrins in the adult subventricular zone, where ephrinB3 blocks Eph-mediated cell death during adult neurogenesis. Here, we examined whether EphB3 mediates cell death in the adult forebrain following traumatic brain injury and whether ephrinB3 infusion could limit this effect. We show that EphB3 co-labels with microtubule-associated protein 2-positive neurons in the adult cortex and is closely associated with ephrinB3 ligand, which is reduced following controlled cortical impact (CCI) injury. In the complete absence of EphB3 (EphB3−/−), we observed reduced terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL), and functional improvements in motor deficits after CCI injury as compared with wild-type and ephrinB3−/− mice. We also demonstrated that EphB3 exhibits dependence receptor characteristics as it is cleaved by caspases and induces cell death, which is not observed in the presence of ephrinB3. Following trauma, infusion of pre-clustered ephrinB3-Fc molecules (eB3-Fc) into the contralateral ventricle reduced cortical infarct volume and TUNEL staining in the cortex, dentate gyrus and CA3 hippocampus of wild-type and ephrinB3−/− mice, but not EphB3−/− mice. Similarly, application of eB3-Fc improved motor functions after CCI injury. We conclude that EphB3 mediates cell death in the adult cortex through a novel dependence receptor-mediated cell death mechanism in the injured adult cortex and is attenuated following ephrinB3 stimulation. 相似文献
3.
ATF3 stimulated promoter activity of EphA1 by 3.4-fold in ATF3-dependent angiogenesis in vitro. Although tyrosine kinase activation of EphA1 was dispensable, binding of EphA1 to fibronectin through its type I repeat played an essential role in the angiogenesis. Recombinant proteins containing fibronectin 10th to 12th type I repeat (I 10-12) but not I 12 could inhibit the angiogenesis in vitro by competitively targeting EphA1 with the full-length fibronectin. However, I 12 acquired a higher affinity toward EphA2 with K(d) 18 nm and inhibited vascular endothelial growth factor-dependent angiogenic invasion in a Matrigel plug assay. 相似文献
4.
mRNA is an endogenous ligand for Toll-like receptor 3 总被引:30,自引:0,他引:30
Karikó K Ni H Capodici J Lamphier M Weissman D 《The Journal of biological chemistry》2004,279(13):12542-12550
5.
Rac-GAP alpha-chimerin regulates motor-circuit formation as a key mediator of EphrinB3/EphA4 forward signaling 总被引:1,自引:0,他引:1
Iwasato T Katoh H Nishimaru H Ishikawa Y Inoue H Saito YM Ando R Iwama M Takahashi R Negishi M Itohara S 《Cell》2007,130(4):742-753
The ephrin/Eph system plays a central role in neuronal circuit formation; however, its downstream effectors are poorly understood. Here we show that alpha-chimerin Rac GTPase-activating protein mediates ephrinB3/EphA4 forward signaling. We discovered a spontaneous mouse mutation, miffy (mfy), which results in a rabbit-like hopping gait, impaired corticospinal axon guidance, and abnormal spinal central pattern generators. Using positional cloning, transgene rescue, and gene targeting, we demonstrated that loss of alpha-chimerin leads to mfy phenotypes similar to those of EphA4(-/-) and ephrinB3(-/-) mice. alpha-chimerin interacts with EphA4 and, in response to ephrinB3/EphA4 signaling, inactivates Rac, which is a positive regulator of process outgrowth. Moreover, downregulation of alpha-chimerin suppresses ephrinB3-induced growth cone collapse in cultured neurons. Our findings indicate that ephrinB3/EphA4 signaling prevents growth cone extension in motor circuit formation via alpha-chimerin-induced inactivation of Rac. They also highlight the role of a Rho family GTPase-activating protein as a key mediator of ephrin/Eph signaling. 相似文献
6.
The rat hepatic asialoglycoprotein receptor mediates clearance of galactose- and N-acetylgalactosamine-terminated glycoproteins by endocytosis, binding ligands through a C-type, Ca(2+)-dependent carbohydrate-recognition domain (CRD) at extracellular pH and releasing them at lower pH in endosomes. At physiological Ca(2+) concentrations, the midpoint for ligand release from the CRD of the major subunit of the receptor is pH 7.1. In contrast, the midpoint is pH 5.0 for a galactose-binding derivative of the homologous C-type CRD of serum mannose-binding protein, which would thus not efficiently release ligand at an endosomal pH of 5.4. Site-directed mutagenesis of the CRD from the major subunit of the asialoglycoprotein receptor has been used to identify residues that are essential for efficient release of ligand at endosomal pH. The effects of changes to residues His(256), Asp(266), and Arg(270) singly and in combination indicate that these residues reduce the affinity of the CRD for Ca(2+), so that ligands are released at physiological Ca(2+) concentrations. The proximity of these three residues to the ligand-binding site at Ca(2+) site 2 of the domain suggests that they form a pH-sensitive switch for Ca(2+) and ligand binding. Introduction of histidine and aspartic acid residues into the mannose-binding protein CRD at positions equivalent to His(256) and Asp(266) raises the pH for half-maximal binding of ligand to 6.1. The results, as well as sequence comparisons with other C-type CRDs, confirm the importance of these residues in conferring appropriate pH dependence in this family of domains. 相似文献
7.
Kinase-dependent and kinase-independent functions of EphA4 receptors in major axon tract formation in vivo 总被引:12,自引:0,他引:12
The EphA4 receptor tyrosine kinase regulates the formation of the corticospinal tract (CST), a pathway controlling voluntary movements, and of the anterior commissure (AC), connecting the neocortical temporal lobes. To study EphA4 kinase signaling in these processes, we generated mice expressing mutant EphA4 receptors either lacking kinase activity or with severely downregulated kinase activity. We demonstrate that EphA4 is required for CST formation as a receptor for which it requires an active kinase domain. In contrast, the formation of the AC is rescued by kinase-dead EphA4, suggesting that in this structure EphA4 acts as a ligand for which its kinase activity is not required. Unexpectedly, the cytoplasmic sterile-alpha motif (SAM) domain is not required for EphA4 functions. Our findings establish both kinase-dependent and kinase-independent functions of EphA4 in the formation of major axon tracts. 相似文献
8.
The Eph receptor tyrosine kinases make up an important family of signal transduction molecules that control many cellular processes, including cell adhesion and movement, cell shape, and cell growth. All of these are important aspects of cancer progression, but the relationship between Eph receptors and cancer is complex and not fully understood. Genetic screens of tumor specimens from cancer patients have revealed somatic mutations in many Eph receptors. The most highly mutated Eph receptor is EphA3, but its functional role in cancer is currently not well established. Here we show that many EphA3 mutations identified in lung, colorectal, and hepatocellular cancers, melanoma, and glioblastoma impair kinase activity or ephrin ligand binding and/or decrease the level of receptor cell surface localization. These results suggest that EphA3 has ephrin- and kinase-dependent tumor suppressing activities, which are disrupted by somatic cancer mutations. 相似文献
9.
Nicholas Rogers Pike-See Cheah Eva Szarek Kakoli Banerjee Jeffrey Schwartz Paul Thomas 《Gene expression patterns : GEP》2013,13(7):240-248
Previous studies have shown that Sox3 is expressed in nascent neuroprogenitor cells and is functionally required in mammals for development of the dorsal telencephalon and hypothalamus. However, Sox3 expression during embryonic and adult neurogenesis has not been examined in detail. Using a SOX3-specific antibody, we show that murine SOX3 expression is maintained throughout telencephalic neurogenesis and is restricted to progenitor cells with neuroepithelial and radial glial morphologies. We also demonstrate that SOX3 is expressed within the adult neurogenic regions and is coexpressed extensively with the neural stem cell marker SOX2 indicating that it is a lifelong marker of neuroprogenitor cells. In contrast to the telencephalon, Sox3 expression within the developing hypothalamus is upregulated in developing neurons and is maintained in a subset of differentiated hypothalamic cells through to adulthood. Together, these data show that Sox3 regulation is region-specific, consistent with it playing distinct biological roles in the dorsal telencephalon and hypothalamus. 相似文献
10.
Willson CA Foster RD Onifer SM Whittemore SR Miranda JD 《Journal of molecular histology》2006,37(8-9):369-380
Summary Eph receptors and ligands are two families of proteins that control axonal guidance during development. Their expression was originally thought to be developmentally regulated but recent work has shown that several EphA receptors are expressed postnatally. The EphB3 receptors are expressed during embryonic development in multiple regions of the central nervous system but their potential expression and functional role in the adult brain is unknown. We used in situ hybridization, immunohistochemistry, and receptor affinity probe in situ staining to investigate EphB3 receptors mRNA, protein, and ligand (ephrin-B) expression, respectively, in the adult rat brain. Our results indicate that EphB3 receptor mRNA and protein are constitutively expressed in discrete regions of the adult rat brain including the cerebellum, raphe pallidus, hippocampus, entorhinal cortex, and both motor and sensory cortices. The spatial profile of EphB3 receptors was co-localized to regions of the brain that had a high level of EphB3 receptor binding ligands. Its expression pattern suggests that EphB3 may play a role in the maintenance of mature neuronal connections or re-arrangement of synaptic connections during late stages of development. 相似文献
11.
Apoptosis is an important mechanism by which virus-infected cells are eliminated from the host. Accordingly, many viruses have evolved strategies to prevent or delay apoptosis in order to provide a window of opportunity in which virus replication, assembly and egress can take place. Interfering with apoptosis may also be important for establishment and/or maintenance of persistent infections. Whereas large DNA viruses have the luxury of encoding accessory proteins whose primary function is to undermine programmed cell death pathways, it is generally thought that most RNA viruses do not encode these types of proteins. Here we report that the multifunctional capsid protein of Rubella virus is a potent inhibitor of apoptosis. The main mechanism of action was specific for Bax as capsid bound Bax and prevented Bax-induced apoptosis but did not bind Bak nor inhibit Bak-induced apoptosis. Intriguingly, interaction with capsid protein resulted in activation of Bax in the absence of apoptotic stimuli, however, release of cytochrome c from mitochondria and concomitant activation of caspase 3 did not occur. Accordingly, we propose that binding of capsid to Bax induces the formation of hetero-oligomers that are incompetent for pore formation. Importantly, data from reverse genetic studies are consistent with a scenario in which the anti-apoptotic activity of capsid protein is important for virus replication. If so, this would be among the first demonstrations showing that blocking apoptosis is important for replication of an RNA virus. Finally, it is tempting to speculate that other slowly replicating RNA viruses employ similar mechanisms to avoid killing infected cells. 相似文献
12.
Ford EC Achanta P Purger D Armour M Reyes J Fong J Kleinberg L Redmond K Wong J Jang MH Jun H Song HJ Quinones-Hinojosa A 《Radiation research》2011,175(6):774-783
Radiation is used in the study of neurogenesis in the adult mouse both as a model for patients undergoing radiation therapy for CNS malignancies and as a tool to interrupt neurogenesis. We describe the use of a dedicated CT-guided precision device to irradiate specific sub-regions of the adult mouse brain. Improved CT visualization was accomplished with intrathecal injection of iodinated contrast agent, which enhances the lateral ventricles. T2-weighted MRI images were also used for target localization. Visualization of delivered beams (10 Gy) in tissue was accomplished with immunohistochemical staining for the protein γ-H2AX, a marker of DNA double-strand breaks. γ-H2AX stains showed that the lateral ventricle wall could be targeted with an accuracy of 0.19 mm (n = 10). In the hippocampus, γ-H2AX staining showed that the dentate gyrus can be irradiated unilaterally with a localized arc treatment. This resulted in a significant decrease of proliferative neural progenitor cells as measured by Ki-67 staining (P < 0.001) while leaving the contralateral side intact. Two months after localized irradiation, neurogenesis was significantly inhibited in the irradiated region as seen with EdU/NeuN double labeling (P < 0.001). Localized radiation in the rodent brain is a promising new tool for the study of neurogenesis. 相似文献
13.
DiCicco-Bloom E Deutsch PJ Maltzman J Zhang J Pintar JE Zheng J Friedman WF Zhou X Zaremba T 《Developmental biology》2000,219(2):197-213
The superior cervical ganglion (SCG) is a well-characterized model of neural development, in which several regulatory signals have been identified. Vasoactive intestinal peptide (VIP) has been found to regulate diverse ontogenetic processes in sympathetics, though functional requirements for high peptide concentrations suggest that other ligands are involved. We now describe expression and functions of pituitary adenylate cyclase-activating polypeptide (PACAP) during SCG ontogeny, suggesting that the peptide plays critical roles in neurogenesis. PACAP and PACAP receptor (PAC(1)) mRNA's were detected at embryonic days 14.5 (E14.5) through E17.5 in vivo and virtually all precursors exhibited ligand and receptor, indicating that the system is expressed as neuroblasts proliferate. Exposure of cultured precursors to PACAP peptides, containing 27 or 38 residues, increased mitogenic activity 4-fold. Significantly, PACAP was 1000-fold more potent than VIP and a highly potent and selective antagonist entirely blocked effects of micromolar VIP, consistent with both peptides acting via PAC(1) receptors. Moreover, PACAP potently enhanced precursor survival more than 2-fold, suggesting that previously defined VIP effects were mediated via PAC(1) receptors and that PACAP is the more significant developmental signal. In addition to neurogenesis, PACAP promoted neuronal differentiation, increasing neurite outgrowth 4-fold and enhancing expression of neurotrophin receptors trkC and trkA. Since PACAP potently activated cAMP and PI pathways and increased intracellular Ca(2+), the peptide may interact with other developmental signals. PACAP stimulation of precursor mitosis, survival, and trk receptor expression suggests that the signaling system plays a critical autocrine role during sympathetic neurogenesis. 相似文献
14.
Moffatt P Thomas G Sellin K Bessette MC Lafrenière F Akhouayri O St-Arnaud R Lanctôt C 《The Journal of biological chemistry》2007,282(50):36454-36462
Osteocrin (Ostn) is a recently discovered secreted protein produced by cells of the osteoblast lineage that shows a well conserved homology with members of the natriuretic peptide (NP) family. We hypothesized that Ostn could interact with the NP receptors, thereby modulating NP actions on the skeleton. Ostn binds specifically and saturably to the NP peptide receptor-C (NPR-C) receptor with a Kd of approximately 5 nM with no binding to the GC-A or GC-B receptors. Deletion of several of the residues deemed important for NP binding to NPR-C led to abolition of Ostn binding, confirming the presence of a "natriuretic motif." Functionally, Ostn was able to augment C-type natriuretic peptide-stimulated cGMP production in both pre-chondrocytic (ATDC5) and osteoblastic (UMR106) cells, suggesting increased NP levels due to attenuation of NPR-C associated NP clearance. Ostn-transgenic mice displayed elongated bones and a marked kyphosis associated with elevated bone cGMP levels, suggesting that elevated natriuretic peptide activity contributed to the increased bone length possibly through an increase in growth plate chondrocyte proliferation. Thus, we have demonstrated that Ostn is a naturally occurring ligand of the NPR-C clearance receptor and may act to locally modulate the actions of the natriuretic system in bone by blocking the clearance action of NPR-C, thus locally elevating levels of C-type natriuretic peptide. 相似文献
15.
Fubito Nakatsu Mirko Messa Ramiro Nández Heather Czapla Yixiao Zou Stephen M. Strittmatter Pietro De Camilli 《The Journal of cell biology》2015,209(1):85-95
The recruitment of inositol phosphatases to endocytic membranes mediates dephosphorylation of PI(4,5)P2, a phosphoinositide concentrated in the plasma membrane, and prevents its accumulation on endosomes. The importance of the conversion of PI(4,5)P2 to PtdIns during endocytosis is demonstrated by the presence of both a 5-phosphatase and a 4-phosphatase (Sac domain) module in the synaptojanins, endocytic PI(4,5)P2 phosphatases conserved from yeast to humans and the only PI(4,5)P2 phosphatases in yeast. OCRL, another 5-phosphatase that couples endocytosis to PI(4,5)P2 dephosphorylation, lacks a Sac domain. Here we show that Sac2/INPP5F is a PI4P phosphatase that colocalizes with OCRL on endocytic membranes, including vesicles formed by clathrin-mediated endocytosis, macropinosomes, and Rab5 endosomes. An OCRL–Sac2/INPP5F interaction could be demonstrated by coimmunoprecipitation and was potentiated by Rab5, whose activity is required to recruit Sac2/INPP5F to endosomes. Sac2/INPP5F and OCRL may cooperate in the sequential dephosphorylation of PI(4,5)P2 at the 5 and 4 position of inositol in a partnership that mimics that of the two phosphatase modules of synaptojanin. 相似文献
16.
alpha2-Chimaerin is an essential EphA4 effector in the assembly of neuronal locomotor circuits 总被引:1,自引:0,他引:1
The assembly of neuronal networks during development requires tightly controlled cell-cell interactions. Multiple cell surface receptors that control axon guidance and synapse maturation have been identified. However, the signaling mechanisms downstream of these receptors have remained unclear. Receptor signals might be transmitted through dedicated signaling lines defined by specific effector proteins. Alternatively, a single cell surface receptor might couple to multiple effectors with overlapping functions. We identified the neuronal RacGAP alpha2-chimaerin as an effector for the receptor tyrosine kinase EphA4. alpha2-Chimaerin interacts with activated EphA4 and is required for ephrin-induced growth cone collapse in cortical neurons. alpha2-Chimaerin mutant mice exhibit a rabbit-like hopping gait with synchronous hindlimb movements that phenocopies mice lacking EphA4 kinase activity. Anatomical and functional analyses of corticospinal and spinal interneuron projections reveal that loss of alpha2-chimaerin results in impairment of EphA4 signaling in vivo. These findings identify alpha2-chimaerin as an indispensable effector for EphA4 in cortical and spinal motor circuits. 相似文献
17.
Purification of axonin-1, a protein that is secreted from axons during neurogenesis. 总被引:9,自引:2,他引:9
下载免费PDF全文

Using selective metabolic labelling in a compartmental cell culture system two proteins, denoted axonin-1 and axonin-2, were found to be secreted by axons of dorsal root ganglia neurons from chicken embryos. Based on its characteristic coordinates and spot morphology in two-dimensional gel electrophoresis, axonin-1 was detected in the cerebrospinal fluid and the vitreous fluid, axonin-1 was purified 476-fold to homogeneity by a four-step chromatographic procedure. The identity of the purified protein as axonin-1 was confirmed by immunological methods. Axonin-1 is a glycoprotein that subdivides into at least 16 immunologically similar isoelectric variants; their molecular weight range extends from 132 to 140 kd and their pI range from 5.3 to 6.2. In the vitreous fluid of the embryo, axonin-1 could first be detected on the embryonic day 5 and highest concentrations were measured during the second half of embryonic life; in the vitreous fluid of the adult chicken, concentrations were approximately 20 times lower. The early onset of secretion and the time course of expression suggest a role for axonin-1 in the development of the nervous system. 相似文献
18.
19.
Multiple functions of a Drosophila homeotic gene, zeste-white 3, during segmentation and neurogenesis 总被引:9,自引:0,他引:9
Lack of both maternal and zygotic gene activity at the zeste-white 3 (zw3) locus causes severe developmental transformations. Embryos derived from germ cells that lack zw3+ gene activity die during embryogenesis and have a phenotype that is similar to that of embryos mutant for the segment polarity gene naked (nkd). In both nkd and germ line clone-derived zw3 embryos the pattern elements derived from the anterior-most part of each segment, the denticle belts, are deleted. Similar abnormal patterns of the zygotically expressed genes engrailed and Ultrabithorax are detected in both mutants, suggesting that the two genes are involved in the same developmental process. Additionally, the induction of clones of zw3 mutant cells in imaginal discs causes homeotic transformations of noninnervated hair cells into innervated sensory bristles. The multiple roles of zw3 during development and its possible interactions with the zygotic gene nkd are discussed. 相似文献
20.
Akiko Ogawa Chisae Nagiri Wataru Shihoya Asuka Inoue Kouki Kawakami Suzune Hiratsuka Junken Aoki Yasuhiro Ito Takeo Suzuki Tsutomu Suzuki Toshihiro Inoue Osamu Nureki Hidenobu Tanihara Kazuhito Tomizawa Fan-Yan Wei 《Molecular cell》2021,81(4):659-674.e7
- Download : Download high-res image (217KB)
- Download : Download full-size image