首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
The lower six miles of the tidal portion of the Passaic River (Study Area) has been heavily industrialized since the mid-1800s. The objectives of this study were to: quantify the present extent and magnitude of chemical contamination in surface sediments from the Study Area; evaluate the contamination in the Study Area relative to a reference area and surrounding regional waterways; assess the potential for adverse effects to aquatic organisms; and identify spatial gradients in concentrations that may indicate potential point-sources of chemicals. Because existing ecological communities center primarily on intertidal mudflats in the Study Area, composite surface sediment was collected from 15 mudflats to generate a realistic assessment of fish and wildlife exposure to sediment contaminants. This study showed that present concentrations of organic contaminants are elevated throughout the Study Area and are generally higher than concentrations in the reference area and regional waterways. A screening-level analysis showed that there is potential for adverse effects to sediment-associated organisms from a number of chemicals. No spatial trends were apparent for most compounds evaluated, consistent with the presence of multiple sources of chemicals in the Study Area. The exception is semivolatile compounds, which appear to be localized to specific mudflats, indicating potential point-sources of contamination for these chemicals.  相似文献   

2.
The lower 6 miles of the tidal Passaic River, part of the New York/New Jersey (NY/NJ) Harbor Estuary system, are contaminated with a variety of organic and inorganic chemicals as a result of more than 150 years of heavy industrialization and urbanization. The River's ecology is substantially degraded due to habitat removal/alteration, and the organisms that reside in or utilize the River are exposed to and bioaccumulate chemicals from sediments and food web interactions. We quantify in this study the extent and magnitude of chemical contamination in several fish species (representing a range of trophic levels) and blue crab (Callinectes sapidus). In addition, the concentration of several contaminants of concern are compared to concentrations in similar organisms from other areas of the NY/NJ Harbor Estuary, as well as available tissue-based toxicological effects benchmarks that are reported in the literature. The results suggest that a variety of contaminants are present at elevated levels in each of the species collected from the River. Several contaminants, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), total DDT (2,2-bis[4-chlorophenyl]1,1-dichloroethene), copper, and mercury are present at average concentrations that exceed those from other waterways in the NY/NJ Harbor Estuary. However, the concentrations of contaminants in the River, with few exceptions do not exceed available toxic effects levels as reported in the literature for these or similar fish and crustaceans. This suggests that toxicological risks from bioaccumulative contaminants in the lower Passaic River are limited to select contaminants and species.  相似文献   

3.
This study investigated the dissolved trace metal contamination levels of Zn, Sr, B, Al, Ba, Fe, Mn, Li, V, Be, Cd, Cr, Cu, Mo, Ni, Se, and Pb in 23 surface waters of the Yellow River Delta (YRD) in China. Coefficients of variation with 66–260% reflected large spatial variations of concentrations of metals. Compared to drinking water guidelines established by the World Health Organization and the U.S. Environmental Protection Agency, the primary trace metal pollution components (Al, B, V, and Zn) were above drinking water standard levels by 82.6%, 47.8%, 52.2%, and 52.2%, respectively. Preliminary risk assessments were determined via the Hazard Quotient (HQ) to evaluate the human health risk of these metals. HQingestion of V indicated potential deleterious health effects for residents. Hierarchical cluster results revealed that clusters 1, 2, and 3 were primarily affected by pollution from industrial and domestic activities, natural and agriculture activities, and oil fields, respectively. Principal component analysis results indicated Fe, Mn, Al, and Ba were controlled by natural sources, whereas anthropogenic activities led to high pollution levels of Al, B, V, Zn, and Sr.  相似文献   

4.
Metal contamination in sediment of the Mianyuan River (one of the major upper reaches of the Yangtze River) in Longmenshan Region (China) was investigated in 2012. Means of metal concentrations in sediment (<74μm) were Cr: 59.93 ± 19.8% mg/kg; As: 7.21 ± 50.2% mg/kg; Se: 0.45 ± 66.3% mg/kg; Pb: 19.89 ± 29.3% mg/kg; Zn: 78.98 ± 31.9% mg/kg; Cd: 0.69 ± 28.3% mg/kg; Ba: 0.71 ± 34.0% g/kg; Mn: 0.55 ± 62.2% g/kg. This study suggested: (1) concentrations of Cd, As, Cr, and Pb in Mianyuan River sediment were lower than those of the middle and lower reaches of the Yangtze River; (2) the increase of metals during the period from 2006 to 2009 was probably related to the destruction of tailings piles by the Wen Chun earthquake in 2008; (3) organic materials decided the distribution of Cd, Se, As, Ba, and Mn in the upstream sediment, while the iron and manganese minerals controlled the distribution of Ba, Cr, and Zn in the downstream sediment; (4) sources of Cd, Se, and As were geogenic, while sources of Cr, Zn, Ba, and Mn were anthropogenic; (5) the source of Pb in the upstream sediment was probably automobile exhaust, but that of Pb in the downstream sediment was geogenic.  相似文献   

5.
In this study, sediment samples were collected from Kabul River (Pakistan) and analyzed for heavy metals including zinc (Zn), cadmium (Cd), chromium (Cr), nickel (Ni) and lead (Pb). The physico-chemical characteristics were also determined which are known to influence the metal accumulation within the sediment matrix. Heavy metal concentrations (mg kg?1, dry weight basis) in the sediment were in the order of Zn > Cr > Ni > Pb > Cd. Heavy metal concentrations were found in moderately polluted category set by U. S. Environmental Protection Agency (USEPA). However, Cr and Ni concentrations exceeded the screening levels at the sites where a larger volume of industrial effluents enter into Kabul River. Higher concentrations of almost all the tested metals were detected at locations of greater industrial and sewage entry points. Sediment organic matter (OM) exhibited strong correlation with Pb (R2 = 0.80), Ni (R2 = 0.67) and Zn (R2 = 0.46), indicating that OM plays a significant role in metal retention and accumulation. The findings of this study showed that Kabul River is reasonably contaminated with selected heavy metals released from anthropogenic sources. In the study area, sewage discharge was the major source of heavy metals including Zn and Pb, which were observed at locations where sewage effluents enter into the river.  相似文献   

6.
二道坊河沉积物中重金属等元素富集特征的研究   总被引:4,自引:1,他引:4  
以二道坊河沉积物为研究对象 ,采用相关与回归分析综合地研究了 1 4种元素在沉积物中的富集特征 .结果表明 :地球化学性质相近的元素 ,它们在沉积物中的相关系数大多达到了显著或极显著的水平 ;通过因子分析 ,求出了 4个主因子 ,它们代表沉积物中1 4种元素测定信息的 85% ,以第一、二主因子对应的特征向量为X、Y轴将 1 4个元素分成了 3类 ;建立了大部分元素与沉积物性质之间的多元回归方程 .  相似文献   

7.
The distribution of Cd, Pb, Ni, Cr, Cu, Mn, Fe, and Zn in sediment and surface water, and some physico-chemical characteristics of Orogodo river sediments, were evaluated. The sediment pH ranged from 5.1–7.3; conductivity values ranged from 34.5 to 389.0 μScm?1. Total nitrogen values ranged from 0.06–0.10%, NH3-N values ranged from 0.25–0.44 mgkg?1, percent total organic carbon ranged from 0.21–1.68%, and total phosphorus values ranged from 0.004–0.02% for dry and wet seasons. The sand fraction consists of 87–95%, silt fractions ranged from 0–2%, and clay fraction between 4–13%. The mean concentrations of metals (dry weight basis) in the streambed sediments ranged from 1.92–17.37 mgkg?1 for Cu, 0.98–4.78 mgkg?1 for Ni, 0.01–32.98 mgkg?1 for Mn, 353.22–2045.64 mgkg?1 for Fe, 69.96–100.16 mgkg?1 for Zn, 0.21–1.32 mgkg?1 for Cr, and Cd was less than 0.001 mgkg?1 for wet and dry seasons. The mean concentrations of metals in the surface water ranged between 0.01–0.05–0.05 mg/L for Cu, nd-0.11 mg/L for Ni, 0.001–0.31 mg/L for Pb, 0.001–1.82 mg/L Mn, 0.01–3.52 mg/L for Fe, 0.16–0.61 mg/L for Zn, nd-0.007 mg/L for Cr, and <0.001 mg/L for Cd. Based on principal component analysis, two main sources of metals in the Orogodo River can be identified: (i) Cr, Cu, Pb, and Fe are mainly derived from industrial sources; (ii) Mn, Zn, and Ni associated with traffic activities. No element examined had a contamination/pollution index value greater than unity (pollution ranges). This implies that the multiple pollution indices obtained from the analysis showed that Orogodo River sediments were not polluted with heavy metals.  相似文献   

8.
The presented study assessed the heavy metal contamination risk in a former sludge deposit field of the River Ruhr in Essen, Germany. Therefore, the temporal and spatial distribution in soils and plants, chemical fractionation, mobilization potential, and transfer characteristics have been investigated. Soil samples, roots and shoots of rushes (Juncus sp.), and stem wood disks of willows (Salix sp.) were analyzed for Zn, Cu, Pb, Ni, Cr, and Cd. Plant available and mobile heavy metal portions have been determined using a sequential extraction procedure. The results show that the soils and the rushes are highly contaminated, although there is a considerable decrease compared to initial concentrations some 20 years ago. The willows show only small heavy metal enrichment. pH induced mobilization potential in soil is high for Cd, Zn and Ni. Additionally, these elements contain high portions of plant-available fractions. High transfer rates from soil to roots and very high rates from roots to shoots of rushes have been determined for Cd and Zn, indicating an accumulation of these elements in shoots of rushes. The rushes reflect the temporal and spatial heavy metal distribution in soil and might thus be used as a bioindicator or for phytoremediation.  相似文献   

9.
大辽河水系表层水中多环芳烃的污染特征   总被引:8,自引:0,他引:8  
采用GC/MS对大辽河水系的浑河、太子河和大辽河表层水和悬浮物中的多环芳烃 (PAHs) 进行了定量分析,探讨了大辽河水系表层水和悬浮物中多环芳烃分布特征与来源.结果表明,水样和悬浮颗粒物中PAHs总量浓度分布范围分别为:水样946.1~13 448.5 ng·L-1;悬浮颗粒物317.5~238 518.7 ng·g-1.多环芳烃的浓度分布表现为太子河>大辽河>浑河,靠近工业区的PAHs浓度明显高于城市和非工业区.水样中PAHs以3~5环为主,悬浮颗粒物样中PAHs以2环为主.PAHs特定分子比率分析表明,大辽河水系受到石油输入和热解的复合PAH污染,采样站位附近石油化工和钢铁工业是PAHs的主要来源.与世界其他河流和海洋地区相比,水和悬浮颗粒物中污染浓度较高,具有一定的生态风险.  相似文献   

10.
罗冬莲 《生态学杂志》2014,25(12):3664-3672
采用气相色谱(GC-ECD)方法分析了漳江口水环境中表层水、沉积物和水生生物体内滴滴涕(DDTs)的污染水平,初步研究了其在多介质中的含量、转移分配规律,并根据其沿江分布规律、组成特征,结合三氯杀螨醇同步调查结果进行了溯源分析.结果表明: 漳江口表层水中的DDTs平均含量为枯水期10.5 ng·L-1(未检出~20.1 ng·L-1)、丰水期28.3 ng·L-1 (未检出~45.2 ng·L-1)、平水期5.03 ng·L-1 (未检出~18.8 ng·L-1);表层沉积物中DDTs含量(以干质量计)为1.87~144 ng·g-1,平均17.3 ng·g-1;11种水生生物中DDTs的含量范围为1.09~432 ng·g-1,平均37.0 ng·g-1.与其他地区相比,漳江口表层水和沉积物中的DDTs残留属于中等水平.DDT在沉积物中的富集因子为1185;在生物体中的富集因子平均为2534,富集能力依次为水生植物<虾类<贝类<鱼类.DDTs沿江分布基本呈下降趋势,推断其残留与船舶防污剂释放关系不大,主要来源于陆源性污染.组成特征分析显示,漳江口DDTs主要来源于环境中的早期残留,而Y-8站(江心岛后)近期有新的DDTs输入,可能与三氯杀螨醇的使用有关.同步调查结果显示,Y-8站表层水和沉积物中均检出三氯杀螨醇,且含量最高,近期存在三氯杀螨醇的施用.  相似文献   

11.
More than one thousand samples were collected and analyzed to evaluate the potential impact of Motiva's oil refinery effluent on the receiving water, sediment, and biota of the Delaware River. The data collected from these samples were used with advanced chemical fingerprinting of polycyclic aromatic hydrocarbons (PAHs) in Motiva's oil refinery effluent to differentiate Motiva-related PAHs in sediment and biota from other sources. The PAHs released from the refinery between 1999 and 2002 were dominated by petrogenic 4-ring PAHs. Specifically, the refinery signature exhibited relatively high levels of fluoranthenes/pyrenes with two (FP2) and three (FP3) alkyl groups and benz(a)anthracene/chrysenes with two (BC2), three (BC3), and four (BC4) alkyl groups. This PAH signature, attributed to accelerated degradation of low molecular weight PAHs in the Motiva wastewater treatment plant, exhibited little variability over time relative to the background patterns in the Delaware River. This distinctive feature of the Motiva effluent allowed the identification of this source in other samples. Water and sediment samples identified a range of PAH characteristics associated with the Delaware River urban background signature. These characteristics included varying levels of 2- to 3-ring PAHs (likely from weathered automotive fuel, marine fuel, or bilge tank discharges), pyrogenic 4- to 6-ring PAHs (from partially combusted organic material like soot), and perylene (diagenetic product of terrestrial plant decomposition). The Motiva hydrocarbon signature was only evident at moderate to low levels in selected near-field sampling stations for sediment, bivalves, and effluent/nearfield water. PAHs in the river sediments beyond the near-field area were consistently associated with samples containing the Delaware River urban background signature, and exhibited little to no effect from the Refinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号