首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ClC-3 is a ubiquitously expressed chloride transport protein that is present in synaptic vesicles and endosome/lysosome compartments. It is largely intracellular but has been observed at the plasma membrane as well. The aim of this study was to identify the pathways and regulation of ClC-3 trafficking to intracellular sites. At the steady state, approximately 94% of transfected ClC-3 was localized intracellularly, and only 6% was at the plasma membrane. Pulse labeling with [(35)S]methionine and biotinylation demonstrated that about 25% of newly synthesized ClC-3 traffics through the plasma membrane. We used both immunofluorescence microscopy and biotinylation assays to assess the trafficking of ClC-3. Plasma membrane ClC-3 was rapidly endocytosed (t((1/2)) approximately 9 min); a portion entered a recycling pool that returned to the cell surface after internalization, and the remainder trafficked to more distal intracellular compartments. ClC-3 associated with clathrin at the plasma membrane. Coimmunoprecipitation and glutathione S-transferase pulldown assays demonstrated that the N terminus of ClC-3 binds to clathrin. Alanine replacement of a dileucine acidic cluster within the cytosolic N terminus (amino acids 13-19) resulted in a molecule that had decreased endocytosis and increased surface expression. This replacement also abolished interaction with clathrin as assessed both by coimmunoprecipitation and glutathione S-transferase pulldown assays. We conclude that ClC-3 is primarily an intracellular transport protein that is transiently inserted into the plasma membrane where it is rapidly endocytosed. Internalization of ClC-3 depends on the interaction between an N-terminal dileucine cluster and clathrin.  相似文献   

2.
A biosynthetic study of rat liver coated vesicle (CV) proteins was undertaken by using in vivo labeling with L-[35S]methionine. CVs were isolated and purified by using standard procedures and characterized by electron microscopy, sedimentation, and sodium dodecyl sulfate polyacrylamide gel electrophoresis followed by fluorography, or by gel slicing and liquid scintillation counting. After 5 1/2 min of labeling (the earliest time examined), incorporation of radioactive clathrin heavy-chain (180-kD (kilodalton] subunits as well as a 90-kD CV-associated protein into purified CVs was demonstrated. The level of labeled 180-kD clathrin in coated vesicles increased rapidly during the first 2 hr of labeling and then continued to rise at a slower rate between 4 and 16 hr. This slow accumulation of labeled clathrin heavy chains in the CV pool may reflect early compartmental sequestration of a fraction of newly synthesized clathrin with delayed assembly into free CVs. By 16 hr of labeling, clathrin 180-kD chains and the 90-kD CV-associated protein accounted for approximately 48 and 26%, respectively, of the radioactivity in all CV proteins. Two proteins of MWa 68 kD and 53 kD showed marked declines in cpm/unit protein between 30 min and 4 hr, raising the possibility that these species may be transferred out of CVs during or after transport without loss of the other CV proteins. The possibility is also raised that clathrin heavy chains may be recycled during CV formation. Possible heterogeneity within individual CV preparations with respect to protein composition and derivation from both plasma membrane and Golgi regions are proposed.  相似文献   

3.
Immunofluorescent localization of 100K coated vesicle proteins   总被引:26,自引:15,他引:11       下载免费PDF全文
A family of coated vesicle proteins, with molecular weights of approximately 100,000 and designated 100K, has been implicated in both coat assembly and the attachment of clathrin to the vesicle membrane. These proteins were purified from extracts of bovine brain coated vesicles by gel filtration, hydroxylapatite chromatography, and preparative SDS PAGE. Peptide mapping by limited proteolysis indicated that the polypeptides making up the three major 100K bands have distinct amino acid sequences. When four rats were immunized with total 100K protein, each rat responded differently to the different bands, although all four antisera cross-reacted with the 100K proteins of human placental coated vesicles. After affinity purification, two of the antisera were able to detect a 100K band on blots of whole 3T3 cell protein and were used for immunofluorescence, double labeling the cells with either rabbit anti-clathrin or with wheat germ lectin as a Golgi apparatus marker. Both antisera gave staining that was coincident with anti-clathrin, with punctate labeling of the plasma membrane and perinuclear Golgi apparatus labeling. Thus, the 100K proteins are present on endocytic as well as Golgi-derived coated pits and vesicles. The punctate patterns were nearly identical with anti-100K and anti-clathrin, indicating that when vesicles become uncoated, the 100K proteins are removed as well as clathrin. One of the two antisera gave stronger plasma membrane labeling than Golgi apparatus labeling when compared with the anti-clathrin antiserum. The other antiserum gave stronger Golgi apparatus labeling. Although we have as yet no evidence that these two antisera label different proteins on blots of 3T3 cells, they do show differences on blots of bovine brain 100K proteins. This result, although preliminary, raises the possibility that different 100K proteins may be associated with different pathways of membrane traffic.  相似文献   

4.
Affinity-purified antibodies prepared against the major coat protein of brain coated vesicles, clathrin, were microinjected into cultured fibroblasts, and their intracellular distribution was followed by immunofluorescence microscopy and ultrastructural immunocytochemistry. Microinjected anticlathrin antibodies were concentrated on coated regions of the plasma membrane and the GERL apparatus. When an excess of anticlathrin antibodies was injected into the cytosol, coated pits on the plasma membrane were covered by anticlathrin antibody but still functioned to cluster an internalize alpha2-macroglobulin. These results are discussed in terms of the role of clathrin in the pathway of receptor-mediated endocytosis. Our data indicate that in cultured fibroblasts coated pits are stable elements permanently attached to the plasma membrane.  相似文献   

5.
Clathrin-coated vesicles bud from selected cellular membranes to traffic-specific intracellular proteins. To study the dynamic properties of clathrin-coated membranes, we expressed clathrin heavy chain tagged with green fluorescent protein (GFP) in Dictyostelium cells. GFP-clathrin was functional and retained the native properties of clathrin: the chimeric protein formed classic clathrin lattices on cellular membranes and also rescued phenotypic defects of clathrin null cells. GFP-clathrin distributed into punctate loci found throughout the cytoplasm, on the plasma membrane, and concentrated to a perinuclear location. These clathrin-coated structures were remarkably motile and capable of rapid and bidirectional transport across the cell. We identified two local domains of the plasma membrane as sites for clathrin recruitment in motile cells. First, as cells translocated or changed shape and retracted their tails, clathrin was transiently concentrated on the membrane at the back of the cell tail. Second, as cells capped their cell surface receptors, clathrin was recruited locally to the membrane under the tight cap of cross-linked receptors. This suggests that local sites for clathrin polymerization on specific domains of the plasma membrane undergo rapid and dynamic regulation in motile cells.  相似文献   

6.
The effects of methods known to perturb endocytosis from clathrin- coated pits on the localization of clathrin and HA2 adaptors in HEp-2 carcinoma cells have been studied by immunofluorescence and ultrastructural immunogold microscopy, using internalization of transferrin as a functional assay. Potassium depletion, as well as incubation in hypertonic medium, remove membrane-associated clathrin lattices: flat clathrin lattices and coated pits from the plasma membrane, and clathrin-coated vesicles from the cytoplasm, as well as those budding from the TGN. In contrast, immunofluorescence microscopy using antibodies specific for the alpha- and beta-adaptins, respectively, and immunogold labeling of cryosections with anti-alpha- adaptin antibodies shows that under these conditions HA2 adaptors are aggregated at the plasma membrane to the same extent as in control cells. After reconstitution with isotonic K(+)-containing medium, adaptor aggregates and clathrin lattices colocalize at the plasma membrane as normally and internalization of transferrin resumes. Acidification of the cytosol affects neither clathrin nor HA2 adaptors as studied by immunofluorescence microscopy. However, quantitative ultrastructural observations reveal that acidification of the cytosol results in formation of heterogeneously sized and in average smaller clathrin-coated pits at the plasma membrane and buds on the TGN. Collectively, our observations indicate that the methods to perturb formation of clathrin-coated vesicles act by different mechanisms: acidification of the cytosol by affecting clathrin-coated membrane domains in a way that interferes with budding of clathrin-coated vesicles from the plasma membrane as well as from the TGN; potassium depletion and incubation in hypertonic medium by preventing clathrin and adaptors from interacting. Furthermore our observations show that adaptor aggregates can exist at the plasma membrane independent of clathrin lattices and raise the possibility that adaptor aggregates can form nucleation sites for clathrin lattices.  相似文献   

7.
Clathrin plays important roles in intracellular membrane traffic including endocytosis of plasma membrane proteins and receptors and protein sorting between the trans-Golgi network (TGN) and endosomes. Whether clathrin serves additional roles in receptor recycling, degradative sorting, or constitutive secretion has remained somewhat controversial. Here we have used acute pharmacological perturbation of clathrin terminal domain (TD) function to dissect the role of clathrin in intracellular membrane traffic. We report that internalization of major histocompatibility complex I (MHCI) is inhibited in cells depleted of clathrin or its major clathrin adaptor complex 2 (AP-2), a phenotype mimicked by application of Pitstop® inhibitors of clathrin TD function. Hence, MHCI endocytosis occurs via a clathrin/AP-2-dependent pathway. Acute perturbation of clathrin also impairs the dynamics of intracellular clathrin/adaptor complex 1 (AP-1)- or GGA (Golgi-localized, γ-ear-containing, Arf-binding protein)-coated structures at the TGN/endosomal interface, resulting in the peripheral dispersion of mannose 6-phosphate receptors. By contrast, secretory traffic of vesicular stomatitis virus G protein, recycling of internalized transferrin from endosomes, or degradation of EGF receptor proceeds unperturbed in cells with impaired clathrin TD function. These data indicate that clathrin is required for the function of AP-1- and GGA-coated carriers at the TGN but may be dispensable for outward traffic en route to the plasma membrane.  相似文献   

8.
Insulin stimulates the movement of two glucose transporter isoforms (GLUT1 and GLUT4) to the plasma membrane (PM) in adipocytes. To study this process we have prepared highly purified PM fragments by gently sonicating 3T3-L1 adipocytes grown on glass coverslips. Using confocal laser immunofluorescence microscopy we observed increased PM labeling for GLUT1 (2.3-fold) and GLUT4 (eightfold) after insulin treatment in intact cells. EM immunolabeling of PM fragments indicated that in the nonstimulated state GLUT4 was mainly localized to flat clathrin lattices. Whereas GLUT4 labeling of clathrin lattices was only slightly increased after insulin treatment, labeling of uncoated PM regions was markedly increased with insulin. These data suggest that GLUT4 recycles from the cell surface both in the presence and absence of insulin. In streptolysin-O permeabilized adipocytes, insulin, and GTP gamma S increased PM levels of GLUT4 to a similar extent as observed with insulin in intact cells. In the absence of an exogenous ATP source the magnitude of these effects was considerably reduced. Removal of ATP per se caused a significant increase in cell surface levels of GLUT4 suggesting that ATP may be required for intracellular sequestration of these transporters. When insulin and GTP gamma S were added together, in the presence of ATP, PM GLUT4 levels were similar to levels observed when either insulin or GTP gamma S was added individually. Addition of GTP gamma S was able to overcome this ATP dependence of insulin-stimulated GLUT4 movement. GTP gamma S had no effect on constitutive secretion of adipsin in permeabilized cells. In addition, there was no effect of insulin or GTP gamma S on GLUT4 movement to the PM in noninsulin sensitive streptolysin-O-permeabilized 3T3-L1 fibroblasts overexpressing GLUT4. We conclude that the insulin-stimulated movement of GLUT4 to the cell surface in adipocytes may require ATP early in the insulin signaling pathway and a GTP-binding protein(s) at a later step(s). We propose that the association of GLUT4 with clathrin lattices may be important in maintaining the exclusive intracellular location of this transporter in the absence of insulin.  相似文献   

9.
Phosphoinositide 3-kinase C2alpha (PI3K-C2alpha) is a member of the class II PI-3 kinases, defined by the presence of a second C2 domain at their C termini. The cellular functions of the class II enzymes are incompletely understood, though they have been implicated in receptor activation pathways initiated by epidermal growth factor, insulin, and chemokines. PI3K-C2alpha was recently found to be localized to clathrin-coated membranes in the trans-Golgi network and at endocytic sites on the plasma membrane. Further, a specific binding site was identified for clathrin on the N terminus of PI3K-C2alpha, whose occupancy resulted in lipid kinase activation. Expression of PI3K-C2alpha in cells dramatically affected clathrin distribution and function in cells, leading to accumulation of intracellular clathrin-coated structures, which are visualized here at the ultrastructural level, and inhibition of clathrin-mediated transport from both the plasma membrane and the trans-Golgi network. In this study we have demonstrated that the isolated clathrin binding domain of PI3K-C2alpha can drive clathrin lattice assembly and that both it and the lipid kinase activity of the protein can independently modulate clathrin distribution and function when expressed in cells. Together, these results suggest that PI3K-C2alpha employs both protein-protein interaction and localized production of 3-phosphoinositides to affect clathrin dynamics at sites of membrane budding and targeting.  相似文献   

10.
The presence of lysosomal acid phosphatase (LAP) in coated pits at the plasma membrane was investigated by immunocytochemistry in thymidine kinase negative mouse L-cells (Ltk-) and baby hamster kidney (BHK) cells overexpressing human LAP (Ltk-LAP and BHK-LAP cells). Double immunogold labeling showed that at various stages of invaginating coated pits LAP colocalized with clathrin and plasma membrane adaptors (HA-2 adaptors). Quantitation of the immunogold label showed similar density of wild-type LAP in coated over non-coated areas of the plasma membrane, whereas an internalization-deficient, truncated mutant of LAP which lacks the cytoplasmic tail was less efficiently included into coated pits. Internalization of anti-LAP antibodies into endosomal vesicles was accompanied by rapid dissociation of the coat proteins as shown by an immunofluorescence assay. The role of clathrin-coated vesicles in internalization of LAP was further corroborated by microinjecting monoclonal antibodies against clathrin or HA-2 adaptors into BHK-LAP cells. Internalization of LAP as detected by an immunofluorescence assay was transiently blocked by microinjected antibodies against clathrin or HA-2 adaptors, whereas unrelated antibodies did not affect internalization. These data suggest that LAP is included into clathrin-coated pits of the plasma membrane for rapid internalization.  相似文献   

11.
Clathrin assembly at the plasma membrane is a fundamental process required for endocytosis. In cultured cells, most of the clathrin is localized to large patches that display little lateral mobility. The functional role of these regions is not clear, and it has been thought that they may represent artifacts of cell adhesion of cultured cells. Here we have analyzed clathrin organization in primary adipose cells isolated from mice, which are nonadherent and fully differentiated. The majority of clathrin on the plasma membrane of these cells (>60%) was found in large clathrin patches that displayed virtually no lateral mobility and persisted for many minutes, and a smaller amount was found in small spots that appeared and disappeared rapidly. Direct visualization of transferrin revealed that it bound onto large arrays of clathrin, internalizing through vesicles that emerge from these domains. High resolution imaging (50 images/s) revealed fluorescence intensity fluctuations consistent with the formation and detachment of coated vesicles from within large patches. These results reveal that large clathrin assemblies are active regions of endocytosis in mammalian cells and highlight the importance of understanding the mechanistic basis for this organization.  相似文献   

12.
13.
We have analyzed brain coated vesicles and synaptic plasma membrane for the presence of the plasma membrane proteolipid protein. Coated vesicles were isolated from calf brain gray matter with a final purification on Sephacryl S-1000 and reisolated twice by chromatography to ensure homogeneity. Fractions were analyzed by gel electrophoresis, immunoblotting for clathrin heavy chain, and by electron microscopy. Using an immunoblotting assay we were able to demonstrate the presence of the plasma membrane proteolipid protein in these coated vesicles at a significant level (i.e., approximately 1% of the bilayer protein of these vesicles). Reisolation of coated vesicles did not diminish the concentration of the protein in this fraction. Removal of the clathrin coat proteins or exposure of the coated vesicles to 0.1 M Na2CO3 showed that the plasma membrane proteolipid protein is not removed during uncoating and lysis but is intrinsic to the membrane bilayer of these vesicles. These studies demonstrate that plasma membrane proteolipid protein represents a significant amount of the bilayer protein of coated vesicles, suggesting that these vesicles may be a transport vehicle for the intracellular movement of the plasma membrane proteolipid protein. Isolation of synaptic plasma membranes proteolipid adult rat brain and estimation of the plasma membrane proteolipid protein content using the immunoblotting method confirmed earlier studies that show this protein is present in this membrane fraction at high levels as well (approximately 1-2%). The level of this protein in the synaptic plasma membrane suggests that the synaptic plasma membrane is one major site to which these vesicles may be targeted or from which the protein is being retrieved.  相似文献   

14.
Insulin receptor mutation studies that the receptor tyrosine kinase activity is necessary for receptor endocytosis, and several insulin receptor-containing tissues have a plasma membrane-associated protein (Mr 180,000, p180) whose tyrosine phosphorylation is receptor catalysed. Since clathrin heavy chain (Mr 180,000 in dodecyl sulphate gel electrophoresis) is a major component of coated vesicles, the latter functioning in receptor endocytosis, we investigated whether insulin receptors can catalyse clathrin phosphorylation and whether p180 is clathrin. Bovine brain triskelion or coated vesicles and 32P-ATP were added to prephosphorylated insulin receptor preparations (wheat ferm agglutinin-purified human placenta membrane proteins). Antiphosphotyrosine immunoprecipitated a phosphorylated 180,000 molecular weight protein. Insulin (10−7M) increased the rate of phosphorylation. Monoclonal anti-clathrin antibody immunoprecipitated the phosphorylated 180,000 molecular weight protein, whereas monoclonal anti-insulin receptor antibodies (-IR1, MA10) immunoprecipitated both insulin receptors and the phosphorylated 180,000 molecular weight protein. In the absence of added clathrin, anticlathrin immunoprecipitated no proteins, and -IR1 imunoprecipitated only the insulin receptor. Density gradient (glycerol 7.5–30%, w/v) centrifugation separated human placenta microsomal membrane proteins into endosomal, plasma membrane, cytoplasmic and coated vesicle fractions. Antiphosphotyrosine immunoprecipitated phosphorylated-microsomal proteins that centrifugated into endosomal and plasma membrane fractions. Addition of glycerol gradient fractions to a prephosphorylated insulin receptor preparation, however, gave a tyrosine-phosphorylated 180,000 molecular weight protein when cytoplasmic and coated vesicle fractions were added. Taken together these results suggest: (1) that, in vitro, human placenta insulin receptors can phosphorylate bovine brain and human placenta clathrin heavy chain; (2) that both assembled and unassembled clathrin can be phosphorylated; and (3) that p180, the plasma membrane-associated insulin receptor substrate, is not clathrin heavy chain.  相似文献   

15.
The clathrin assembly lymphoid myeloid leukemia (CALM) gene encodes a putative homologue of the clathrin assembly synaptic protein AP180. Hence the biochemical properties, the subcellular localization, and the role in endocytosis of a CALM protein were studied. In vitro binding and coimmunoprecipitation demonstrated that the clathrin heavy chain is the major binding partner of CALM. The bulk of cellular CALM was associated with the membrane fractions of the cell and localized to clathrin-coated areas of the plasma membrane. In the membrane fraction, CALM was present at near stoichiometric amounts relative to clathrin. To perform structure-function analysis of CALM, we engineered chimeric fusion proteins of CALM and its fragments with the green fluorescent protein (GFP). GFP-CALM was targeted to the plasma membrane-coated pits and also found colocalized with clathrin in the Golgi area. High levels of expression of GFP-CALM or its fragments with clathrin-binding activity inhibited the endocytosis of transferrin and epidermal growth factor receptors and altered the steady-state distribution of the mannose-6-phosphate receptor in the cell. In addition, GFP-CALM overexpression caused the loss of clathrin accumulation in the trans-Golgi network area, whereas the localization of the clathrin adaptor protein complex 1 in the trans-Golgi network remained unaffected. The ability of the GFP-tagged fragments of CALM to affect clathrin-mediated processes correlated with the targeting of the fragments to clathrin-coated areas and their clathrin-binding capacities. Clathrin-CALM interaction seems to be regulated by multiple contact interfaces. The C-terminal part of CALM binds clathrin heavy chain, although the full-length protein exhibited maximal ability for interaction. Altogether, the data suggest that CALM is an important component of coated pit internalization machinery, possibly involved in the regulation of clathrin recruitment to the membrane and/or the formation of the coated pit.  相似文献   

16.
We investigated the organization of two structural elements (microfilaments and clathrin coated structures) at the ventral plasma membrane in fibroblasts. The methods employed included exposure of the inner face of the ventral plasma membrane by lysis-squirting, labeling the exposed structures with specific antibodies conjugated with colloidal gold, and platinum-carbon replica techniques. The results demonstrate that this regimen combines good ultrastructural preservation with unambiguous identification of structural elements associated with the plasma membrane. This method is therefore reliable and can be generally used to explore in detail the ultrastructural organization of the plasma membrane.  相似文献   

17.
Brown CM  Roth MG  Henis YI  Petersen NO 《Biochemistry》1999,38(46):15166-15173
Image correlation spectroscopy and cross correlation spectroscopy were used to demonstrate that approximately 25% of the internalization-competent influenza virus hemagglutinin mutant, HA+8, is colocalized with clathrin and AP-2 at the plasma membrane of intact cells, while wild-type HA (which is excluded from coated pits) does not colocalize with either protein. Clathrin and AP-2 clusters were saturated when HA+8 was overexpressed, and this was accompanied by a redistribution of AP-2 into existing coated pits. However, de novo coated pit formation was not observed. In nontreated cells, the number of clusters of clathrin or AP-2 colocalized with HA+8 was always comparable. Hypertonic treatment which disperses the clathrin lattices resulted in more clusters containing AP-2 and HA+8 than clathrin and HA+8. Less colocalization of HA+8 with clathrin was also observed after cytosol acidification, which causes the formation of deeply invaginated pits, where the HA+8 may be inaccessible to extracellular labeling by antibodies, and blocks coated vesicle budding. However, cytosol acidification elevated the number of clusters containing both HA+8 and AP-2, suggesting an increase in their level of association outside of the deep invaginations. Our results imply that AP-2 and HA+8 can colocalize in clusters devoid of clathrin, at least in cells treated to alter the clathrin lattice structure. Although we cannot ascertain whether this also occurs in untreated cells, we propose that AP-2 binding to membrane proteins carrying internalization signals can occur prior to the binding of AP-2 to clathrin. While such complexes can in principle serve to recruit clathrin for the formation of new coated pits, the higher affinity of the internalization signals for clathrin-associated AP-2 [Rapoport, I., et al. (1997) EMBO J. 16, 2240-2250] makes it more likely that once the AP-2-membrane protein complexes form, they are quickly recruited into existing coated pits.  相似文献   

18.
AP180, one of many assembly proteins and adaptors for clathrin, stimulates the assembly of clathrin lattices on membranes, but its unique contribution to clathrin function remains elusive. In this study we identified the Dictyostelium discoideum ortholog of the adaptor protein AP180 and characterized a mutant strain carrying a deletion in this gene. Imaging GFP-labeled AP180 showed that it localized to punctae at the plasma membrane, the contractile vacuole, and the cytoplasm and associated with clathrin. AP180 null cells did not display defects characteristic of clathrin mutants and continued to localize clathrin punctae on their plasma membrane and within the cytoplasm. However, like clathrin mutants, AP180 mutants, were osmosensitive. When immersed in water, AP180 null cells formed abnormally large contractile vacuoles. Furthermore, the cycle of expansion and contraction for contractile vacuoles in AP80 null cells was twice as long as that of wild-type cells. Taken together, our results suggest that AP180 plays a unique role as a regulator of contractile vacuole morphology and activity in Dictyostelium.  相似文献   

19.
The role of clathrin light chain phosphorylation in regulating clathrin function has been examined in Saccharomyces cerevisiae. The phosphorylation state of yeast clathrin light chain (Clc1p) in vivo was monitored by [32P]phosphate labeling and immunoprecipitation. Clc1p was phosphorylated in growing cells and also hyperphosphorylated upon activation of the mating response signal transduction pathway. Mating pheromone-stimulated hyperphosphorylation of Clc1p was dependent on the mating response signal transduction pathway MAP kinase Fus3p. Both basal and stimulated phosphorylation occurred exclusively on serines. Mutagenesis of Clc1p was used to map major phosphorylation sites to serines 52 and 112, but conversion of all 14 serines in Clc1p to alanines [S(all)A] was necessary to eliminate phosphorylation. Cells expressing the S(all)A mutant Clc1p displayed no defects in Clc1p binding to clathrin heavy chain, clathrin trimer stability, sorting of a soluble vacuolar protein, or receptor-mediated endocytosis of mating pheromone. However, the trans-Golgi network membrane protein Kex2p was not optimally localized in mutant cells. Furthermore, pheromone treatment exacerbated the Kex2p localization defect and caused a corresponding defect in Kex2p-mediated maturation of the alpha-factor precursor. The results reveal a novel requirement for clathrin during the mating response and suggest that phosphorylation of the light chain subunit modulates the activity of clathrin at the trans-Golgi network.  相似文献   

20.
The ability of proteins to assemble at sites of high membrane curvature is essential to diverse membrane remodeling processes, including clathrin-mediated endocytosis. Multiple adaptor proteins within the clathrin pathway have been shown to sense regions of high membrane curvature, leading to local recruitment of the clathrin coat. Because clathrin triskelia do not bind to the membrane directly, it has remained unclear whether the clathrin coat plays an active role in sensing membrane curvature or is passively recruited by adaptor proteins. Using a synthetic tag to assemble clathrin directly on membrane surfaces, here we show that clathrin is a strong sensor of membrane curvature, comparable with previously studied adaptor proteins. Interestingly, this sensitivity arises from clathrin assembly rather than from the properties of unassembled triskelia, suggesting that triskelia have preferred angles of interaction, as predicted by earlier structural data. Furthermore, when clathrin is recruited by adaptors, its curvature sensitivity is amplified by 2- to 10-fold, such that the resulting protein complex is up to 100 times more likely to assemble on a highly curved surface compared with a flatter one. This exquisite sensitivity points to a synergistic relationship between the coat and its adaptor proteins, which enables clathrin to pinpoint sites of high membrane curvature, an essential step in ensuring robust membrane traffic. More broadly, these findings suggest that protein networks, rather than individual protein domains, are likely the most potent drivers of membrane curvature sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号