首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotic cells distribute materials among intracellular organelles and secrete into the extracellular space through cargo-loaded vesicles. A concluding step during vesicular transport is the fusion of a transport vesicle with a target membrane. SNARE proteins are essential for all vesicular fusion steps, thus they possibly comprise a conserved membrane fusion machinery. According to the "zipper" model, they assemble into stable membrane-bridging complexes that gradually bring membranes in juxtaposition. Hence, complex formation may provide the necessary energy for overcoming the repulsive forces between two membranes. During the last years, detailed structural and functional studies have extended the evidence that SNAREs are mostly in accord with the zipper model. Nevertheless, it remains unclear whether SNARE assembly between membranes directly leads to the merger of lipid bilayers.  相似文献   

2.
Holyoak T  Sullivan SM  Nowak T 《Biochemistry》2006,45(27):8254-8263
Phosphoenolpyruvate carboxykinase catalyzes the reversible decarboxylation of oxaloacetic acid with the concomitant transfer of the gamma-phosphate of GTP to form PEP and GDP as the first committed step of gluconeogenesis and glyceroneogenesis. The three structures of the mitochondrial isoform of PEPCK reported are complexed with Mn2+, Mn2+-PEP, or Mn2+-malonate-Mn2+ GDP and provide the first observations of the structure of the mitochondrial isoform and insight into the mechanism of catalysis mediated by this enzyme. The structures show the involvement of the hyper-reactive cysteine (C307) in the coordination of the active site Mn2+. Upon formation of the PEPCK-Mn2+-PEP or PEPCK-Mn2+-malonate-Mn2+ GDP complexes, C307 coordination is lost as the P-loop in which it resides adopts a different conformation. The structures suggest that stabilization of the cysteine-coordinated metal geometry holds the enzyme as a catalytically incompetent metal complex and may represent a previously unappreciated mechanism of regulation. A third conformation of the mobile P-loop in the PEPCK-Mn2+-malonate-Mn2+ GDP complex demonstrates the participation of a previously unrecognized, conserved serine residue (S305) in mediating phosphoryl transfer. The ordering of the mobile active site lid in the PEPCK-Mn2+-malonate-Mn2+ GDP complex yields the first observation of this structural feature and provides additional insight into the mechanism of phosphoryl transfer.  相似文献   

3.
ATIC encompasses both AICAR transformylase and IMP cyclohydrolase activities that are responsible for the catalysis of the penultimate and final steps of the purine de novo synthesis pathway. The formyl transfer reaction catalyzed by the AICAR Tfase domain is substantially more demanding than that catalyzed by the other folate-dependent enzyme of the purine biosynthesis pathway, GAR transformylase. Identification of the AICAR Tfase active site and key catalytic residues is essential to elucidate how the non-nucleophilic AICAR amino group is activated for formyl transfer. Hence, the crystal structure of dimeric avian ATIC was determined as a complex with the AICAR Tfase substrate AICAR, as well as with an IMP cyclohydrolase inhibitor, XMP, to 1.93 A resolution. AICAR is bound at the dimer interface of the transformylase domains and forms an extensive hydrogen bonding network with a multitude of active site residues. The crystal structure suggests that the conformation of the 4-carboxamide of AICAR is poised to increase the nucleophilicity of the C5 amine, while proton abstraction occurs via His(268) concomitant with formyl transfer. Lys(267) is likely to be involved in the stabilization of the anionic formyl transfer transition state and in subsequent protonation of the THF leaving group.  相似文献   

4.
The anaphase-promoting complex or cyclosome (APC/C) controls sister chromatid segregation and the exit from mitosis by catalysing the ubiquitylation of cyclins and other cell cycle regulatory proteins. This unusually large E3 RING-cullin ubiquitin ligase is assembled from 13 different proteins. Selection of APC/C targets is controlled through recognition of short destruction motifs, predominantly the D box and KEN box. APC/C-mediated coordination of cell cycle progression is achieved through the temporal regulation of APC/C activity and substrate specificity, exerted through a combination of co-activator subunits, reversible phosphorylation and inhibitory proteins and complexes. Recent structural and biochemical studies of the APC/C are beginning to reveal an understanding of the roles of individual APC/C subunits and co-activators and how they mutually interact to mediate APC/C functions. This review focuses on the findings showing how information on the structural organization of the APC/C provides insights into the role of co-activators and core APC/C subunits in mediating substrate recognition. Mechanisms of regulating and modulating substrate recognition are discussed in the context of controlling the binding of the co-activator to the APC/C, and the accessibility and conformation of the co-activator when bound to the APC/C.  相似文献   

5.
Protein O-fucosylation is an essential post-translational modification, involved in the folding of target proteins and in the role of these target proteins during embryonic development and adult tissue homeostasis, among other things. Two different enzymes are responsible for this modification, Protein O-fucosyltransferase 1 and 2 (POFUT1 and POFUT2, respectively). Both proteins have been characterised biologically and enzymatically but nothing is known at the molecular or structural level. Here we describe the first crystal structure of a catalytically functional POFUT1 in an apo-form and in complex with GDP-fucose and GDP. The enzyme belongs to the GT-B family and is not dependent on manganese for activity. GDP-fucose/GDP is localised in a conserved cavity connected to a large solvent exposed pocket, which we show is the binding site of epidermal growth factor (EGF) repeats in the extracellular domain of the Notch Receptor. Through both mutational and kinetic studies we have identified which residues are involved in binding and catalysis and have determined that the Arg240 residue is a key catalytic residue. We also propose a novel S(N)1-like catalytic mechanism with formation of an intimate ion pair, in which the glycosidic bond is cleaved before the nucleophilic attack; and theoretical calculations at a DFT (B3LYP/6-31+G(d,p) support this mechanism. Thus, the crystal structure together with our mutagenesis studies explain the molecular mechanism of POFUT1 and provide a new starting point for the design of functional inhibitors to this critical enzyme in the future.  相似文献   

6.
The human copper transporter 1 (hCtr1) mediates cellular uptake of copper and Pt‐based chemotherapeutic anticancer drugs. In this paper, we determined the three‐dimensional structure and oligomerization of the transmembrane domains (TMDs) of hCtr1 in 40% HFIP aqueous solution by using solution‐state NMR spectroscopy. We firstly revealed that TMD1 forms an α‐helical structure from Gly67 to Glu84 and is dimerized by close packing of its C‐terminal helix; TMD2 forms an α‐helical structure from Leu134 to Thr155 and is self‐associated as a trimer by the hydrophobic contact of TMD2 monomers; TMD3 adopts a discontinuous helix structure, known as ‘α‐helix‐coiled segment‐α‐helix’, and is dimerized by the interaction between the N‐terminal helices. The motif GxxxG in TMD3 is not fully involved in the helix, but partially unstructured as a linker between helices. The flexible linker of TMD3 may serve as a gating adapter to mediate pore on and off switch. The differences in the structure and aggregation of the TMD peptides may be related to their different roles in the channel formation and transport function. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Post-translational modification of protein serines/threonines with N-acetylglucosamine (O-GlcNAc) is dynamic, inducible and abundant, regulating many cellular processes by interfering with protein phosphorylation. O-GlcNAcylation is regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase, both encoded by single, essential, genes in metazoan genomes. It is not understood how OGT recognises its sugar nucleotide donor and performs O-GlcNAc transfer onto proteins/peptides, and how the enzyme recognises specific cellular protein substrates. Here, we show, by X-ray crystallography and mutagenesis, that OGT adopts the (metal-independent) GT-B fold and binds a UDP-GlcNAc analogue at the bottom of a highly conserved putative peptide-binding groove, covered by a mobile loop. Strikingly, the tetratricopeptide repeats (TPRs) tightly interact with the active site to form a continuous 120 Å putative interaction surface, whereas the previously predicted phosphatidylinositide-binding site locates to the opposite end of the catalytic domain. On the basis of the structure, we identify truncation/point mutants of the TPRs that have differential effects on activity towards proteins/peptides, giving first insights into how OGT may recognise its substrates.  相似文献   

8.
Structural insights into the mechanism of intramolecular proteolysis.   总被引:5,自引:0,他引:5  
Q Xu  D Buckley  C Guan  H C Guo 《Cell》1999,98(5):651-661
A variety of proteins, including glycosylasparaginase, have recently been found to activate functions by self-catalyzed peptide bond rearrangements from single-chain precursors. Here we present the 1.9 A crystal structures of glycosylasparaginase precursors that are able to autoproteolyze via an N --> O acyl shift. Several conserved residues are aligned around the scissile peptide bond that is in a highly strained trans peptide bond configuration. The structure illustrates how a nucleophilic side chain may attack the scissile peptide bond at the immediate upstream backbone carbonyl and provides an understanding of the structural basis for peptide bond cleavage via an N --> O or N --> S acyl shift that is used by various groups of intramolecular autoprocessing proteins.  相似文献   

9.
10.
PI-SceI is a member of a class of proteins (inteins) that excise themselves from a precursor protein and in the process ligate the flanking protein sequences (exteins). We report here the 2.1-A resolution crystal structure of a PI-SceI miniprecursor (VMA29) containing 10 N-terminal extein residues and 4 C-terminal extein residues. Mutations at the N- and C-terminal splicing junctions, blocking in vivo protein splicing, allowed the miniprecursor to be purified and crystallized. The structure reveals both the N- and C-terminal scissile peptide bonds to be in distorted trans conformations (tau approximately 100 degrees ). Modeling of the wild-type PI-SceI based on the VMA29 structure indicates a large conformational change (movement of >9 A) must occur to allow transesterification to be completed. A zinc atom was discovered at the C-terminal splicing junction. Residues Cys(455), His(453), and Glu(80) along with a water molecule (Wat(53)) chelate the zinc atom. The crystal structure of VMA29 has captured the intein in its pre-spliced state.  相似文献   

11.
The fatty alk(a/e)ne biosynthesis pathway found in cyanobacteria gained tremendous attention in recent years as a promising alternative approach for biofuel production. Cyanobacterial aldehyde-deformylating oxygenase (cADO), which catalyzes the conversion of Cn fatty aldehyde to its corresponding Cn-1 alk(a/e)ne, is a key enzyme in that pathway. Due to its low activity, alk(a/e)ne production by cADO is an inefficient process. Previous biochemical and structural investigations of cADO have provided some information on its catalytic reaction. However, the details of its catalytic processes remain unclear. Here we report five crystal structures of cADO from the Synechococcus elongates strain PCC7942 in both its iron-free and iron-bound forms, representing different states during its catalytic process. Structural comparisons and functional enzyme assays indicate that Glu144, one of the iron-coordinating residues, plays a vital role in the catalytic reaction of cADO. Moreover, the helix where Glu144 resides exhibits two distinct conformations that correlates with the different binding states of the di-iron center in cADO structures. Therefore, our results provide a structural explanation for the highly labile feature of cADO di-iron center, which we proposed to be related to its low enzymatic activity. On the basis of our structural and biochemical data, a possible catalytic process of cADO was proposed, which could aid the design of cADO with improved activity.  相似文献   

12.
Structural insights into the catalytic mechanism of cyclophilin A   总被引:7,自引:0,他引:7  
Cyclophilins constitute a ubiquitous protein family whose functions include protein folding, transport and signaling. They possess both sequence-specific binding and proline cis-trans isomerase activities, as exemplified by the interaction between cyclophilin A (CypA) and the HIV-1 CA protein. Here, we report crystal structures of CypA in complex with HIV-1 CA protein variants that bind preferentially with the substrate proline residue in either the cis or the trans conformation. Cis- and trans-Pro substrates are accommodated within the enzyme active site by rearrangement of their N-terminal residues and with minimal distortions in the path of the main chain. CypA Arg55 guanidinium group probably facilitates catalysis by anchoring the substrate proline oxygen and stabilizing sp3 hybridization of the proline nitrogen in the transition state.  相似文献   

13.
Structure and mechanism of ABC transporter proteins   总被引:6,自引:1,他引:6  
ATP-binding cassette (ABC) transporters are ubiquitous membrane proteins that couple the transport of diverse substrates across cellular membranes to the hydrolysis of ATP. The crystal structures of four ABC transporters have recently been determined. They reveal similar arrangements of the conserved ATP-hydrolyzing nucleotide-binding domains, but unrelated architectures of the transmembrane domains, with the notable exception of a common 'coupling helix' that is essential for transmitting conformational changes. The structures suggest a mechanism that rationalizes ATP-driven transport: While binding of ATP appears to trigger an outward-facing conformation, dissociation of the hydrolysis products may promote an inward-facing conformation. This basic scheme can, in principle, explain nutrient import by ABC importers and drug extrusion by ABC exporters.  相似文献   

14.
Inositol 1,4,5-trisphosphate receptors (IP(3)R) are intracellular Ca(2+) release channels whose opening requires binding of two intracellular messengers IP(3) and Ca(2+). The regulation of IP(3)R function has also been shown to involve a variety of cellular proteins. Recent biochemical and structural analyses have deepened our understanding of how the IP(3)-operated Ca(2+) channel functions. Specifically, the atomic resolution structure of the IP(3)-binding region has provided a sound structural basis for the receptor interaction with the natural ligand. Electron microscopic studies have also shed light on the overall shape of the tetrameric receptor. This review aims to provide comprehensive overview of the current information available on the structure and function relationship of IP(3)R.  相似文献   

15.
Sialidases are a superfamily of sialic-acid-releasing enzymes that are of significant interest due to their implication as virulence factors in the pathogenesis of a number of diseases. However, extensive studies of viral and microbial sialidases have failed to provide a comprehensive picture of their mechanistic properties, in part because the structures of competent enzyme-substrate complexes and reaction intermediates have never been described. Here we report these structures for the Trypanosoma cruzi trans-sialidase (TcTS), showing that catalysis by sialidases occurs via a similar mechanism to that of other retaining glycosidases, but with some intriguing differences that may have evolved in response to the substrate structure.  相似文献   

16.
Perfringolysin O (PFO), a cytolytic toxin secreted by pathogenic Clostridium perfringens, forms large pores in cholesterol-containing membranes. Domain 4 (D4) of the protein interacts first with the membrane and is responsible for cholesterol recognition. By using several independent fluorescence techniques, we have determined the topography of D4 in the membrane-inserted oligomeric form of the toxin. Only the short hydrophobic loops at the tip of the D4 beta-sandwich are exposed to the bilayer interior, whereas the remainder of D4 projects from the membrane surface and is surrounded by water, making little or no contact with adjacent protein monomers in the oligomer. Thus, a limited interaction of D4 with the bilayer core seems to be sufficient to accomplish cholesterol recognition and initial binding of PFO to the membrane. Furthermore, D4 serves as the fulcrum around which extensive structural changes occur during the formation and insertion of the large transmembrane beta-barrel into the bilayer.  相似文献   

17.
The fusion of vesicles with target membranes is controlled by a complex network of protein-protein and protein-lipid interactions. Recently determined structures of the SNARE complex, synaptotagmin III, nSec1, domains of the NSF chaperone and its adaptor (SNAP), and Rab3 and some of its effectors provide the framework for developing molecular models of vesicle fusion and for designing experiments to test these models. Ultimately, knowledge of the structures of higher-order complexes and their dynamic behavior will be required to obtain a full understanding of the vesicle fusion protein machinery.  相似文献   

18.
19.
Molybdenum cofactor biosynthesis is an evolutionarily conserved pathway present in eubacteria, archaea, and eukaryotes, including humans. Genetic deficiencies of enzymes involved in cofactor biosynthesis in humans lead to a severe and usually fatal disease. The molybdenum cofactor contains a tricyclic pyranopterin, termed molybdopterin, that bears the cis-dithiolene group responsible for molybdenum ligation. The dithiolene group of molybdopterin is generated by molybdopterin synthase, which consists of a large (MoaE) and small (MoaD) subunit. The crystal structure of molybdopterin synthase revealed a heterotetrameric enzyme in which the C terminus of each MoaD subunit is deeply inserted into a MoaE subunit to form the active site. In the activated form of the enzyme, the MoaD C terminus is present as a thiocarboxylate. The present study identified the position of the thiocarboxylate sulfur by exploiting the anomalous signal originating from the sulfur atom. The structure of molybdopterin synthase in a novel crystal form revealed a binding pocket for the terminal phosphate of molybdopterin, the product of the enzyme, and suggested a binding site for the pterin moiety present in precursor Z and molybdopterin. Finally, the crystal structure of the MoaE homodimer provides insights into the conformational changes accompanying binding of the MoaD subunit.  相似文献   

20.
Selenophosphate synthetase (SPS) catalyzes the synthesis of selenophosphate, the selenium donor for the biosynthesis of selenocysteine and 2-selenouridine residues in seleno-tRNA. Selenocysteine, known as the 21st amino acid, is then incorporated into proteins during translation to form selenoproteins which serve a variety of cellular processes. SPS activity is dependent on both Mg(2+) and K(+) and uses ATP, selenide, and water to catalyze the formation of AMP, orthophosphate, and selenophosphate. In this reaction, the gamma phosphate of ATP is transferred to the selenide to form selenophosphate, while ADP is hydrolyzed to form orthophosphate and AMP. Most of what is known about the function of SPS has derived from studies investigating Escherichia coli SPS (EcSPS) as a model system. Here we report the crystal structure of the C17S mutant of SPS from E. coli (EcSPS(C17S)) in apo form (without ATP bound). EcSPS(C17S) crystallizes as a homodimer, which was further characterized by analytical ultracentrifugation experiments. The glycine-rich N-terminal region (residues 1 through 47) was found in the open conformation and was mostly ordered in both structures, with a magnesium cofactor bound at the active site of each monomer involving conserved aspartate residues. Mutating these conserved residues (D51, D68, D91, and D227) along with N87, also found at the active site, to alanine completely abolished AMP production in our activity assays, highlighting their essential role for catalysis in EcSPS. Based on the structural and biochemical analysis of EcSPS reported here and using information obtained from similar studies done with SPS orthologs from Aquifex aeolicus and humans, we propose a catalytic mechanism for EcSPS-mediated selenophosphate synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号