首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Diel vertical migration of zooplankton in the Northeast Atlantic   总被引:7,自引:0,他引:7  
Acoustic Doppler current profiler (ADCP) data collected duringAugust–September 1991 reveal the diel migration of zooplanktonin the northeast Atlantic (50–60  相似文献   

2.
The polar night in the Arctic is characterized by up to six months of darkness, low temperatures and limited food availability. Biological data on species composition and abundance during this period are scarce due to the logistical challenges posed when sampling these regions. Here, we characterize the plankton community composition during the polar night using water samplers and zooplankton net samples (50, 64, 200, 1500 μm), supplemented by acoustics (ADCPs, 300 kHz), to address a previously unresolved question–which species of zooplankton perform diel vertical migration during the polar night? The protist community (smallest plankton fraction) was mainly represented by ciliates (Strombidiida). In the larger zooplankton fractions (50, 64, 200 μm) the species composition was represented primarily by copepod nauplii and small copepods (e.g., Microcalanus spp., Pseudocalanus spp. and Oithona similis). In the largest zooplankton fraction (>1500 μm), the euphausiid, Thysanoessa inermis, was the most abundant species followed by the chaetognath Parasagitta elegans. Classical DVM was not observed throughout the darkest parts of the polar night (November–mid-January), although, subtle vertical migration patterns were detected in the acoustic data. With the occurrence of a more distinct day–night cycle (i.e., end of January), acoustical DVM signals were observed, paralleled by a classical DVM pattern in February in the largest fractions of zooplankton net samples. We suggest that Thysanoessa spp. are main responsible for the acoustical migration patterns throughout the polar night, although, chaetognaths and copepods may be co-responsible.  相似文献   

3.
Diel vertical migration (DVM) of zooplankton is considered less prominent at high latitudes where diel changes in irradiance are minimal during periods of midnight sun and polar night, leaving zooplankton without a temporal refuge and thus eliminating a key advantage of DVM. One of the shortcomings of previous DVM studies of zooplankton based on net sampling is that the depth resolution often has been too coarse to detect vertical migrations over short distances. We investigated DVM of zooplankton during August 2010 in drifting sea ice northeast of Svalbard (~81.5°N, ~30.5°E). Classical DVM behaviour (midnight rising, midday sinking) was observed between 20 and 80 m in young copepodite stages (CI–III) of Calanus finmarchicus and Calanus glacialis. The copepods Microcalanus spp., Pseudocalanus spp., Oithona atlantica, Oithona similis and Triconia borealis, alongside Eukrohnia hamata, Limacina helicina, and Fritillaria spp., all displayed signs of DVM. We conclude that zooplankton exhibit DVM in ice-covered waters over rather short distances to optimise food intake in the presence of predators.  相似文献   

4.
A model is developed to investigate the trade-offs between benefitsand costs involved in zooplanktonic diel vertical migration(DVM) strategies. The ‘venturous revenue’ (VR) isused as the criterion for optimal trade-offs. It is a functionof environmental factors and the age of zooplankter. Duringvertical migration, animals are assumed to check instantaneouslythe variations of environmental parameters and thereby selectthe optimal behavioral strategy to maximize the value of VR,i.e. taking up as much food as possible with a certain riskof mortality. The model is run on a diel time scale (24 h) infour possible scenarios during the animal’s life history.The results show that zooplankton can perform normal DVM balancingoptimal food intake against predation risk, with the profileof DVM largely modified by the age of zooplankter.  相似文献   

5.
巢湖微囊藻和浮游甲壳动物昼夜垂直迁移的初步研究   总被引:1,自引:0,他引:1  
邓道贵  谢平  周琼  杨华 《生态科学》2006,25(1):8-12
2002年10月进行了巢湖微囊藻和几种优势浮游甲壳动物的昼夜垂直变化的研究,结果表明:微囊藻具有明显的昼夜垂直变化现象。白天上层水中的微囊藻密度显著高于下层水中,夜晚逐渐下沉使得下层水中的密度相对高于上层水。微囊藻与叶绿素a、水温、溶解氧和pH等均呈显著的正相关(p<0.01)。几种优势浮游甲壳动物的昼夜垂直迁移存在较大的差异。短尾秀体溞和角突网纹溞白天在下层水(1.5m和2.5m)中的密度较高,夜晚则倾向于在上层水(0m和0.5m)中活动。相反,卵形盘肠溞白天在上层水中密度较高,象鼻溞则在11:00和15:00时各水层中的密度显著高于夜晚。汤匙华哲水蚤和广布中剑水蚤白天倾向于在下层水中活动,夜晚则逐渐迁移到上层水中。许水蚤在夜晚和凌晨3:00时各水层中的密度显著高于白天。中华窄腹剑水蚤昼夜垂直变化不明显。微囊藻与短尾秀体溞密度呈显著的负相关,而与象鼻溞和卵形盘肠溞呈显著的正相关(p<0.01)。  相似文献   

6.
《Current biology : CB》2014,24(22):R1074-R1076
  相似文献   

7.
While diel vertical migration in zooplankton has been shownrecently to be a predator avoidance behavior, the mechanismby which predators induce and maintain such behavior has beendebated. We report results of an in situ predator manipulationexperiment during which enclosed populations of the marine planktomccopepod Acaraa hudsonica rapidly changed their vertical distributionand diel migration behavior depending on presence or absenceof the planktivorous fish Casterosteus aculeatus These resultspoint unambiguously to phenotypic behavioral plasticity of individualplanktonic prey, not, as previously hypothesized, population-geneticlevel behavioral changes caused by selective fish predation,as the mechanism underlying changes in diel vertical migrationin this copepod.  相似文献   

8.
Zooplankton perform diel vertical migration (DVM) to avoid predators at the upper water layer, but often stay in the upper water layer throughout the day seeking food in spite of the presence of predators. This difference in migrating behavior has been explained by differences in environmental conditions or genetic differences. We examined theoretically how nutritious conditions of zooplankton individuals relate to determining different migrating behavior. A simple optimization model, maximizing the population growth rate, demonstrates that zooplankton individuals change their migrating behavior depending on the amount of accumulated energy. Such energy accumulation and its investment in reproduction are repeated every reproductive cycle. Therefore, unless the reproductive cycle is synchronized among individuals, different migrating behaviors will be observed within a population even if no genetic differences exist. Our model demonstrates that such coexistence of the two migrating behaviors is possible in natural Daphnia populations, and suggests that internal conditions of zooplankton individuals may be important as a factor for determining migrating behavior of zooplankton. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Demersal zooplankton reside in or near the reef substrata and usually migrate into the water column at night. There is no single pulse of migratory activity. The zooplankton rise at variable rates throughout the night, with a peak activity usually during the second hour after sunset. This temporal pattern is a reflection of the behavior of the dominant (80–90% of night samples) cyclopoid, Oithona colcarva Bowman.Not all zooplankton taxa exhibit the same diel migratory patterns. Harpacticoids, another Oithona sp., copepod nauplii, barnacle nauplii, and appendicularians are most abundant during the day. Isopods show a peak of activity also during the second hour after sunset while polychaetes are most abundant during the first hour. The behavior of the other groups studied (the cyclopoid Corycaeus sp., other cyclopoids, ostracods, amphipods, tanaids, decapods, mysids, and chaetognaths) was less easily defined.The migration of many species in a pulse during the period of least planktivore activity and migration during the day of small species and juvenile members of larger species suggests that visual predators have an important influence on the migratory behavior of reef zooplankton.  相似文献   

10.
Diel vertical migration ofEudiaptomus gracilis during a short summer period   总被引:2,自引:0,他引:2  
Several aspects of a diel vertical migration (DVM) of adultEudiaptomus gracilis in Lake Maarsseveen (The Netherlands) are described. The period of DVM lasted from the end of May until the middle of August. On May 21, 1989, the population was found divided into a deep dwelling part and a part in the upper five meter. Large shoals of juvenile perch were observed in the open water for the first time. On June 7, the whole population was down below 10 m and concentrated in a zone of high chlorphyll-a concentrations. One week later, a regular DVM was performed. The amplitude of this migration gradually decreased towards the end of the migration period. The ascent in the evening and the descent in the morning took place after sunset and before sunrise, respectively. The movements coincided with high relative changes in light intensity. Population size increased rapidly during the period of DVM but decreased again before the end of this period.  相似文献   

11.
12.
13.
Diurnal and diel vertical distribution of limnetic zooplankton species in relation to temperature and dissolved oxygen profiles was examined at a central station in Lake Naivasha. During calm days thermal stratification developed gradually from late morning to reach maximum formation at mid-day. Dissolved oxygen concentrations showed similar vertical profiles to temperature. These stratifications were, however, short lived and were broken up in late afternoons by the wind induced poly-holomictic nature of the lake. During the day most zooplankters aggregate at the top 3–4 metre zone of the water column coincident with maximum photosynthetic activity. The pattern of diel vertical distribution of zooplankton in Lake Naivasha is undefinedly even. The absence of significant diel changes in the distribution of the limnetic zooplankton may be related to the absence of permanent physico-chemical boundaries and lack of predation pressure in the open water.  相似文献   

14.
Light is generally regarded as the most likely cue used by zooplanktonto regulate their vertical movements through the water column.However, the way in which light is used by zooplankton as acue is not well understood. In this paper we present a mathematicalmodel of diel vertical migration which produces vertical distributionsof zooplankton that vary in space and time. The model is usedto predict the patterns of vertical distribution which resultwhen animals are assumed to adopt one of three commonly proposedmechanisms for vertical swimming. First, we assume zooplanktontend to swim towards a preferred intensity of light. We thenassume zooplankton swim in response to either the rate of changein light intensity or the relative rate of change in light intensity.The model predicts that for all three mechanisms movement isfastest at sunset and sunrise and populations are primarilyinfluenced by eddy diffusion at night in the absence of a lightstimulus. Daytime patterns of vertical distribution differ betweenthe three mechanisms and the reasons for the predicted differencesare discussed. Swimming responses to properties of the lightfield are shown to be adequate for describing did vertical migrationwhere animals congregate in near surface waters during the eveningand reside at deeper depths during the day. However, the modelis unable to explain how some populations halt their ascentbefore reaching surface waters or how populations re-congregatein surface waters a few hours before sunrise, a phenomenon whichis sometimes observed in the field. The model results indicatethat other exogenous or endogenous factors besides light mayplay important roles in regulating vertical movement.  相似文献   

15.
16.
17.
Modeling patterns of zooplankton diel vertical migration   总被引:4,自引:0,他引:4  
Realized predation pressure, defined as the product of predationpressure and light intensity, expresses the mortality pressuredue to visual predation. The part of realized predation pressurewhich is sensed by organisms is here considered to be relatedto food level and temperature. This partly realized predationpressure is referred to as sensed predation pressure. We proposea possible control mechanism of diel vertical migration (DVM):organisms move vertically following the minimum change in sensedpredation pressure. To investigate this assumption, we presenta math ematical model of DVM. We assume that when predatorsare present, the food level is above a minimal level, and temperatureis higher than the tolerance of organisms to growth, prey organismsundertake DVM following the minimum change in sensed predationpressure. We examine how patterns of migration may be affectedby changes in water clarity, predation pressure, food leveland temperature. This work supports the assumption that minimizingchanges in sensed predation pressure can explain the wide variationin the vertical profile of zooplankton.  相似文献   

18.
1. In some shallow lakes, Daphnia and other important pelagic consumers of phytoplankton undergo diel horizontal migration (DHM) into macrophytes or other structures in the littoral zone. Some authors have suggested that DHM reduces predation by fishes on Daphnia and other cladocerans, resulting in a lower phytoplankton biomass in shallow lakes than would occur without DHM. The costs and benefits of DHM, and its potential implications in biomanipulation, are relatively unknown, however. 2. In this review, we compare studies on diel vertical migration (DVM) to assess factors potentially influencing DHM (e.g. predators, food, light, temperature, dissolved oxygen, pH). We first provide examples of DHM and examine avoidance by Daphnia of both planktivorous (PL) fishes and predacious invertebrates. 3. We argue that DHM should be favoured when the abundance of macrophytes is high (which reduces planktivory) and the abundance of piscivores in the littoral is sufficient to reduce planktivores. Food in the littoral zone may favour DHM by daphnids, but the quality of these resources relative to pelagic phytoplankton is largely unknown. 4. We suggest that abiotic conditions, such as light, temperature, dissolved oxygen and pH, are less likely to influence DHM than DVM because weaker gradients of these conditions occur horizontally in shallow lakes relative to vertical gradients in deep lakes. 5. Because our understanding of DHM is rudimentary, we highlight potentially important research areas: studying a variety of systems, comparing temporal and spatial scales of DHM in relation to DVM, quantifying positive and negative influences of macrophytes, focusing on the role of invertebrate predation, testing the performance of cladocerans on littoral versus pelagic foods (quantity and quality), investigating the potential influence of temperature, and constructing comprehensive models that can predict the likelihood of DHM. Our ability to biomanipulate shallow lakes to create or maintain the desired clear water state will increase as we learn more about the factors initiating and influencing DHM.  相似文献   

19.
Research since 2009 has shown that despite almost total darkness during the Arctic polar night, there is much more biological activity than previously assumed, both at the sea surface, water column and sea floor. Here, we describe in situ monitoring of the bioluminescent fraction of the zooplankton community (dinoflagellates, copepods, krill and ctenophores) as a function of time and space. In order to examine the relative contribution of each selected taxon and any diurnal patterns in the relative signals, a time series platform capable of detecting in situ bioluminescent flashes was established in Kongsfjord, Svalbard, during the polar night in January 2013. Combined with laboratory-controlled measurements of animals collected next to the time series platform, we present both taxon-specific and community characteristics of the bioluminescence signal from a location at 79°N and from the middle of the polar night. Based on this 51-h time series, we conclude that the bioluminescent fraction of the zooplankton does not maintain a diurnal signal. Rather, the frequency of bioluminescence flashes from the entire bioluminescent community remained steady throughout the sampling period. Furthermore, we conclude that bioluminescence flash kinetic characteristics have a strong potential for in situ taxa recognition of zooplankton.  相似文献   

20.
Vertical migration is a geographically and taxonomically widespread behaviour among zooplankton that spans across diel and seasonal timescales. The shorter-term diel vertical migration (DVM) has a periodicity of up to 1 day and was first described by the French naturalist Georges Cuvier in 1817. In 1888, the German marine biologist Carl Chun described the longer-term seasonal vertical migration (SVM), which has a periodicity of ca. 1 year. The proximate control and adaptive significance of DVM have been extensively studied and are well understood. DVM is generally a behaviour controlled by ambient irradiance, which allows herbivorous zooplankton to feed in food-rich shallower waters during the night when light-dependent (visual) predation risk is minimal and take refuge in deeper, darker waters during daytime. However, DVMs of herbivorous zooplankton are followed by their predators, producing complex predator–prey patterns that may be traced across multiple trophic levels. In contrast to DVM, SVM research is relatively young and its causes and consequences are less well understood. During periods of seasonal environmental deterioration, SVM allows zooplankton to evacuate shallower waters seasonally and take refuge in deeper waters often in a state of dormancy. Both DVM and SVM play a significant role in the vertical transport of organic carbon to deeper waters (biological carbon sequestration), and hence in the buffering of global climate change. Although many animal migrations are expected to change under future climate scenarios, little is known about the potential implications of global climate change on zooplankton vertical migrations and its impact on the biological carbon sequestration process. Further, the combined influence of DVM and SVM in determining zooplankton fitness and maintenance of their horizontal (geographic) distributions is not well understood. The contrasting spatial (deep versus shallow) and temporal (diel versus seasonal) scales over which these two migrations occur lead to challenges in studying them at higher spatial, temporal and biological resolution and coverage. Extending the largely population-based vertical migration knowledge base to individual-based studies will be an important way forward. While tracking individual zooplankton in their natural habitats remains a major challenge, conducting trophic-scale, high-resolution, year-round studies that utilise emerging field sampling and observation techniques, molecular genetic tools and computational hardware and software will be the best solution to improve our understanding of zooplankton vertical migrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号