首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Past studies have shown that dissolved organic carbon (DOC) washing can effectively remove heavy metals from contaminated soil. In this study, we used alkaline DOC solutions for remediation of arsenic (As)-contaminated soil (with an initial As concentration in the topsoil of 390 mg kg?1). The removal of As and the change in soil nutrients during DOC washing were studied for 60 min at pH 10 with a 60:1 liquid/soil ratio (v/m). Approximately 88% of As was removed by washing the soil twice using a 3000 mg L?1 DOC solution at 25°C. Following this treatment, the pH of the soil had increased from 5.6 to 9.2; organic carbon content had increased from 3.5% to 4.1%; cation exchange capacity, ammonium-N, and available phosphorus had increased to 2.3, 1.4, and 6.6 times their original levels, respectively; and exchangeable K, Na, Ca, and Mg had increased to 91, 6.1, 4.2, and 2.2 times their original levels, respectively. A sequential extraction investigation revealed that residual As and easily exchangeable As in the fraction were initially 10.2% and 9.2%, respectively, but that the former became the maximum remainder (64%) after the ultimate DOC washing.  相似文献   

2.
Remediation of a lead-contaminated calcareous soil using NaCl solutions was examined. The removal of Pb from a coarser fraction of the soil was found to be 83% after three successive extractions at a NaCl concentration of 8?M, whereas an average of 9% of the calcium was removed. Multibatch extractions of Pb from finer soil containing a higher level of Pb were also performed. The removal of Pb from this soil after six successive extractions with 8?M NaCl was found to be 93%. The removal of Pb increased with time in a batch test and approached 80% after 90?h. It was found that the data were adequately described by a first-order rate, and hence it is believed that a single reaction mechanism controlled the release of Pb (i.e., from carbonate bound or exchangeable Pb fractions in the soil). Increasing removal of Pb was found as the volume of water added was increased as the mass of NaCl in solution remained constant. The removal of Pb from the leachate was found to be 90%, 99.7%, and 35% with lime (25.20?g/L), sodium carbonate (4.48?g/L), and calcium carbonate (82.0?g/L) addition, respectively. In the case of sodium carbonate, the removal of Pb was further improved when the pH was adjusted to 8.2. The recycling of free chloride that was generated from leachate resulted in 91% removal of Pb from the soil (particle size < 4.75?mm) after six recycles.  相似文献   

3.
This study investigated the effects of biosurfactant produced by a mangrove isolate on a heavy metal spiked soil remediation using two different methods of biosurfactant addition (pretreatment and direct application) at different concentrations (0.5%–5%) for 10 days employing column and batch method of washings. The FT-IR spectral and biochemical analysis confirmed the chemical nature of biosurfactant as a glycolipid. Pre-addition of biosurfactant at 0.5% concentrations and further incubation for a month resulted in better chromium removal than the direct biosurfactant washing method. A maximum recovery of lead (99.77%), nickel (98.23%), copper (99.62%), and cadmium (99.71%) were achieved with column washing method at 1% biosurfactant concentration. Release of 26% soluble fractions of nickel (pre-addition with biosurfactant) and 40% copper (direct application) were achieved by column washing method at 1.0% concentration of biosurfactant. A total of 0.034 mg/10 g of lead, 0.157 mg/10 g of nickel, 0.022 mg/10 g of copper, 0.025 mg/10 g of cadmium, and 0.538 mg/10 g of chromium were found to remain in the spiked soil after column washing with 1.0% biosurfactant solution. However, pre-addition of 0.5% biosurfactant treatment helps in maximum removal of chromium metal leaving a residual concentration of 0.426 mg/10 g of soil, suggesting effective removal at very low concentration. The average extraction concentration of metals in batch washings was between 93–100%, irrespective of the concentration of biosurfactant studied. In this study, the percentage removal of copper, cadmium, chromium, nickel, and lead from spiked soils by column washing was comparatively lower than batch washing.  相似文献   

4.
Chelation removal of heavy metals from contaminated soil is seen as a viable remediation technique. A useful chelating agent should be strong, reusable, and biostable during metal extraction and recovery operations. This work tested the extraction, recovery, and biostability of EDTA as a potential remediating agent. Parameters, including EDTA concentration, soil type, soil content, washing cycle, precipitant concentration and type, and pH, were varied and tested during metal extraction and recovery operations. Factors, including EDTA concentration, aqueous and 5% soil slurry, presence of Pb, acclimated and unacclimated activated sludges, along with abiotic control, were varied and studied in the biodegradation of EDTA. The results showed that EDTA was able to extract lead completely from the tested soils, amenable to recovery by addition of cationic and anionic precipitants in the alkaline pH range, relatively biostable even under conditions very favorable toward biodegradation. Thus, EDTA is a strong, recoverable, and relatively biostable chelating agent that has potential for soil remediation application.  相似文献   

5.
In this study, the soil washing technique has been used to treat mine tailings contaminated heavily with arsenic and heavy metals at Jingok mine, which is one of the abandoned mines in Korea. The results showed that phosphoric acid, citric acid, oxalic acid, and sodium metabisulfite were highly effective in extracting arsenic and heavy metals. Among them, oxalic acid was the most effective (especially for Pb, Cu, and Zn), as even a residual fraction of arsenic was partly extracted. The optimum concentration of washing reagent and the ratio between the mine tailings and washing reagent were found to be 0.5 M and 1:20, respectively. In addition, the extraction kinetics of arsenic and heavy metals was fast, in which the reaction time of 30 minutes was deemed to be a sufficient contact time. From the results, it may be concluded that the low pH of washing solution and the amount of dissolved Fe may be considered as the most important factors in the extraction of arsenic and heavy metals.  相似文献   

6.
Since heavy metals are nondegradable and strongly bonded in soils, remediation of heavy metal polluted soils by extraction is difficult and current extraction techniques require harsh chemicals such as ethylenediaminetetraacetic acid (EDTA). However, use of EDTA is environmentally problematic because of costs, persistence, toxicity and deterioration of soil structure. Therefore, the potential of soluble natural humic substances (HS) to extract heavy metals from contaminated soils is tested as an environmentally friendly substitute for EDTA. A strongly polluted, calcareous urban soil (CRC soil) and a moderately polluted agricultural soil (CUP soil) were extracted at neutral pH in batch mode by three HS solutions from beech and Norway spruce litter (Beech-HS and Spruce-HS) and processed cow slurry (Bio-HS), all containing 25 mM dissolved organic carbon (DOC). After 10 extractions with a solution to soil ratio of 5:1 (L/kg), 8% to 39% of the total Cd, Cu, Ni and Pb soil contents, lowest for Ni and highest for Cu/Pb, were extracted. Natural and processed HS samples had comparable capacities to extract the heavy metals. A comparison of 100 mM DOC of Bio-HS and EDTA as extractants for Cu from the CRC soil showed extraction of 67% by EDTA and 41% by Bio-HS, indicating somewhat higher efficiency of EDTA than of HS. Sequential extraction of the CRC soil after Bio-HS and EDTA extraction showed removal of exchangeable, carbonate- and metal oxide-bound Cu but also of some residual Cu. It is therefore concluded that HS appears to be an attractive and promising alternative to EDTA as remediation agent for heavy metal polluted soils provided cheap HS of good quality is easily available.  相似文献   

7.
The feasibility of using a biodegradable surfactant, surfactin from Bacillus subtilis, for the removal of heavy metals from a contaminated soil (890?mg/kg zinc, 420?mg/kg copper, 12.6% oil and grease) and sediments (110?mg/kg copper, 3300?mg/kg zinc) was evaluated. Results showed that after one and five batch washings of the soil, 25 and 70% of the copper, 6 and 25% of the zinc, and 5 and 15% of the cadmium could be removed by 0.1% surfactin with 1% NaOH, respectively. From the sediment, 15% of the copper and 6% of the zinc could be removed after a single washing with 0.25% surfactin/1% NaOH. The geochemical speciation of the heavy metals among the exchangeable, oxide, carbonate, organic, and residual fractions was determined by selective sequential extraction procedure. For both matrices, the exchangeable fractions were minimal, while the carbonate and the oxide fractions accounted for over 90% of the zinc present and the organic fraction constituted over 70% of the copper. Results after washing indicated that surfactin with NaOH could remove copper from the organic fraction, zinc from the oxide, and cadmium from the carbonate fractions. The residual fraction remained untouched. These experiments indicate that the sequential extraction studies could be useful in designing soil-washing procedures.  相似文献   

8.
Soil from an abandoned/disused fertilizer plant polluted with pyrite ash containing heavy metal(loid)s (As, Cu, Pb, and Zn) was treated by means of physical and chemical washing. We first performed an exhaustive characterization of the soil-pollutant interaction, which allowed us to determine the chemical nature (complex oxyhydroxides), potential mobility and bioavailability of the pollutants (very low), as well as the grain size fractions of preferential accumulation (silt-clay fraction comprises more than 60% of the material and revealed contents well above 2.000 ppm of Cu, Zn and Pb). Soil/ash samples were subjected to a number of chemical washing trials, including leaching with 2 M HCl, 2 M NaOH and acidic process water (pH around 0). The fraction below 63 µm was mechanically separated and exposed to additional leaching tests e.g. chloridizing roasting with NaCl plus water leaching. Of all the tested procedures, the latter proved the most effective, particularly with regard to Cu and Zn recovery (recoveries up to 40% and 34%, respectively). The information gathered offers an insight into the modes and rates at which metals can be leached from pyrite ashes after chloridizing roasting as a prelude to more extensive soil washing feasibility studies focused on potential metal recovery.  相似文献   

9.
A sequential extraction scheme was combined with sorption isotherm analysis in order to investigate sorption of sewage sludge-derived Cu and Zn to the A-horizon of a humic-gley soil as a whole, and to the operationally defined exchangeable (1?M MgCl2), carbonate (1?M NaOAc), Fe/Mn oxide (0.04?M NH2OH.HCl), and organic (0.02?M HNO3+30% H2O2) soil fractions. Sorption parameters were compared for a sample of sludge leachate (with 97.4% of Cu and 63.2% of Zn present as dissolved metal-organic matter complexes, as calculated by geochemical modeling involving MINTEQA2 and verified using an ion exchange resin method) with that of a reference solution exhibiting the same chemical characteristics as the leachate, except for the presence of dissolved organic material. Dissolved metal-organic matter complexes were found to significantly (P<0.05) depress sorption to the bulk soil and each fraction. The greatest depression of Cu and Zn sorption was observed for the exchangeable, carbonate, and Fe/Mn oxide fractions, while the organic fraction of the soil was the least affected. This reflects a greater affinity for the exchangeable, carbonate, and Fe/Mn oxide fractions by the free divalent metal (Cu2+, Zn2+), with sorption by these fractions attributed to cation exchange, chemisorption, and co-precipitation processes. The sorption characteristics of the organic fraction indicated that Cu and Zn sorption by soil organic matter mostly involved dissolved metal-organic matter complexes. This may be attributed to hydrophobic interactions between nonpolar regions of the dissolved metal-organic matter complexes and solid-phase soil organic matter.  相似文献   

10.
After determining at an early stage of the project that the future land use of this New Jersey chemical manufacturing site remain industrial in nature, the site was zoned according to risk. The chemicals of concern (COCs) at the site included relatively low levels of mono- and polynuclear aromatic hydrocarbons, chlorinated aliphatics, as well as other volatile and semivolatile compounds. Direct human exposure scenarios were the key to the mitigation of risks related to soils because the groundwater migration pathway was already interrupted using groundwater recovery. A focused remedial strategy was developed to ensure that the exposure pathways (inhalation, ingestion, and dermal contact) are alleviated and the remedial measures are protective to the workers operating and/or maintaining the site. The risk evaluation process included a preliminary risk assessment (Tier 1) based on a comparison with pertinent soil cleanup criteria, a prioritization analysis to rank zones, chemicals and pathways of concern, and an application of the Risk Based Corrective Action (RBCA) approach (Tier 2) for construction worker exposure scenario. The risk assessment identified selected areas that would benefit from remedial actions. Prioritization Analysis classified the site into five high-priority (comprising 97% of the total health-based risk), three medium-priority (contributing to remaining 2 to 3% of the risk), and adequately protected areas. The boundaries and volumes of affected areas were delineated based on confirmatory soil sampling and statistical analyses. The remedial technologies selected for the site have achieved appropriate reduction in risk to comply with all State regulations and include (in addition to the institutional controls): ??Capping the site where only immobilesemivolatile contaminants are present ??Excavation and on-site treatment of the soils impacted by volatile organic com pounds through ex situ low temperature desorption, or alternative “biopile” treatment and natural attenuation, and ??Excavation and off-site disposal of limited volumes of soils This risk-based, integral approach helped identify the real significance of contamination present at the site and facilitated the development of suitable and adequate remedies. Had not it been for this approach, the mere comparison with soil cleanup criteria would have unnecessarily resulted in denoting all areas as nuisance contributors, and thus requiring some actions. New Jersey Department of Environmental Protection (NJDEP) has approved this approach and contributed to its accomplishment.  相似文献   

11.
Due to the unique properties of subcritical water (marked change in water's dielectric constant and viscosity), the extraction by subcritical water offers a great opportunity to remediate soil contaminated with organic pollutants as an alternative and green remediation method. In this study, subcritical water extraction is proposed as an efficient remediation technique for the Gulf War oil spill contaminated soil. The subcritical water extraction experiment was carried out in a lab-scale continuous flow apparatus. The three major operating factors, temperature, time and water flow rate, were evaluated in terms of optimum removal efficiency. The results show that crude oil removal depended largely on water temperature, whereas an extraction run time higher than 1 h and a water flow rate higher than 1.5 mL/min marginally or negatively affected removal efficiency. During subcritical water treatment at 300°C for 1 h at a flow rate of 1.5 mL/min, removal efficiency was almost 95%. Under these operating conditions, the subcritical water treatment demonstrated a similar removal efficiency to those of organic solvents like acetone. In contrast, the efficiency of oil recovery decreased with an increase in extraction temperature, due to degradation by a water self-oxidizing agent. Several degradation products identified in the treated soil and in the effluent sample (which initially were absent in the contaminated soil) were oxygen-containing aromatic compounds, confirming the oxidation-degradation.  相似文献   

12.
The behavior of Pb in the A and B horizons of an Alfisol from Michigan and an Ultisol from Virginia was studied to determine the effects of “shock”; loading. Combined sequential extraction‐sorption isotherm analysis (CSSA), a relatively new and little tested method, was used in the study. After spiking to simulate severe contamination (~3000 to 60,000 mg/kg), CSSA revealed unexpectedly high levels of exchangeable Pb in the A horizon of the Alfisol and in both horizons of the Ultisol, and showed that the sorption capacities of the phases commonly responsible for fixation of Pb at low to moderate levels of contamination were exceeded. Carbonate sorbed the bulk of the Pb in the Alfisol B horizon and has a high sorption capacity in both soils, despite the presence of other phases with a strong affinity for Pb. Thus, when shock loading occurs (e.g., at a shooting range or dump sites), the highly contaminated A horizons of both soils are expected to pose a serious toxic hazard to humans, and groundwater contamination is possible in association with the Ultisol. CSSA proved useful for determining the sorption capacities of the individual phases while together in a natural soil system and therefore is a valuable method for predicting the attenuation capabilities of soils.  相似文献   

13.
The ligands iodide (I?) and thiocyanate (SCN?), alone or in admixture, in combination with a non-ionic surfactant, Triton X-100, were evaluated as washing agents for heavy metal desorption from a contaminated soil. After seven successive washings, selective sequential extraction (SSE) was performed to determine the heavy metal content that remained associated with each geo-chemical fraction of the soil. The surfactant with 0.336 mol L?1 of ligand I? removed 75% Cd and 23% Cu, whereas the mobilization of Zn and Pb were not significant after 7 washings. At a concentration of 0.286 mol L?1, the ligand SCN? in the presence of surfactant removed 36% Cd, 44% Cu and 77% Zn. Among the washing agents, the combination of I? and SCN? produced the highest desorption efficiencies 95% Cd, 48% Cu, and 3.1% Pb, but not for Zn. The SCN? ligand extracted the most Zn (77%). The SSE procedure indicated that the I? removed metals from the exchangeable, carbonate and oxide fractions whereas SCN? removed metals only from the exchangeable fraction. Both ligands, in the presence of surfactant, removed Cu from all fractions except the exchangeable sites, whereas only SCN? plus surfactant removed Zn from all fractions. The ligand mixture plus surfactant mobilized only limited quantities of Pb from the oxide and residual fractions.  相似文献   

14.
Response surface methodology (RSM) under Box–Behnken design (BBD) was applied to evaluate the effect of the influencing parameters including surfactant concentration, liquid/soil ratio, Humic Acid concentration, and washing time on phenanthrene removal efficiency in soil washing process by using the nonionic surfactant Tween 80 and find an optimal operational conditions to achieve the highest removal efficiency. A polynomial quadratic model was used to correlate phenanthrene removal efficiency and four independent variables (R2 = 0.9719). Based on the obtained results the most influential parameter on phenanthrene removal efficiency was surfactant concentration with an impact value of 69.519%. Liquid/soil ratio was also another factor that significantly influenced on removal efficiency with an impact value of 25.014%. The interaction between surfactant concentration and liquid/soil ratio was also shown to have a positive significant effect on removal efficiency (pvalue = 0.0027). However, the other independent variables Humic Acid concentration and time were not significant in the ranges selected in this study. Based on the optimization results maximum removal efficiency of 70.692 ± 3.647% was achieved under the conditions of surfactant concentration 5000 mg L?1, liquid/soil ratio 30 v/w, HA concentration 9.88 mg L?1, and washing time 2 h, which was in good agreement with predicted value (66.643%).  相似文献   

15.
The present research was conducted to determine heavy metals in agricultural soils from Çanakkale, Turkey, using a sequential extraction procedure (acid soluble, reducible, oxidizable, and residual) as proposed by the Community Bureau of Reference (BCR) of the European Commission. Soil samples were taken from 12 different cultivated sites and analyzed for Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn concentrations. The results revealed an order of Mn > Cd > Pb > Co > Ni > Cu > Zn > Cr for the heavy metals based on the sum of the first three fractions (acid soluble + reducible + oxidizable). The relationships between soil properties and each metal fraction were identified through Pearsons's correlation analysis. Hierarchical cluster analysis was performed to determine the behaviors and similarities of metals in each fraction. While Mn, Pb, and Zn exhibited subjective behaviors in the acid-soluble fraction, Cd, Co, Cu, Cr, and Ni exhibited similar behaviors with each other.  相似文献   

16.
In this study, 30 soil samples were collected from 0–5 cm and 15–20 cm depths in the vicinity of the Miduk Porphyry Copper Mine in Kerman Province, southeast Iran. The samples were analyzed for total concentrations of eight potentially toxic elements. The bioavailability of trace elements is determined using sequential extraction analysis. Average concentrations of As, Cd, Cr, Cu, Mo, Ni, Pb, and Zn in soil samples are 26.9, 0.49, 56.31, 201.18, 1.77, 45.6, 83.87, and 191.94 mg kg?1, respectively. Also, to assess the bioaccumulation of the analyzed elements, the roots and the leaves of three plant species were sampled and analyzed. The mobility of the analyzed trace elements shows the following decreasing order: Cd > Mo > Ni > Zn > Cu > Cr >Pb> As. The distribution pattern of elements indicates that elemental concentration in Miduk soils is highly influenced by bedrock composition, while soil pollution is mostly affected by ancient mining.  相似文献   

17.
In this study, a combined system of soil washing and electrodeposition was designed to remove Pb (16381±643 mg/kg) and Cd (34347±1310 mg/kg) from contaminated soil. 0.05 M Na2EDTA was used as a chelating agent for the remediation of soil, taken from the nearby city Kayseri, Turkey. As a result of the batch extraction tests, maximum removals were determined as; at the 20:1 liquid: soil ratio for Pb is 60.7%, for Cd at the 30:1 liquid: soil ratio is 67.4%. An electrochemical treatment was applied to the waste washing solution which appeared to be the second pollutant after the Na2EDTA extraction from the soil. With extraction tests of Pb and Cd, being transformed from the solid phase to the liquid phase. The electrochemical treatment (electrodeposition), performed in three different potential (6 V, 8 V and 10 V) and maximum removal efficiencies, were found 99.7% and 80.3% at 10 V for Pb and Cd, respectively.

Speciation tests (BCR) were carried out, both before and after the soil washing process, to evaluate the redistribution of metal fraction in the soil. The fraction, associated with the organic substance, was found as 10.67% for Pb and 1.81% for Cd. The metal bioavailability factor increased after soil washing, which indicates that EDTA could enhance the mobility of Pb and Cd.  相似文献   


18.
菲(Phenanthrene)是存在于煤焦油中,含三个苯环的稠环芳烃。除了具有"三致"作用外,菲稳定的化学结构和高辛醇-水分配系数等特性,使其具备较强的抗降解能力,易在环境中富集,破坏土壤微生态结构,降低农作物品质,威胁人类健康。而且随着化石燃料的长期大量使用,受菲污染的土地面积也急速增加,给人类的健康及生产活动带来极大的威胁。因此,有效清除土壤中菲及其他多环芳烃污染物,净化环境,具有重要的现实意义。微生物降解作为治理菲污染的方法之一,具有高效、低成本、环境友好的特点,受到研究者的高度重视。本文从菲降解菌的种类、降解机理、分子机制、影响修复等因素及微生物与植物联合修复五个方面进行综述,为进一步利用环境微生物,开发高效菲降解菌,治理菲污染提供参考。  相似文献   

19.
20.
Laboratory-scale tests were performed to evaluate the use of Environment Canada's patented Microwave-Assisted Process (MAPTM) for the extraction of petroleum hydrocarbons from contaminated soil. The purpose of these tests was to determine the potential for using the process for large-scale processing of contaminated soil. Tests were performed using three soil types: a certified sediment and certified soil, both contaminated with polycyclic aromatic hydrocarbons (PAHs), and spiked peat soil contaminated with long-chain petroleum hydrocarbons. The test methods used were based on existing MAP techniques that have been proven for the sample preparation of contaminated soils for analytical purposes. The parameters evaluated concentrated on those that are amenable to a continuous large-scale process running at atmospheric pressures. This meant using solvents that are inexpensive and readily available in large volumes, low solvent to material ratios, and optimized energy inputs. In general, it was found that microwaves could be used to enhance the solvent extraction of the contaminants from the soil and that the properties of the soil greatly affected the extent to which the contaminants were removed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号