首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Accumulation of heavy metals (HMs) in cultivated soils is a continuing environmental problem in many parts of the world. An increase in HM concentration can enhance uptake of toxic metals by crops and enter the human food chain. In this study, the uptake behavior of wheat and safflower was evaluated in a calcareous soil by using 12 undisturbed columns in which half were artificially contaminated. Heavy metals in the form of CdCl2 (15 mg Cd kg? 1), CuSO4 (585 mg Cu kg? 1), Pb(NO3)2 (117 mg Pb kg? 1), and ZnCl2 (1094 mg Zn kg? 1) were sprayed on the soil surface and completely mixed in the top 10 cm. The background total concentrations of Cd, Cu, Pb and Zn were 1.6, 29.5, 17.5 and 61.2 mg kg? 1, respectively. After metal application, half of the columns (3 contaminated and 3 uncontaminated) were sown with wheat (Triticum aestivum) and the other half with safflower (Carthamus tinctorious) and grown for 74 days until maturity. After harvesting, soil columns were cut into 10-cm sections and analyzed for HNO3- and DTPA-extractable metal concentrations. Metal concentrations were also measured in different plant tissues. The results showed that artificial contamination of topsoil decreased the transpiration rate of wheat by 12% and that of safflower by 6%. In contaminated columns, Cd, Cu, Pb, and Zn accumulation in wheat shoot was greater by 8.0-, 1.9-, 3.0-, and 2.1-fold than the control, respectively. Accordingly, these numbers were 46.0-, 1.3-, 1.7-, and 1.6-fold in safflower shoot. Soil contamination with HMs resulted in a 55% decrease in shoot dry matter yield of wheat while it had no significant effect on shoot dry matter of safflower. The normalized water consumption for safflower was therefore not affected by metal contamination (≈ 13 mm H2O g? 1 of dry weight for all safflower and uncontaminated wheat treatments), while contaminated wheat was much less water efficient at about 27 mm H2O g? 1 dry weight. It was concluded that although artificial contamination had a negative effect on wheat growth, it did not affect safflower's normal growth and water efficiency.  相似文献   

2.
Abstract

Phytoremediation of heavy metal contaminated soils represents a promising technique and salt-tolerant hyperaccumulators for multiple metals are the need of time. Therefore, phytoremediation potential of four salt-tolerant grass species [Dhab (Desmostachya bipinnata), Kallar (Leptochloa fusca), Para (Brachiaria mutica) and Sporobolus (Sporobolus arabicus Boiss)] was evaluated for cadmium (Cd) and lead (Pb) in a hydroponic study. The plants were harvested after a growth period of 3 months in a nutrient solution containing different levels of Cd (0, 5, and 25?mg?L?1) and Pb (0, 25, and 125?mg L?1). Results indicated that Dhab grass showed the highest root and shoot dry matter yield followed by Para, Kallar and Sporobolus grass irrespective of metal or its level under which they were grown. All the grass species showed considerable Cd-accumulating potential with an accumulation of >150?mg kg?1of shoot dry matter at a higher level of Cd-contamination (25?mg?L?1). While in case of shoot Pb-accumulation only Para grass performed well and accumulated Pb >1000?mg kg?1 of shoot dry matter at the higher level of Pb-contamination (125?mg?L?1). Moreover, Para and Dhab grasses performed better for shoot Cd-uptake, while only Para grass showed promising shoot Pb uptake potential. In conclusion, these grass species could be penitentially used for phytoremediation of salt-affected Cd and Pb contaminated soils.  相似文献   

3.
Cadmium (Cd) accumulation in durum wheat grain is a growing concern. Among the factors affecting Cd accumulation in plants, soil chloride (Cl) concentration plays a critical role. The effect of leaf NaCl application on grain Cd was studied in greenhouse-grown durum wheat (Triticum turgidum L. durum, cv. Balcali-2000) by immersing (10 s) intact flag leaves into Cd and/or NaCl-containing solutions for 14 times during heading and dough stages. Immersing flag leaves in solutions containing increasing amount of Cd resulted in substantial increases in grain Cd concentration. Adding NaCl alone or in combination with the Cd-containing immersion solution promoted accumulation of Cd in the grains, by up to 41%. In contrast, Zn concentrations of grains were not affected or even decreased by the NaCl treatments. This is likely due to the effect of Cl complexing Cd and reducing positive charge on the metal ion, an effect that is much smaller for Zn. Charge reduction or removal (CdCl20 species) would increase the diffusivity/lipophilicity of Cd and enhance its capability to penetrate the leaf epidermis and across membranes. Of even more significance to human health was the ability of Cl alone to penetrate leaf tissue and mobilize and enhance shoot Cd transfer to grains, yet reducing or not affecting Zn transfer.  相似文献   

4.
Enhancement of Pb and Zn uptake by Indian mustard (Brassica juncea (L.) Czern.) and winter wheat (Triticum aestivumL.) grown for 50 days in pots of contaminated soil was studied with application of elemental sulphur (S) and EDTA. Sulphur was added to the soil at 5 rates (0–160 mmol kg?1) before planting, and EDTA was added in solution at 4 rates (0–8 mmol kg?1) after 40 days of plant growth. Additional pots were established with the same rates of S and EDTA but without plants to monitor soil pH and CaCl2-extractable heavy metals. The highest application rate of S acidified the soil from pH 7.1 to 6.0. Soil extractable Pb and Zn and shoot uptake of Pb and Zn increased as soil pH decreased. Both S and EDTA increased soil extractable Pb and Zn and shoot Pb and Zn uptake. EDTA was more effective than S in increasing soil extractable Pb and Zn, and the two amendments combined had a synergistic effect, raising extractable Pb to ¿1000 and Zn to ¿6 times their concentrations in unamended control soil. Wheat had higher shoot yields than Indian mustard and increasing application rates of both S and EDTA reduced the shoot dry matter yields of both plant species to as low as about half those of unamended controls. However, Indian mustard hyperaccumulated Pb in all EDTA treatments tested except the treatment with no S applied, and the maximum shoot Pb concentration was 7100 mg kg?1 under the highest application rates of S and EDTA combined. Wheat showed similar trends, but hyperaccumulation (1095 mg kg?1) occurred only at the highest rates of S and EDTA combined. Similar trends in shoot Zn were found, but with lower concentrations than Pb and far below hyperaccumulation, with maxima of 777 and 480 mg kg?1 in Indian mustard and wheat. Despite their lower yields, Indian mustard shoots extracted more Pb and Zn from the soil (up to 4.1 and 0.45 mg pot?1) than did winter wheat (up to 0.72 and 0.28 mg pot?1), indicating that the effects of S and EDTA on shoot metal concentration were more important than yield effects in determining rates of metal removal over the growth period of 50 days. Phytoextraction of Pb from this highly contaminated soil would require the growth of Indian mustard for nearly 100 years and is therefore impractical.  相似文献   

5.
A growth chamber study was conducted to evaluate the effect of application of phosphate fertilizer on soil solution dynamics of cadmium (Cd) and Cd accumulation in durum wheat (Triticum turgidum L. var. durum). Treatments consisted of three phosphate fertilizer sources containing 3.4, 75.2, and 232 mg Cd kg?1 applied at three rates (20, 40 and 80 mg P kg?1) plus a no fertilization control. An unplanted treatment at 40 mg P kg?1 was included to separate the effects on soil solution Cd dynamics of the crop from that of the fertilizer. Soil solution samples were obtained using soil moisture samplers every 10 days after germination. The experimental results indicated that plant biomass significantly increased with P application rates and decreased with increased Cd concentration in the phosphate fertilizers. Total cadmium concentration in soil solution was not consistently affected by phosphate fertilization rate and fertilizer sources, and therefore Cd concentration in the fertilizer. Application of phosphate fertilizer, however, increased the concentration and accumulation of Cd and shoot Cd/Zn ratio, and decreased shoot Zn concentration in durum wheat. Phosphate sources had a marginally significant effect (P?=?0.05) on shoot Cd concentration and did not affect Cd accumulation in durum wheat. Concentration of Cd in soil solution was unrelated to Cd concentration in durum wheat. These results suggest that the immediate increase in Cd concentration and Cd accumulation in durum wheat with phosphate application is due more to competition between Zn and Cd for absorption into plants, enhanced root to shoot translocation and enhanced root development, than to a direct addition effect from Cd contained in phosphate fertilizer. In the short term, application of phosphate fertilizers can increase Cd concentration in the crops, regardless of the Cd concentration of the fertilizer. An optimal P fertilization, possibly in combination with Zn application, may offer an important strategy for decreasing Cd concentration and accumulation in crops.  相似文献   

6.
In this study different bacterial inoculation methods were tested for tobacco plants growing in a mine-soil contaminated with Pb, Zn, and Cd. The inoculation methods evaluated were: seed inoculation, soil inoculation, dual soil inoculation event, and seed+soil inoculation. Each inoculum was added at two bacterial densities (106 CFUs mL?1 and 108 CFUs mL?1). The objectives were to evaluate whether or not the mode of inoculation or the number of applied microorganisms influences plant response. The most pronounced bacterial-induced effect was found for biomass production, and the soil inoculation treatment (using 106 CFUs mL?1) led to the highest increase in shoot dry weight yield (up to 45%). Bacterial-induced effects on shoot metal concentrations were less pronounced; although a positive effect was found on shoot Pb concentration when using 108 CFUs mL?1 in the soil inoculation (29% increase) and in the seed+soil inoculation (34% increase). Also shoot Zn concentration increased by 24% after seed inoculation with 106 CFUs mL?1. The best effects on the total metal yield were not correlated with an increasing number of inoculated bacteria. In fact the best results were found after a single soil inoculation using the lower cellular density of 106 CFUs mL?1.  相似文献   

7.
为探讨小黄花菜的耐盐机理,选育良好的耐盐植物以缓解土壤盐渍化问题,该文选取小黄花菜(Hemerocallis minor)为试材,采用砂培法,研究不同浓度NaCl(50、100、150、200、250 mmol·L-1)胁迫对小黄花菜的生长性状、细胞质膜透性和有机渗透调节物质含量等的影响.结果表明:(1)小黄花菜在10...  相似文献   

8.
A pot experiment with an orthogonal experimental design L9(34) was conducted to study the combined effects of Cd, Zn, and Pb on the growth and metal content of celery grown in a ferric acrisol. The uptake of Cd, Zn, and Pb by celery was not only affected by the individual elements, but also by combinations of the elements. The effect of coexisting elements on plant uptake of the heavy metals depended on the concentration ratios of the elements. There is a given ratio where a maximum antagonism or synergism effect occurs. The combinations of elements clearly affected the dry weight of celery and the heavy metal concentration in celery. The removal rate (the ratio of plant total uptake to the total metal content in soil) was in the order of Cd > Zn > Pb, with no obvious difference between the removal rate under single pollution and that under compound pollution.  相似文献   

9.
Sorption of Cu(II) and Cd(II) onto the extracellular polymeric substances (EPS) produced by Aspergillus fumigatus was investigated for the initial pH of the solution, EPS concentrations, contact time, NaCl concentration, initial metal ion concentration and the presence of other ions in the solution. The results showed that the adsorption of metal ions was significantly affected by pH, EPS concentrations, initial metal concentration, NaCl concentration and co-ions. The sorption of Cu(II) and Cd(II) increased with increasing pH and initial metal ion concentration but decreased with an increase in the NaCl concentration. The maximum sorption capacities of A. fumigatus EPS calculated from the Langmuir model were 40 mg g−1 EPS and 85.5 mg g−1 EPS for Cu(II) and Cd(II), respectively. The binary metal sorption experiments showed a selective metal binding affinity in the order of Cu(II) > Pb(II) > Cd(II). Both the Freundlich and Langmuir adsorption models described the sorption of Cu(II) and Cd(II) by the EPS of Afumigatus adequately. Fourier transform infrared spectroscopy (FTIR) analysis revealed that carboxyl, amide and hydroxyl functional groups were mainly correlated with the sorption of Cu(II) and Cd(II). Energy dispersive X-ray (EDX) system analysis revealed that the ion-exchange was an important mechanism involved in the Cu(II) and Cd(II) sorption process taking place on EPS.  相似文献   

10.
Modern mining technologies promote the nation's gross domestic product and reduce environmental impacts; however, previous mining activities in Missouri have a legacy of soil contamination. This study focuses on Pb-Cd-Zn-Ag-In soil contamination resulting from a closed Pb-Zn mine at St. Joe State Park in Missouri. Metal contamination is the result of ancestral smelting operations and presently exposed tailings. Three soil profiles located adjacent to a closed mine-smelting operation and two reference pedons located outside of the study area were examined to determine the concentrations of Pb, Cd, Zn, Ag, and In. Aqua regia digestion and selective chemical extractions were employed to assess metal availability. The near-surface soil horizons show dramatically greater Pb, Cd, Zn, Ag, and In concentrations than deeper soil horizons or the reference loess-derived soil profiles. Surface Pb concentrations in the study area range from 224 to 589 mg Pb kg ? 1 , whereas the surface Cd concentrations range from 0.3 to 3.1 mg Cd kg? 1. Pyrophosphate and EDTA (Ethylenediaminetetraacetic Acid) extractions demonstrate that a small to substantial portion of the total Pb and Cd pool is potentially available. Water soluble metal concentrations infer that the risk of metal leaching from the soil is minimal.  相似文献   

11.
In this study, we explored the effect of salinity on cadmium (Cd) tolerance and phytoremediation potential of Acacia nilotica. Two-month-old uniform plants of A. nilotica were grown in pots contaminated with various levels of Cd (0, 5, 10, and 15 mg kg?1), NaCl (0%, 0.5%, 1.0% (hereafter referred as salinity), and all possible combinations of Cd + salinity for a period of six months. Results showed that shoot and root growth, biomass, tissue water content and chlorophyll (chl a, chl b, and total chl a+b) contents decreased more in response to salinity and combination of Cd + salinity compared to Cd alone. Shoot and root K concentrations significantly decreased with increasing soil Cd levels, whereas Na and Cl concentrations were not affected significantly. Shoot and root Cd concentrations, bioconcentration factor (BCF) and translocation factor (TF) increased with increasing soil Cd and Cd + salinity levels. At low level of salinity (0.5%), shoot and root Cd uptake enhanced, while it decreased at high level of salinity (1.0%). Due to Cd tolerance, high shoot biomass and shoot Cd uptake, this tree species has some potential for phytoremediation of Cd from the metal contaminated saline and nonsaline soils.  相似文献   

12.
Batch experiments were designed to characterize a multiple metal resistant bacterium Burkholderia sp. D54 isolated from metal contaminated soils in the Dabaoshan Mine in South China, and a follow-up experiment was conducted to investigate the effects of inoculating the isolate on plant growth and metal uptake by Sedum alfredii Hance grown on soils collected from a heavily contaminated paddy field in Daxing County, Guangxi Zhuang Automounous Region, Southwest China. Our experiments showed that strain D54 produced indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and solubilizing inorganic phosphate and solubilized insoluble metal bearing minerals. Bacterial inoculation significantly enhanced S. alfredii biomass production, and increased both shoot and root Cd concentration, but induced little variation in root/shoot Pb concentration and shoot Zn concentration. Despite this, the total shoot and root uptake of Cd, Pb and Zn in S. alfredii inoculated with D54 increased greatly compared to the non-inoculated controls. It was concluded that inoculation with strain D54 could help S. alfredii grow better on metal contaminated soils, produce more biomass, and remove more metals from soil, which implies improved efficiency of phytoextraction from metal contaminated soil. The knowledge gained from the present experiments constitutes an important advancement in understanding of the interaction between plant growth-promoting bacteria and hyperaccumulators with regard to plant ability to grow and remove the multiple heavy metals from soils.  相似文献   

13.
Cadmium, copper, and lead were extracted from suspensions of contaminated soils using metal chelating exchange resin membranes. Nine soils with widely varying properties and Cd, Cu and Pb levels were tested. Soil suspensions made up with 4 g in 40 mL deionized water were equilibrated with 5 cm2 Ca-saturated Chelex exchange resin membrane which was retained inside a polypropylene bag and shaken at 150 rpm for 24 hrs. Resin membrane extractable Cd, Cu and Pb of the soils were correlated with Cd, Cu, and Pb uptake by young wheat seedlings grown in these soils and compared with soil Cd, Cu, and Pb extracted by 0.1 M HCl, 0.01 M CaCl2, and 0.005 M Diethylenetriamine pentaacetic acid (DTPA). The amounts of Cd, Cu and Pb extracted by the Ca-saturated Chelex membrane from all tested soils correlated well with those absorbed by young wheat seedlings. The Ca-saturated Chelex membrane extractable Cd, Cu and Pb of the soil had the strongest correlation with plant uptake Cd, Cu and Pb among the extraction methods we tested. It was demonstrated that the Ca-saturated Chelex membrane extraction is an appropriate method in simultaneously estimating Cd, Cu and Pb phytoavailability of soil and is applicable to a wide range of soils.  相似文献   

14.
Understanding the chemical speciation of metals in solution is necessary for evaluating their toxicity and mobility in soils. Soil samples from the Powder River Basin, Wyoming were extracted with distilled deionised H2O. Soil water extracts were subjected to chemical speciation to determine the relative distribution and chemical forms of copper (Cu), zinc (Zn) and lead (Pb) in acidic environments. As pyrite oxidised, the pH decreased from 6.6 to 2.4, concentration of dissolved sulfate (ST) increased from 259 to 4,388 mg L-1 and concentration of dissolved organic carbon (DOC) decreased from 56.9 to 14.4 mg L-1. Dissolved Cu concentrations ranged from 0.06 to 0.42 mg L-1 and dissolved Zn concentrations ranged from 0.084 to 4.60 mg L-1. Dissolved concentrations of Pb were found to be 0.003 to 0.046 mg L-1. Chemical speciation indicated that at near neutral pH, dissolved metal concentration in soil water extracts was dominated by DOC- metal complexes. At low pH, dissolved metal concentration in soil water extracts was dominated by free ionic forms (e.g. Cu2+, Zn2+, Pb2+) followed by ion pairs (e.g. CuSO4 0, ZnSO inf4 sup0 , PbSO in4 sup0 ). Results obtained in this study suggest that as soil pH decreased, the availability and mobility of metal ions increased due to the chemical form in which these metal ions are present in soil solutions.  相似文献   

15.
A greenhouse experiment using 24 plastic pots filled with 6 kg of Pb- and Cd-contaminated soil was carried out. In all 24 pots, soils were heavy metal–contaminated with 10 mg Cd kg?1 soil and 500 mg of Pb kg?1 soil by using CdCl and PbNO3. Two-month-old tobacco (Nicotiana tabacum L.) plants were used to extract these heavy metals. Results showed that tobacco is able to remove Cd and Pb from contaminated soils and concentrate them in its harvestable part, that is, it could be very useful in phytoextraction of these heavy metals. Increasing additions of ammonium nitrate to soil (50, 100, and 150 mg N kg?1 soil) significantly (p ≤ .05) increased aboveground Cd and Pb accumulation during a 50-day experimental period, whereas increasing additions of urea to soil (50 and 100 mg N kg?1 soil) did not show these effects at the same significance levels. Increasing additions of ammonium nitrate to soil shows as dry matter increases, both accumulated Cd and accumulated Pb also increase when tobacco plants are growing under Pb- and Cd-contaminated soil conditions. Higher Pb concentrations depress Cd/Pb ratios for concentrations and accumulations, suggesting that Pb negatively affects Cd concentration and/or accumulation.  相似文献   

16.
The ligands iodide (I?) and thiocyanate (SCN?), alone or in admixture, in combination with a non-ionic surfactant, Triton X-100, were evaluated as washing agents for heavy metal desorption from a contaminated soil. After seven successive washings, selective sequential extraction (SSE) was performed to determine the heavy metal content that remained associated with each geo-chemical fraction of the soil. The surfactant with 0.336 mol L?1 of ligand I? removed 75% Cd and 23% Cu, whereas the mobilization of Zn and Pb were not significant after 7 washings. At a concentration of 0.286 mol L?1, the ligand SCN? in the presence of surfactant removed 36% Cd, 44% Cu and 77% Zn. Among the washing agents, the combination of I? and SCN? produced the highest desorption efficiencies 95% Cd, 48% Cu, and 3.1% Pb, but not for Zn. The SCN? ligand extracted the most Zn (77%). The SSE procedure indicated that the I? removed metals from the exchangeable, carbonate and oxide fractions whereas SCN? removed metals only from the exchangeable fraction. Both ligands, in the presence of surfactant, removed Cu from all fractions except the exchangeable sites, whereas only SCN? plus surfactant removed Zn from all fractions. The ligand mixture plus surfactant mobilized only limited quantities of Pb from the oxide and residual fractions.  相似文献   

17.
Instances of Soil and Crop Heavy Metal Contamination in China   总被引:1,自引:0,他引:1  
Both general and specific investigations of soil and crop heavy metal contamination were carried out across China. The former was focused mainly on Cd, Hg, As, Pb, and Cr in soils and vegetables in suburbs of four large cities; the latter investigated Cd levels in both soils and rice or wheat in contaminated areas throughout 15 provinces of the country. The results indicated that levels of Cd, Hg, and Pb in soils and some in crops were greater than the Governmental Standards (Chinese government limits for soil and crop heavy metal contents). Soil Cd ranged from 0.46 to 1.04?mg kg?1, on average, in the four cities and was as high as 145?mg kg?1 in soil and 7?mg kg?1 in rice in the wide area of the country. Among different species, tuberous vegetables seemed to accumulate a larger portion of heavy metals than leafy and fruit vegetables, except celery. For both rice and wheat, two staple food crops, the latter seemed to have much higher concentrations of Cd and Pb than the former grown in the same area. Furthermore, the endosperm of both wheat and rice crops had the highest portion of Cd and Cr. Rice endosperm and wheat chaff accumulated the highest Pb, although the concentrations of all three metals were variable in different parts of the grains. For example, 8.3, 6.9, 1.4, and 0.6?mg kg?1 of Pb were found in chaff, cortex, embryo, and endosperm of wheat compared with 0.11, 0.65, 0.71, and 0.19?mg kg?1 in the same parts of rice, respectively. Untreated sewage water irrigation was the major cause of increasing soil and crop metals. Short periods of the sewage water irrigation increased individual metals in soils by 2 to 80% and increased metals in crops by 14 to 209%. Atmospheric deposition, industrial or municipal wastes, sewage sludge improperly used as fertilizers, and metal-containing phosphate fertilizers played an important role as well in some specific areas.  相似文献   

18.
Most metals disperse easily in environments and can be bioconcentrated in tissues of many organisms causing risks to the health and stability of aquatic ecosystems even at low concentrations. The use of plants to phytoremediation has been evaluated to mitigate the environmental contamination by metals since they have large capacity to adsorb or accumulate these elements. In this study we evaluate Salvinia minima growth and its ability to accumulate metals. The plants were cultivated for about 60 days in different concentrations of Cd, Ni, Pb and Zn (tested alone) in controlled environmental conditions and availability of nutrients. The results indicated that S. minima was able to grow in low concentrations of selected metals (0.03 mg L?1 Cd, 0.40 mg L?1 Ni, 1.00 mg L?1 Pb and 1.00 mg L?1 Zn) and still able to adsorb or accumulate metals in their tissues when cultivated in higher concentrations of selected metals without necessarily grow. The maximum values of removal metal rates (mg m2 day?1) for each metal (Cd = 0.0045, Ni = 0.0595, Pb = 0.1423 e Zn = 0.4046) are listed. We concluded that S. minima may be used as an additional tool for metals removal from effluent.  相似文献   

19.
Copper,Lead, Cadmium,and Zinc Sorption By Waterlogged and Air-Dry Soil   总被引:1,自引:0,他引:1  
Competitive sorption of copper (Cu), lead (Pb), cadmium (Cd), and zinc (Zn) was studied in three soils of contrasting chemical and physical properties under air-dry and waterlogged conditions. Competitive sorption was determined using the standard batch technique using six solutions, each with Cu, Pb, Cd, and Zn concentrations of approximately 0, 2.5, 5, 10, 20, and 50?mg L?1Waterlogged soils tended to sorb higher amounts of added Cu, Pb, Zn and Cd relative to soils in the air-dry condition; however, this increase in sorption was generally not statistically (p<0.05) significant. The magnitude of sorption under both waterlogged and air-dry conditions was affected by the type and amount of soil materials involved in metal sorption processes, and competition between other metals for the sorption sites. Metal sorption was closely correlated with soil properties such as cation exchange capacity, organic carbon, and Fe and Mn hydrous oxides. Exchangeable Al may have markedly reduced metal sorption due to its strong affinity for the sorption sites, while increases in exchangeable Mn may have enhanced Zn and Cd sorption. Heavy metal sorption was best described as a combination of both specific and nonspecific interactions. The extractability of Cu, Pb, Cd, and Zn under waterlogged and air-dry conditions was also studied. Three solutions containing these metals were mixed with each soil to achieve a final concentration of 0, 50, and 500?mg kg?1. Each soil was extracted every 7 days using 1?M MgCl2 (pH 7) to determine metal extractability. Metal extractability initially decreased then increased due to waterlogging. The increased extractability of added metals was closely related to increased solubility of Fe and Mn suggesting that dissolution of Fe and Mn, oxides under reducing conditions caused a release of previously sorbed Cu, Pb, Cd, and Zn.  相似文献   

20.
Enhancing of Phytoremediation Efficiency Using Indole-3-Acetic Acid (IAA)   总被引:2,自引:0,他引:2  
In this study, a pot experiment using Solanum nigrum L. grown in cadmium-contaminated soil was conducted in a greenhouse. Indole-3-acetic acid (IAA) was applied at three different concentrations (1 mg L?1, 10 mg L?1, and 100 mg L?1) to examine the effects on phytoremediation efficiency. According to the experimental results, IAA increased the shoot biomass of S. nigrum significantly, by 124% at the highest concentration used, and increased the Cd concentration in the shoot of S. nigrum by 16%. The Cd extraction amount from a single plant was increased by up to 158%, demonstrating potential practical application for remediation practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号