首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of stimulation of the nucleus tractus solitarii, the dorsal motor nucleus of the vagus, the nucleus reticularis paramedianus, and the nucleus cuneatus were studied in free-moving cats. Stimulation of the medullary nuclei that are known to be involved in the central nervous control of cardiovascular functions might activate preprogrammed motor responses such as licking and sniffing, and induce complex behavioural response patterns such as sleep or flight reaction. Moreover, both lever-pressing for rewarding brain stimulation, and eating in food deprived cats might be modulated by these stimulations. In a shuttle box the cats showed no tendency toward shuttling during stimulation, except the stimulation of the nucleus reticularis paramedianus which produced aversion. The cardiovascular and respiratory effects varied parallel with the behavioural responses. It is concluded that the medullary nuclei related to visceral functions are capable of affecting somatomotor behaviour either directly on the motor system, or by inducing complex response patterns in which somatomotor and visceral responses are integrated.  相似文献   

2.
Physical inactivity can be considered one of the major risk factors related to cardiovascular diseases. There are reasons to believe that the positive effect of exercise training is, to a large extent, mediated by modulation of the nervous control of the circulation system. In our previous studies, we showed that modulation of mitochondrial permeability transition in medullary cardiovascular neurons significantly contributes to the hemodynamic reactions in both the norm and a number of pathological states. In this study, we examined in acute experiments on urethane-anesthetized rats the hemodynamic effects mediated by either modulation of mitochondrial permeability transition in medullary neurons, or activation of neuronal NO synthase (NOS-1) in these neuronal populations after preliminary moderate exercise training (everyday swimming sessions of increased duration carried out for four weeks). It was shown that, after exercise training had been completed, the effects of injections of an inductor of mitochondrial permeability transition pore (MPTP) opening, phenylarsine oxide (PAO, 0.5 to 1.5 nmol), into populations of cardiovascular neurons in the medullary autonomic nuclei (nucl. tractus solitarius and paramedian and lateral reticular nuclei) were less expressed, as compared with those in control (untrained) animals. The data obtained suggest that exercise training can exert a protective action on functional activity of medullary neurons due to the decreased sensitivity of MPTPs to their opening. Injections of an inhibitor of MPTP opening, melatonin (0.7 to 2.1 nmol), into populations of medullary neurons under study in trained rats induced a decrease in the systemic arterial pressure (SAP), in contrast to untrained animals demonstrating mostly hypertensive responses following injections of melatonin into the above nuclei. Injections of an activator of neuronal NO synthase (NOS-1), L-arginine, into the medullary nuclei of swimming-trained rats resulted in more expressed hemodynamic shifts than in control animals, which suggests an increase in the activity of neuronal NO synthase in medullary neurons of such animals.  相似文献   

3.
In acute experiments on normotensive rats and those with genetically determined hypertension (urethane anesthesia), we studied hemodynamic effects resulting from modulation of the activities of neuronal NO synthase (NOS-1), arginase II, and superoxide dismutase, and also of the mitochondrial permeability in medullary cardiovascular neurons. Unilateral microinjections of either a nitric oxide (NO) donor, sodium nitroprusside, or a substrate for endogenous NO synthesis, L-arginine, into the medullary cardiovascular nuclei (nucl. tractus solitarius, NTS, nucl. ambiguous, AMB, paramedian nucleus, PMn, and lateral reticular nucleus LRN) were shown to induce hemodynamic responses with rather similar dynamics in both normotensive and spontaneously hypertensive rats, although in the latter the reactions were more intense. Injections of an antagonist of NOS-1, NG nitro-L-arginine (L-NNA), into the medullary nuclei under study in spontaneously hypertensive rats resulted in shifts of the systemic arterial pressure (SAP), which did not differ dramatically from those observed in normotensive animals. The data obtained serve as the background for the suggestion that the functional activity of NOS-1 is not fundamentally impaired under hypertension conditions, but, probably, the amount of the substrate for adequate synthesis of NO via the NO-synthase pathway of metabolism of L-arginine is insufficient. Considering this, we examined the functional activity of arginase, an enzyme that also, similarly to NOS, uses L-arginine for metabolic transformation. Injections of antagonists of arginase, norvaline or α-difluoromethylornithine hydrochloride (DFMO), into populations of the medullary neurons under study induced similar shifts of the SAP in normotensive and spontaneously hypertensive rats, and those responses did not differ significantly from the effects of inhibition of the NOS-1 activity. Thus, both the above-mentioned enzymes are potentially active in normotensive and spontaneously hypertensive rats; so, a possibility for their competition for L-arginine in certain situations does exist. Modulation of the mitochondrial permeability in medullary cardiovascular neurons in normotensive and spontaneously hypertensive rats induced significant hemodynamic effects. In particular, an increase in the mitochondrial permeability in the medullary cardiovascular nuclei by injections of an inductor of mitochondrial permeability transition pore (mPTP) opening, phenylarsine oxide (PAO), was accompanied by SAP drops in both normotensive and spontaneously hypertensive rats; the effects were dose-dependent and, in some cases, irreversible. A decrease in the mitochondrial permeability in the neurons under study by injections of an inhibitor of mPTP, melatonin, induced mostly hypertensive responses, although in some experiments we observed hypotensive and two-phase responses. Neirofiziologiya/Neurophysiology, Vol. 39, No. 3, pp. 232–244, May–June, 2007.  相似文献   

4.
The cardiovascular responses to forcing acrylic bone cement, Plasticine, or soft paraffin wax into the medullary cavity of the femur have been studied in rabbits and cats. An acute fall in blood pressure, occurring within a few seconds of insertion, was demonstrated with each substance. In a few of the animals the blood pressure response had a second more protracted component and it is suggested that more than one mechanism is involved. The cardiovascular effects that have been observed in man when acrylic cement is used in prosthetic hip surgery also may be due to more than one mechanism.  相似文献   

5.
Obesity is a major health care problem and is associated with significant cardiovascular morbidity. Leptin, a neuroendocrine hormone released by adipose tissue, is important in modulating obesity by signaling satiety and increasing metabolism. Moreover, leptin receptors are expressed on vascular endothelial cells (ECs) and mediate angiogenesis. We hypothesized that leptin may also play an important role in vasoregulation. We investigated vasoregulatory mechanisms in the leptin-deficient obese (ob/ob) mouse model and determined the influence of leptin replacement on endothelial-dependent vasorelaxant responses. The direct effect of leptin on EC nitric oxide (NO) production was also tested by using 4, 5-diaminofluorescein-2 diacetate staining and measurement of nitrate and nitrite concentrations. Vasoconstrictor responses to phenylephrine, norepinephrine, and U-46619 were markedly enhanced in aortic rings from ob/ob mice and were modulated by NO synthase inhibition. Vasorelaxant responses to ACh were markedly attenuated in mesenteric microvessels from ob/ob mice. Leptin replacement resulted in significant weight loss and reversal of the impaired endothelial-dependent vasorelaxant responses observed in ob/ob mice. Preincubation of ECs with leptin enhanced the release of NO production. Thus leptin-deficient ob/ob mice demonstrate marked abnormalities in vasoregulation, including impaired endothelial-dependent vasodilation, which is reversed by leptin replacement. These findings may be partially explained by the direct effect of leptin on endothelial NO production. These vascular abnormalities are similar to those observed in obese, diabetic, leptin-resistant humans. The ob/ob mouse may, therefore, be an excellent new model for the study of the cardiovascular effects of obesity.  相似文献   

6.
J Flórez  M A Hurlé  A Mediavilla 《Life sciences》1982,31(20-21):2189-2192
The participation of the medullary structures in the total respiratory effect of opiates was studied by restricting the access of the delta-agonist D-ala2-D-leu5-enkephalin and the mu-agonist D-ala2-Me-Phe4-Met (O) ol5-enkephalin, to the ventral medullary surface, and by comparing their responses with those induced after i.c.v. administration. The medullary structures were more resistant to the overall depressant action. The opioids in the medulla depressed preferentially the tidal volume and the CO2-responsivity whereas the i.c.v. injections affected severely the frequency. No qualitative differences were found between the effects of the delta- and mu-agonist. It is concluded that both, medullary and supramedullary structures are involved in the respiratory response to opiates, but they participate with unique functions in the overall respiratory effect.  相似文献   

7.
In acute experiments on anesthetized rats, we studied the effects of modulation of the mitochondrial permeability in medullary cardiovascular neurons (nucl. tractus solitarii, NTS, nucl. ambiguus, AMB, paramedian reticular nucleus, PMn, and lateral reticular nucleus, LRN) on the systemic arterial pressure (SAP). We were the first to show that the mitochondrial permeability is essential for medullary cardiovascular control. An increase in the mitochondrial permeability with injections of an inductor of mitochondrial transition pore opening, phenylarsine oxide (PAO, 0.5 to 504 nmol), into the medullary nuclei resulted in long-lasting decreases in the SAP; at high doses of PAO, these drops could be irreversible and led to the animal’s death. Injections of an inhibitor of mitochondrial transition pore opening, melatonin (0.7 to 70.0 nmol), into the medullary nuclei induced dose-dependent increases in the SAP. Melatonin and L-arginine were shown to demonstrate neuroprotective effects due to their ability to attenuate the consequences of increased mitochondrial permeability in medullary cardiovascular neurons. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 392–395, July–October, 2007.  相似文献   

8.
The presence of mu-opioid receptors and endomorphins has been demonstrated in the general area encompassing the rostral ventrolateral medullary pressor area (RVLM). This investigation was carried out to test the hypothesis that endomorphins in the RVLM may have a modulatory role in regulating cardiovascular function. Blood pressure and heart rate (HR) were recorded in urethane-anesthetized male Wistar rats. Unilateral microinjections of endomorphin-2 (0.0125-0.5 mmol/l) into the RVLM elicited decreases in mean arterial pressure (16-30 mmHg) and HR (12-36 beats/min), which lasted for 2-4 min. Bradycardia was not vagally mediated. The effects of endomorphin-2 were mediated via mu-opioid receptors because prior microinjections of naloxonazine (1 mmol/l) abolished these responses; the blocking effect of naloxonazine lasted for 15-20 min. Unilateral stimulations of aortic nerve for 30 s (at frequencies of 5, 10, and 25 pulses/s; each pulse 0.5 V and 1-ms duration) elicited depressor and bradycardic responses. These responses were significantly attenuated by microinjections of endomorphin-2 (0.2 and 0.4 mmol/l). The inhibitory effect of endomorphin-2 on baroreflex responses was prevented by prior microinjections of naloxonazine. Microinjections of naloxonazine alone did not affect either baseline blood pressure and HR or baroreflex responses. These results indicate that endomorphin-2 elicits depressor and bradycardic responses and inhibits baroreflex function when injected into the RVLM. These effects are consistent with the known hyperpolarizing effect of opioid peptides on RVLM neurons.  相似文献   

9.
The effect of CL 115,347, a topically active antihypertensive PGE2 analog, and PGE2 on changes in blood pressure (BP), heart rate (HR) response and plasma epinephrine (E) and norepinephrine (NE) levels induced by stimulation of the sympathetic spinal cord outflow were studied in pithed stroke-prone spontaneously hypertensive rats (SHRSP). Surgical pithing significantly reduced plasma E but not NE levels suggesting that the sympathoadrenal medullary system differentially affects E and NE release. Sympathetic stimulation of the spinal cord of pithed SHRSP increased HR, BP, plasma E and NE levels. Topically applied CL 115,347 (0.001-0.2 mg/kg) dose-dependently decreased BP, while intravenously infused PGE2 (30 micrograms/kg/min) did not alter BP except for a brief initial drop. Topical application of CL 115,347 (0.1 mg/kg) also inhibited BP responses to sympathetic stimulation without effects on HR or plasma E or NE levels. Intravenous infusion of PGE2 (30 micrograms/kg/min) inhibited both BP and HR responses to spinal cord stimulation but did not alter plasma catecholamine levels. These studies in SHRSP suggest that CL 115,347 and PGE2 modulate cardiovascular responses mainly via postjunctional effects, but act differently on the cardiovascular elements, viz. CL 115,347 acts primarily on blood vessels while PGE2 acts on blood vessels and heart.  相似文献   

10.
The caudal ventrolateral reticular formation of the medulla oblongata is the first layer of visceral nociceptive processing. In experiments on rats, neuronal responses in this zone to nociceptive stimulation of the large intestine were examined and the effects of selective blockade of 5-HT3 receptors on these responses were assessed. By the character of responses to nociceptive colorectal stimulation (CRS), the recorded medullary neurons were divided into three groups—excited, inhibited and indifferent. Intravenous injection of 5-HT3 antagonist granisetron (1 and 2 mg/kg) as well as local application of this agent on the surface of the medulla oblongata (1.25 and 2.5 nmole) suppressed the background and evoked firing of CRS-excited reticular neurons in a dose-dependent manner but did not exert as pronounced influence on the cells inhibited by visceral nociceptive stimulation. Spike activity in the group of CRS-indifferent neurons under similar conditions was 5-HT3-independent. The results obtained provide evidence that 5-HT3 receptors mediate the facilitating effect of serotonin on supraspinal transmission of the abdominal nociceptive stimulus which, at least in part, is realized via selective activation of visceral medullary nociceptive neurons. A shutdown of this mechanism may underlie the analgesic effect of 5-HT3 antagonists in abdominal pain syndromes.  相似文献   

11.
The effect of CL 115,347, a topically active antihypertensive PGE2 analog, and PGE2 on changes in blood pressure (BP), heart rate (HR) response and plasma epinephrine (E) and norepinephrine (NE) levels induced by stimulation of the sympathetic spinal cord outflow were studied in pithed stroke-prone spontaneously hypertensive rats (SHRSP). Surgical pithing significantly reduced plasma E but not NE levels suggesting that the sympathoadrenal medullary system differentially affects E and NE release. Sympathetic stimulation of the spinal cord of pithed SHRSP increased HR, BP, plasma E and NE levels. Topically applied CL 115,347 (0.001–0.1 mg/kg) dose-dependently decreased BP, while intravenously infused PGE2 (30 μg/kg/min) did not alter BP except for a brief initial drop. Topical application of CL 115,347 (0.1 mg/kg) also inhibited BP responses to sympathetic stimulation without effects on HR or plasma E or NE levels. Intravenous infusion of PGE2 (30 μg/kg/min) inhibited both BP and HR responses to spinal cord stimulation but did not alter plasma catecholamine levels. These studies in SHRSP suggest that CL 115,347 and PGE2 modulate cardiovascular responses mainly via postjunctional effects, but act differently on the cardiovascular elements, CL 115,347 acts primarily on blood vessels while PGE2 acts on blood vessels and heart.  相似文献   

12.
This study was designed to delineate the medullary and spinal pathways mediating the cardiovascular responses to cold pressor test (CPT) and to identify neurotransmitters in these pathways. Experiments were done in barodenervated, urethane-anesthetized, male Wistar rats. The CPT was performed by immersing the limbs and ventral half of the body of the rat in ice-cold water (0.5 degrees C) for 2 min. CPT elicited an immediate increase in mean arterial pressure (MAP), heart rate (HR), and greater splanchnic nerve activity (GSNA). Bilateral blockade of ionotropic glutamate receptors (iGLURs) in the rostral ventrolateral medullary pressor area (RVLM) significantly attenuated the CPT-induced responses. Bilateral blockade of gamma-aminobutyric acid (GABA) receptors, but not iGLURs, in the nucleus ambiguus (nAmb) significantly reduced the CPT-induced increases in HR, but not MAP. Blockade of spinal iGLURs caused a significant reduction in CPT-induced increases in MAP and GSNA, whereas the increases in HR were reduced to a lesser extent. Combination of the blockade of spinal iGLURs and bilateral vagotomy or intravenous atropine almost completely blocked CPT-induced tachycardia. Midcollicular decerebration significantly reduced CPT-induced increases in MAP and HR. These results indicated that: 1) CPT-induced increases in MAP, HR, and GSNA were mediated by activation of iGLURs in the RVLM and spinal cord, 2) activation of GABA receptors in the nAmb also contributed to the CPT-induced tachycardic responses, and 3) brain areas rostral to the brain stem also participated in the CPT-induced pressor and tachycardic responses.  相似文献   

13.
J D Rose  F L Moore 《Steroids》1999,64(1-2):92-99
Stress-induced corticosterone (CORT) secretion that causes a rapid blockade of courtship clasping by male roughskin newts (Taricha granulosa) is mediated by a specific neuronal membrane receptor for CORT. Amplectic clasping, which can be triggered by pressure on the ventral body surface and cloaca, is controlled by the influence of medullary neurons on the spinal cord. Using clasping as a simple neurobehavioral model, we have focused our analysis of CORT effects on clasping by examining the steroid's effects on neurophysiological properties of medullary neurons, especially medullary reticulospinal neurons, the principal output cells from the brain to the spinal cord. Systemic CORT caused, within 3 min of injection, diverse reductions in reticulospinal neuron excitability. Another rapid CORT effect on medullary neurons was to depress responsiveness to pressure on the cloaca. Experiments with chronically implanted, freely moving newts revealed that the rapid CORT effects are quite specific to neural processes related to clasping. CORT injections rapidly blocked clasping in response to cloacal stimuli and concurrently depressed neuronal responses to cloacal pressure and firing associated with clasping. Activity of reticulospinal neurons was often associated with nonclasping movements and this activity was rarely altered by CORT. Thus, CORT mainly affected aspects of neuronal function related to clasping. In other neurophysiological experiments, we found that the neuropeptides vasotocin and corticotropin-releasing hormone modified the neural effects of CORT. Prior exposure of medullary neurons to either of these neuropeptides caused systemic CORT administration to rapidly potentiate neuronal responses to cloacal stimuli, indicating that the direction and potency of CORT effects depend critically on the prevailing neuroendocrine state of the brain.  相似文献   

14.
We evaluated the effects of bestatin, the specific aminopeptidase-B and leucine aminopeptidase inhibitor, on the central cardiovascular regulatory mechanisms in Sprague-Dawley rats anesthetized with pentobarbital sodium (40 mg/kg, i.p.). Intracerebroventricular injection of bestatin (100 or 200 nmol/5 microliters) consistently elevated the basal systemic arterial pressure and heart rate. At the same time, this degradative enzyme blocker increased the sensitivity of the baroreceptor reflex responses as well as the efficacy of the modulatory actions of the medullary nucleus reticularis gigantocellularis on these reflexes. We speculate that enhancing the tonic activities of the endogenous neuropeptides in the brain by protecting them from their catabolic enzymes may affect the central cardiovascular regulatory machinery by modifying the operations of the baroreceptor feedback controls and their modulatory mechanisms.  相似文献   

15.
The response of developing gonads of the clawed toad Xenopus laevis tadpoles to estradiol benzoate (EB) was studied between stages 44 and 67 using high resolution techniques. In presumptive genetic males the following results were obtained: 1) 100% sex reversal was induced when EB was administered before translocation of primordial germ cells (PGCs) from the gonadal epithelium into the medullary region (stages 44-50). 2) Ambiguous gonads were formed when EB treatment was initiated at stages 51-54, when PGCs were migrating into the medullary region. 3) Finally, normal testes differentiated when EB treatment began after the primordial germ cells had completed their translocation into the medulla (stages 55-56). These results suggest that EB might induce sex-reversal in genetic males by disruption of early somatic-germ cell interactions in the medullary region of the gonad. Consequently, later morphogenetic events might be deranged, preventing differentiation of testis. We propose a hypothesis in which precocious production of estradiol (E2) by genotypic females is the mechanism for primary sex differentiation.  相似文献   

16.
1. To elucidate the neural mechanisms that mediate visual responses of optic tectum (OT) to medullary and spinal motor systems, we analyzed medullary reticular neurons in paralyzed Japanese toads (Bufo japonicus). We examined their responses to electrical stimulation of OT, and stained some neurons intracellularly. Responses to stimulation of the glossopharyngeal nerve (IX) were also analyzed. 2. Extracellular single unit recording revealed excitatory responses of medullary neurons to OT and IX stimulation. Among 92 units encountered, 79 responded to OT stimuli, 10 to IX stimuli, and 3 to both. Some units responded to successive stimuli of short intervals with relatively stable lags. 3. Intracellular recording and staining experiments revealed morphologies of reticular neurons that received excitatory inputs from OT. Thirteen units were identified after complete reconstruction of somata and dendrites. Neurons in the nucleus reticularis medius received excitatory inputs from bilateral OT. They had wide dendrites in ventral, ventrolateral and lateral funiculi, and single axons descending in the ipsilateral ventral funiculus as far caudally as the cervical spinal cord. Some collaterals of these axons projected directly to the hypoglossal and spinal motor nuclei. Some neurons in other medullary nuclei (nuc. reticularis superior, pretrigeminal nucleus, nuc. reticularis inferior, and nuc. tractus spinalis nervi trigemini) also responded to the OT stimulation. 4. Activities in bilateral OT converge onto medullary reticular neurons, which may directly control medullary and spinal motor systems.  相似文献   

17.
Ming OY 《生理科学进展》1998,29(2):130-132
本研究观察了糖皮质激素自身在孤束核NTS内的心血管效应,以及它在NTS内对NA/NPY诱导的心血管活动变化的影响及机制。结果发现,大剂量地塞米松在大鼠NTS的内能很快导致血压下降,血清中NO浓度升高。小剂量Dex在NTS内能很快抑制NA/NPY在NTS内诱导的心血管效应,并维持较长时间。表明Dex对NA/NPY在NTS诱导的心血管效应,并维持较长时间。表明Dex对NA/NPY在NTS诱导的心血管效  相似文献   

18.
Popov  K. E.  Smetanin  B. N.  Kozhina  G. V. 《Neurophysiology》2001,33(4):258-265
In healthy volunteers, we recorded stabilograms and studied postural responses evoked by galvanic stimulation of the labyrinth (binaurally applied 1-mA current, 4 sec) with the subjects' eyes open and closed and under conditions of reversed visual perception. Horizontal reversal of the visual space was provided by using spectacles with the Dove's prisms. In series consisting of 10 sequential tests with eyes open, we observed a gradual drop in the response amplitude, while there were practically no changes in the maximum velocity of the displacement. Postural responses with eyes closed were considerably greater than those with eyes open, but their amplitude and velocity demonstrated no changes with sequential tests. Under conditions of reversal of the visual perception, both the amplitude and maximum velocity of the postural responses decreased with successive testing. Under the above conditions, at the beginning of a test series responses to vestibular stimulation were greater than those with eyes closed, but in repeated tests they decreased and attained the same magnitude as in the tests with eyes closed. Therefore, the effect of short-term adaptation to visual reversal on the system controlling vertical posture resulted in simple rejection of the information coming via the visual input. In another experimental mode, we studied the adaptation effects at longer (3 h long) visual reversal. Postural responses to galvanic stimulation of the labyrinth (monaurally applied, 2-mA current, 4 sec) were tested with 1-h-long intervals; tests with visual reversal and with eyes closed were made in a random order with each other. A 3-h-long interval with the prismatic spectacles on did not modify the amplitude and velocity of the vestibular postural responses when the tests were made with the eyes closed. When the tests were performed with the eyes open, but in the inverting spectacles, postural responses significantly decreased (by about 50-60%) to the 2nd and 3rd h of the experiment. Such selective suppression of the vestibular input under conditions of visual reversal can be interpreted as a result of adaptational transformation of the visual-vestibular relation directed toward minimization of the visual-vestibular conflict.  相似文献   

19.
We show that developmental transitions during thymocyte maturation are associated with dramatic changes in chemotactic responses to chemokines. Macrophage-derived chemokine, a chemokine expressed in the thymic medulla, attracts thymocytes only during a brief window of development, between the late cortical and early medullary stages. All medullary phenotypes (CD4 or CD8 single positive) but not immature thymocytes respond to the medullary stroma-expressed (and secondary lymphoid tissue-associated) chemokines secondary lymphoid-tissue chemokine and macrophage inflammatory protein-3beta. The appearance of these responses is associated with the phenotypic stage of cortex to medulla migration and with up-regulation of mRNA for the receptors CCR4 (for macrophage-derived chemokine and thymus and activation-regulated chemokine) and CCR7 (for secondary lymphoid-tissue chemokine and macrophage inflammatory protein-3beta). In contrast, most immature and medullary thymocytes migrate to thymus-expressed chemokine, an ability that is lost only with up-regulation of the peripheral homing receptor L-selectin during the latest stages of thymocyte maturation associated with export to the periphery. Developmental switches in chemokine responses may help regulate critical migratory events during T cell development.  相似文献   

20.
Single unit recordings were made in the dorsal medullary nucleus and in the torus semicircularis of the immobilized grassfrog. The natural calls have a periodic pulsatile structure. To investigate the coding of pulse repetition rate periodic click trains with varying pulse repetition rate and an ensemble of clicks distributed randomly in time were used as stimuli. In the dorsal medullary nucleus strong time-locking to clicks was found. Most units showed an activation followed by suppression response. Some units showed a preference for pulse repetition rates matching their low-frequency sensitivity. In the torus semicircularis part of the units showed responses similar to dorsal medullary nucleus units. Other response types were activation irrespective of pulse repetition rate, and suppression followed by activation. The responses to the two stimulus ensembles were more compatible in the dorsal medullary nucleus than in the torus semicircularis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号