首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to test the hypothesis that residues critical for ligand- and temperature-induced clustering of integrin alphaIIbbeta3 are present on its extracellular domain. Sucrose density gradient sedimentation was used to examine the effects of ligand-mimetic peptides and physiological temperature on the oligomeric state of a soluble recombinant ectodomain variant of the alphaIIbbeta3 integrin, alphaIIbDelta962beta3Delta692, and its full-length counterpart. Both the ectodomain construct, isolated from High Five insect cell culture supernatants, and alphaIIbbeta3, isolated from human blood platelets, exhibited similar weight-average sedimentation coefficients at 23 degrees C, in the absence and presence of the ligand-mimetic peptide eptifibatide. These observations indicate that alphaIIbbeta3's ectodomain exhibits a similar extended conformation in both its free and ligand-bound states. Oligomerization was examined by incubation of both alphaIIbDelta962beta3Delta692 and full-length receptors at 37 degrees C, in the presence or absence of ligand-mimetic. Minimal oligomerization was observed with alphaIIbDelta962beta3Delta692. In contrast, full-length alphaIIbbeta3 exhibited substantial temperature-induced increases in its distribution of sedimenting species, indicative of thermal aggregation. These observations suggest that optimum oligomerization requires the participation of the integrin's transmembrane and cytoplasmic regions. In vivo, clustering of ligand-bound integrins may enhance signaling by increasing the local concentration of intracellular integrin-associated proteins.  相似文献   

2.
The platelet integrin alphaIIbbeta3 is representative of a class of heterodimeric receptors that upon activation bind extracellular macromolecular ligands and form signaling clusters. This study examined how occupancy of alphaIIbbeta3's fibrinogen binding site affected the receptor's solution structure and stability. Eptifibatide, an integrin antagonist developed to treat cardiovascular disease, served as a high-affinity, monovalent model ligand with fibrinogen-like selectivity for alphaIIbbeta3. Eptifibatide binding promptly and reversibly perturbed the conformation of the alphaIIbbeta3 complex. Ligand-specific decreases in its diffusion and sedimentation coefficient were observed at near-stoichiometric eptifibatide concentrations, in contrast to the receptor-perturbing effects of RGD ligands that we previously observed only at a 70-fold molar excess. Eptifibatide promoted alphaIIbbeta3 dimerization 10-fold more effectively than less selective RGD ligands, as determined by sedimentation equilibrium. Eptifibatide-bound integrin receptors displayed an ectodomain separation and enhanced assembly of dimers and larger oligomers linked through their stalk regions, as seen by transmission electron microscopy. Ligation with eptifibatide protected alphaIIbbeta3 from SDS-induced subunit dissociation, an effect on electrophoretic mobility not seen with RGD ligands. Despite its distinct cleft, the open conformer resisted guanidine unfolding as effectively as the ligand-free integrin. Thus, we provide the first demonstration that binding a monovalent ligand to alphaIIbbeta3's extracellular fibrinogen-recognition site stabilizes the receptor's open conformation and enhances self-association through its distant transmembrane and/or cytoplasmic domains. By showing how eptifibatide and RGD peptides, ligands with distinct binding sites, each affects alphaIIbbeta3's conformation, our findings provide new mechanistic insights into ligand-linked integrin activation, clustering and signaling.  相似文献   

3.
Integrin alpha(IIb)beta(3) clusters on the platelet surface after binding adhesive proteins in a process that regulates signal transduction. However, the intermolecular forces driving integrin self-association are poorly understood. This work provides new insights into integrin clustering mechanisms by demonstrating how temperature and ligand binding interact to affect the oligomeric state of alpha(IIb)beta(3). The ligand-free receptor, solubilized in thermostable octyl glucoside micelles, exhibited a cooperative transition at approximately 43 degrees C, monitored by changes in intrinsic fluorescence and circular dichroism. Both signals changed in a direction opposite to that for global unfolding, and both were diminished upon binding the fibrinogen gamma-chain ligand-mimetic peptide cHArGD. Free and bound receptors also exhibited differential sensitivity to temperature-enhanced oligomerization, as measured by dynamic light scattering, sedimentation velocity, and sedimentation equilibrium. Van't Hoff analyses of dimerization constants for alpha(IIb)beta(3) complexed with cHArGD, cRGD, or eptifibatide yielded large, favorable entropy changes partly offset by unfavorable enthalpy changes. Transmission electron microscopy showed that ligand binding and 37 degrees C incubation enhanced assembly of integrin dimers and larger oligomers linked by tail-to-tail contacts. Interpretation of these images was aided by threading models for alpha(IIb)beta(3) protomers and dimers based on the ectodomain structure of alpha(v)beta(3). We propose that entropy-favorable nonpolar interactions drive ligand-induced integrin clustering and outside-in signaling.  相似文献   

4.
R R Hantgan  C Paumi  M Rocco  J W Weisel 《Biochemistry》1999,38(44):14461-14474
The purpose of this investigation was to determine what structural changes convert "inert" alphaIIbbeta3 integrins into "activated" high-affinity receptors for adhesive proteins. Light scattering, analytical ultracentrifugation, electron microscopy, and molecular modeling were used to probe the conformational states of the alphaIIbbeta3 integrin. Isolated from human blood platelets in octyl glucoside, the alphaIIbbeta3 complex behaved as an asymmetric 230 kDa macromolecule with a z-average translational diffusion coefficient of 2.9 F and a weight-average sedimentation coefficient of 7.7 S. Dynamic light scattering showed that ligand-mimetic peptides (RGDX, X = F, W, S) caused prompt, concentration-dependent increases in the Stokes radius (R(s)) of the alphaIIbbeta3 complex, whereas control peptides of reversed sequence (XDGR, X = F, W, S) had no significant effect. Sedimentation velocity data coupled with time-derivative analyses showed that RGDX peptides shifted the distribution of alphaIIbbeta3 sedimenting species toward smaller s values. Sedimentation equilibrium measurements indicated that a slower increase in the alphaIIbbeta3 molecular weight distribution took place in the presence of RGDX ligand-mimetics. Electron microscopy showed a split of alphaIIbbeta3's globular domain into two distinct nodules in the presence of RGDX peptides; oligomers joined through their stalk regions were seen frequently. These observations suggest that receptor occupancy by ligand-mimetic RGDX peptides is tightly coupled to relatively large changes in the structure of the alphaIIbbeta3 complex. alphaIIbbeta3 bead models were developed to describe quantitatively the ligand-induced transition from a "closed" to an "open" integrin conformation and the limited oligomerization that follows. This provides a new mechanistic framework for understanding integrin activation and the formation of signaling clusters on the surface of stimulated platelets.  相似文献   

5.
Skelemin is a large cytoskeletal protein critical for cell morphology. Previous studies have suggested that its two-tandem immunoglobulin C2-like repeats (SkIgC4 and SkIgC5) are involved in binding to integrin beta3 cytoplasmic tail (CT), providing a mechanism for skelemin to regulate integrin-mediated signaling and cell spreading. Using NMR spectroscopy, we have studied the molecular details of the skelemin IgC45 interaction with the cytoplasmic face of integrin alphaIIbbeta3. Here, we show that skelemin IgC45 domains form a complex not only with integrin beta3 CT but also, surprisingly, with the integrin alphaIIb CT. Chemical shift mapping experiments demonstrate that both membrane-proximal regions of alphaIIb and beta3 CTs are involved in binding to skelemin. NMR structural determinations, combined with homology modeling, revealed that SkIgC4 and SkIgC5 both exhibited a conserved Ig-fold and both repeats were required for effective binding to and attenuation of alphaIIbbeta3 cytoplasmic complex. These data provide the first molecular insight into how skelemin may interact with integrins and regulate integrin-mediated signaling and cell spreading.  相似文献   

6.
7.
We have used recombinant or synthetic alphaIIb and beta3 integrin cytoplasmic peptides to study their in vitro complexation and ligand binding capacity by surface plasmon resonance. alpha.beta heterodimerization occurred in a 1:1 stoichiometry with a weak KD in the micromolar range. Divalent cations were not required for this association but stabilized the alpha.beta complex by decreasing the dissociation rate. alpha.beta complexation was impaired by the R995A substitution or the KVGFFKR deletion in alphaIIb but not by the beta3 S752P mutation. Recombinant calcium- and integrin-binding protein (CIB), an alphaIIb-specific ligand, bound to the alphaIIb cytoplasmic peptide in a Ca2+- or Mn2+-independent, one-to-one reaction with a KD value of 12 microM. In contrast, in vitro liquid phase binding of CIB to intact alphaIIbbeta3 occurred preferentially with Mn2+-activated alphaIIbbeta3 conformers, as demonstrated by enhanced coimmunoprecipitation of CIB with PAC-1-captured Mn2+-activated alphaIIbbeta3, suggesting that Mn2+ activation of intact alphaIIbbeta3 induces the exposure of a CIB-binding site, spontaneously exposed by the free alphaIIb peptide. Since CIB did not stimulate PAC-1 binding to inactive alphaIIbbeta3 nor prevented activated alphaIIbbeta3 occupancy by PAC-1, we conclude that CIB does not regulate alphaIIbbeta3 inside-out signaling, but rather is involved in an alphaIIbbeta3 post-receptor occupancy event.  相似文献   

8.
Pleckstrin is a 40-kD phosphoprotein containing NH(2)- and COOH-terminal pleckstrin homology (PH) domains separated by a disheveled-egl 10-pleckstrin (DEP) domain. After platelet activation, pleckstrin is rapidly phosphorylated by protein kinase C. We reported previously that expressed phosphorylated pleckstrin induces cytoskeletal reorganization and localizes in microvilli along with glycoproteins, such as integrins. Given the role of integrins in cytoskeletal organization and cell spreading, we investigated whether signaling from pleckstrin cooperated with signaling pathways involving the platelet integrin, alphaIIbbeta3. Pleckstrin induced cell spreading in both transformed (COS-1 & CHO) and nontransformed (REF52) cell lines, and this spreading was regulated by pleckstrin phosphorylation. In REF52 cells, pleckstrin-induced spreading was matrix dependent, as evidenced by spreading of these cells on fibrinogen but not on fibronectin. Coexpression with alphaIIbbeta3 did not enhance pleckstrin-mediated cell spreading in either REF52 or CHO cells. However, coexpression of the inactive variant alphaIIbbeta3 Ser753Pro, or beta3 Ser753Pro alone, completely blocked pleckstrin-induced spreading. This implies that alphaIIbbeta3 Ser753Pro functions as a competitive inhibitor by blocking the effects of an endogenous receptor that is used in the signaling pathway involved in pleckstrin-induced cell spreading. Expression of a chimeric protein composed of the extracellular and transmembrane portion of Tac fused to the cytoplasmic tail of beta3 completely blocked pleckstrin-mediated spreading, whereas chimeras containing the cytoplasmic tail of beta3 Ser753Pro or alphaIIb had no effect. This suggests that the association of an unknown signaling protein with the cytoplasmic tail of an endogenous integrin beta-chain is also required for pleckstrin-induced spreading. Thus, expressed phosphorylated pleckstrin promotes cell spreading that is both matrix and integrin dependent. To our knowledge, this is the first example of a mutated integrin functioning as a dominant negative inhibitor.  相似文献   

9.
Regulation of integrin activation occurs by specific interactions among cytoplasmic proteins and integrin alpha and beta cytoplasmic tails. We report that the catalytic subunit of protein phosphatase 1 (PP1c) constitutively associates with the prototypic integrin alphaIIbbeta3 in platelets and in cell lines overexpressing the integrin. PP1c binds directly to the cytoplasmic domain of integrin alphaIIb subunit containing a conserved PP1c binding motif 989KVGF992. Anchored PP1c is inactive, while thrombin-induced platelet aggregation or fibrinogen-alphaIIbbeta3 engagement caused PP1c dissociation and concomitant activation as revealed by dephosphorylation of PP1c substrate, myosin light chain. Inhibition of ligand binding to activated alphaIIbbeta3 blocks PP1c dissociation and represses PP1c activation. These studies reveal a previously unrecognized role for integrins whereby the alpha subunit cytoplasmic tail localizes the machinery for initiating and temporally maintaining the regulatory signaling activity of a phosphatase.  相似文献   

10.
Integrin cytoplasmic tails regulate integrin activation that is required for high affinity binding with ligands. The interaction of the integrin beta subunit tail with a cytoplasmic protein, talin, largely contributes to integrin activation. Here we report the cooperative interaction of the beta3 membrane-proximal and -distal residues in regulation of talin-mediated alpha IIb beta3 activation. Because a chimeric integrin, alpha IIb beta3/beta1, in which the beta3 tail was replaced with the beta1 tail was constitutively active, we searched for the residues responsible for integrin activation among the residues that differed between the beta3 and beta1 tails. Single amino acid substitutions of Ile-719 and Glu-749 in the beta3 membrane-proximal and -distal regions, respectively, with the corresponding beta1 residues or alanine rendered alphaIIbbeta3 constitutively active. The I719M/E749S double mutant had the same ligand binding activity as alpha IIb beta3/beta1. These beta3 mutations also induced alphaVbeta3 activation. Conversely, substitution of Met-719 or Ser-749 in the beta1 tail with the corresponding beta3 tail residue (M719I or S749E) inhibited alpha IIb beta3/beta1 activation, and the M719I/S749E double mutant inhibited ligand binding to a level comparable with that of the wild-type alpha IIb beta3. Knock down of talin by short hairpin RNA inhibited the I719M- and E749S-induced alpha IIb beta3 activation. These results suggest that the beta3 membrane-proximal and -distal residues cooperatively regulate talin-mediated alpha IIb beta3 activation.  相似文献   

11.
Bidirectional signaling of integrin alphaIIbbeta3 requires the beta3 cytoplasmic domain. To determine the sequence in the beta3 cytoplasmic domain that is critical to integrin signaling, cell lines were established that coexpress the platelet receptor for von Willebrand factor (vWF), glycoprotein Ib-IX, integrin alphaIIb, and mutants of beta3 with truncations at sites COOH terminal to T741, Y747, F754, and Y759. Truncation at Y759 did not affect integrin activation, as indicated by vWF-induced fibrinogen binding, but affected cell spreading and stable adhesion. Thus, the COOH-terminal RGT sequence of beta3 is important for outside-in signaling but not inside-out signaling. In contrast, truncation at F754, Y747, or T741 completely abolished integrin activation. A point mutation replacing Y759 with alanine also abolished integrin activation. Thus, the T755NITY759 sequence of beta3, containing an NXXY motif, is critical to inside-out signaling, whereas the intact COOH terminus is important for outside-in signaling. In addition, we found that the calcium-dependent protease calpain preferentially cleaves at Y759 in a population of beta3 during platelet aggregation and adhesion, suggesting that calpain may selectively regulate integrin outside-in signaling.  相似文献   

12.
The purpose of this study was to test the hypothesis that residues critical for ligand- and temperature-induced clustering of integrin αIIbβ3 are present on its extracellular domain. Sucrose density gradient sedimentation was used to examine the effects of ligand-mimetic peptides and physiological temperature on the oligomeric state of a soluble recombinant ectodomain variant of the αIIbβ3 integrin, αIIbΔ962β3Δ692, and its full-length counterpart. Both the ectodomain construct, isolated from High Five insect cell culture supernatants, and αIIbβ3, isolated from human blood platelets, exhibited similar weight-average sedimentation coefficients at 23 °C, in the absence and presence of the ligand-mimetic peptide eptifibatide. These observations indicate that αIIbβ3's ectodomain exhibits a similar extended conformation in both its free and ligand-bound states. Oligomerization was examined by incubation of both αIIbΔ962β3Δ692 and full-length receptors at 37 °C, in the presence or absence of ligand-mimetic. Minimal oligomerization was observed with αIIbΔ962β3Δ692. In contrast, full-length αIIbβ3 exhibited substantial temperature-induced increases in its distribution of sedimenting species, indicative of thermal aggregation. These observations suggest that optimum oligomerization requires the participation of the integrin's transmembrane and cytoplasmic regions. In vivo, clustering of ligand-bound integrins may enhance signaling by increasing the local concentration of intracellular integrin-associated proteins.  相似文献   

13.
The adhesive and signaling functions of integrins are regulated through their cytoplasmic domains. We identified a novel 111 residue polypeptide, designated beta 3-endonexin, that interacted with the cytoplasmic tail of the beta 3 integrin subunit in a yeast two-hybrid system. This interaction is structurally specific, since it was reduced by 64% by a point mutation in the beta 3 cytoplasmic tail (S752-->P) that disrupts integrin signaling. Moreover, this interaction is integrin subunit specific since it was not observed with the cytoplasmic tails of the alpha IIb, beta 1, or beta 2 subunits. beta 3- Endonexin fusion proteins bound selectively to detergent-solubilized beta 3 from platelets and human umbilical vein endothelial cells, and beta 3-endonexin mRNA and protein were detected in platelets and other tissues. A related mRNA encoded a larger polypeptide that failed to bind to beta integrin tails. The apparent specificity of beta 3- endonexin for the beta 3 integrin subunit suggests potential mechanisms for selective modulation of integrin functions.  相似文献   

14.
Activation of blood platelets by physiological stimuli (e.g. thrombin, ADP) at sites of vascular injury induces inside-out signaling, resulting in a conformational change of the prototype integrin alphaIIbbeta3 from an inactive to an active state competent to bind soluble fibrinogen. Furthermore, ligand occupancy of alphaIIbbeta3 initiates outside-in signaling and additional conformational changes of the receptor, leading to the exposure of extracellular neoepitopes termed ligand-induced binding sites (LIBS), which are recognized by anti-LIBS monoclonal antibodies. To date, the mechanism of bidirectional transmembrane signaling of alphaIIbbeta3 has not been established. In this study, using our newly developed anti-LIBScyt1 monoclonal antibody, we showed that extracellular ligand binding to alphaIIbbeta3 on blood platelets induces a transmembrane conformational change in alphaIIbbeta3, thereby exposing the LIBScyt1 epitope in the alphaIIb cytoplasmic sequence between Lys994 and Asp1003. In addition, a point mutation at this site (P998A/P999A) renders alphaIIbbeta3 constitutively active to bind extracellular ligands, resulting in fibrinogen-dependent cell-cell aggregation. Taken collectively, these results demonstrated that the extracellular ligand-binding site and a cytoplasmic LIBS epitope in integrin alphaIIbbeta3 are conformationally and functionally coupled. Such bidirectional modulation of alphaIIbbeta3 conformation across the cell membrane may play a key role in inside-out and outside-in signaling via this integrin.  相似文献   

15.
alpha(4)beta(1) integrin-mediated cell adhesion results in increased cell migration, reduced cell spreading, and focal adhesion formation relative to other beta(1) integrins. Paxillin, a signaling adapter protein, binds tightly to the alpha(4) cytoplasmic domain and is implicated in alpha(4) integrin signaling. We now report the mapping of a paxillin-binding site in the alpha(4) cytoplasmic domain and an assessment of its role in the alpha(4) tail-specific integrin functions. By using truncation mutants and a peptide competition assay, we found that a region of 9 amino acid residues (Glu(983)-Tyr(991)) within the alpha(4) cytoplasmic domain contains a minimal sequence sufficient for paxillin binding. Alanine scanning of this region implicated Tyr(991) and Glu(983) as critical residues. The role of these residues was confirmed by introducing these Ala substitutions into the full-length alpha(4) tail sequence. Y991A or E983A substitution disrupted the interaction of alpha(4) integrins with paxillin. These same two point mutations reversed the effects of the alpha(4) tail on cell spreading. The key features of the identified paxillin-binding sequence are present in all alpha(4) integrins sequenced to date, including that from Xenopus laevis. The maintenance of this sequence motif suggests that paxillin binding is an evolutionarily conserved function of alpha(4) integrins.  相似文献   

16.
Several molecular forms of human erythrocyte membrane acetylcholinesterase have been studied after crosslinking with bifunctional diimidates. The crosslinked products were analysed by centrifugation on linear sucrose density gradients containing Triton X-100. Molecular weights of covalently linked oligomers were estimated by sodium dodecylsulfate gel electrophoresis. It was shown that acetylcholinesterase crosslinked in absence of Triton X-100 consists of molecular forms built up by dimeric protomers. These dimers were identical with the enzymatically active species sedimenting with 6.5S in linear sucrose density gradients.  相似文献   

17.
In response to agonist stimulation, the alphaIIbbeta3 integrin on platelets is converted to an active conformation that binds fibrinogen and mediates platelet aggregation. This process contributes to both normal hemostasis and thrombosis. Activation of alphaIIbbeta3 is believed to occur in part via engagement of the beta3 cytoplasmic tail with talin; however, the role of the alphaIIb tail and its potential binding partners in regulating alphaIIbbeta3 activation is less clear. We report that calcium and integrin binding protein 1 (CIB1), which interacts directly with the alphaIIb tail, is an endogenous inhibitor of alphaIIbbeta3 activation; overexpression of CIB1 in megakaryocytes blocks agonist-induced alphaIIbbeta3 activation, whereas reduction of endogenous CIB1 via RNA interference enhances activation. CIB1 appears to inhibit integrin activation by competing with talin for binding to alphaIIbbeta3, thus providing a model for tightly controlled regulation of alphaIIbbeta3 activation.  相似文献   

18.
BACKGROUND: Integrin receptors, composed of transmembrane alpha and beta subunits, are essential for the development and functioning of multicellular animals. Agonist stimulation leads cells to regulate integrin affinity ("activation"), thus controlling cell adhesion and migration, controlling extracellular-matrix assembly, and contributing to angiogenesis, tumor cell metastasis, inflammation, the immune response, and hemostasis. A final step in integrin activation is the binding of talin, a cytoskeletal protein, to integrin beta cytoplasmic domains. Many different signaling molecules that regulate integrin affinity have been described, but a pathway that connects agonist stimulation to talin binding and activation has not been mapped. RESULTS: We used forward, reverse, and synthetic genetics to engineer and order an integrin activation pathway in cells expressing a prototype activatable integrin, platelet alphaIIbbeta3. Phorbol myristate acetate (PMA) activated alphaIIbbeta3 only after the increased expression of both recombinant protein kinase Calpha (PKCalpha) and talin to levels approximating those in platelets. Inhibition of Rap1 GTPase reduced alphaIIbbeta3 activation, whereas activated Rap1A(G12V) bypassed the requirement for PKC, establishing that Rap1 is downstream of PKC. Talin binding to integrins mediates Rap1-induced activation because Rap1A(G12V) failed to activate alphaIIbbeta3 in cells expressing integrin binding-defective talin (W359A). Rap1 activated integrins by forming an integrin-associated complex containing talin in combination with the Rap effector, RIAM. Furthermore, siRNA-mediated knockdown of RIAM blocked integrin activation. CONCLUSIONS: We have, for the first time, ordered a pathway from agonist stimulation to integrin activation and established the Rap1-induced formation of an "integrin activation complex," containing RIAM and talin, that binds to and activates the integrin.  相似文献   

19.
Half-minilamins, representing amino- and carboxy-terminal fragments of human lamins A, B1 and B2 with a truncated central rod domain, were investigated for their ability to form distinct head-to-tail-type dimer complexes. This mode of interaction represents an essential step in the longitudinal assembly reaction exhibited by full-length lamin dimers. As determined by analytical ultracentrifugation, the amino-terminal fragments were soluble under low ionic strength conditions sedimenting with distinct profiles and s-values (1.6-1.8 S) indicating the formation of coiled-coil dimers. The smaller carboxy-terminal fragments were, except for lamin B2, largely insoluble under these conditions. However, after equimolar amounts of homotypic amino- and carboxy-terminal lamin fragments had been mixed in 4 M urea, upon subsequent renaturation the carboxy-terminal fragments were completely rescued from precipitation and distinct soluble complexes with higher s-values (2.3-2.7 S) were obtained. From this behavior, we conclude that the amino- and carboxy-terminal coiled-coil dimers interact to form distinct oligomers (i.e. tetramers). Furthermore, a corresponding interaction occurred also between heterotypic pairs of A- and B-type lamin fragments. Hence, A-type lamin dimers may interact with B-type lamin dimers head-to-tail to yield linear polymers. These findings indicate that a lamin dimer principally has the freedom for a “combinatorial” head-to-tail association with all types of lamins, a property that might be of significant importance for the assembly of the nuclear lamina. Furthermore, we suggest that the head-to-tail interaction of the rod end domains represents a principal step in the assembly of cytoplasmic intermediate filament proteins too.  相似文献   

20.
Syk protein tyrosine kinase is essential for immune system development and function [1]and for the maintenance of vascular integrity [2,3]. In leukocytes, Syk is activated by binding to diphosphorylated immune receptor tyrosine-based activation motifs (pITAMs)[1]. Syk can also be activated by integrin adhesion receptors [4,5], but the mechanism of its activation is unknown. Here we report a novel mechanism for Syk's recruitment and activation, which requires that Syk bind to the integrin beta3 cytoplasmic tail. We found that both Syk and the related kinase ZAP-70 bound the beta3 cytoplasmic tail through their tandem SH2 domains. However, unlike Syk binding to pITAMs, this interaction was independent of tyrosine phosphorylation and of the phosphotyrosine binding function of Syk's tandem SH2 domains. Deletion of the four C-terminal residues of the beta3 cytoplasmic tail [beta3(759X)] decreased Syk binding and disrupted its physical association with integrin alphaIIbbeta3. Furthermore, cells expressing alphaIIbbeta3(759X) failed to exhibit Syk activation or lamellipodia formation upon cell adhesion to the alphaIIbbeta3 ligand, fibrinogen. In contrast, FAK phosphorylation and focal adhesion formation were unimpaired by this mutation. Thus, the direct binding of Syk kinase to the integrin beta3 cytoplasmic tail is a novel and functionally significant mechanism for the regulation of this important non-receptor tyrosine kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号