首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this experiment was to evaluate the effect of a 5-day period of in vitro culture of two-to-four cell porcine embryos up to the blastocyst stage on their ability to survive vitrification and warming. In order to increase the cooling rate, superfine open pulled straws and Vit-Master((R)) technology were used for vitrification. Two-to-four cell embryos were collected from weaned sows (n=11) on day 2 (D0=onset of estrus). Some embryos (N=63) were vitrified within 3h after collection, warmed and cultured for 120h (Group V2). Additionally, 81 two-to-four cell embryos were cultured for 96h in order to obtain blastocysts; these were then vitrified, warmed and cultured for 24h (Group VB; N=65). The remaining two-to-four cell embryos were used as controls and thus not vitrified (control embryos; N=70) but were cultured in vitro for 120h. The V2, VB and control embryos were evaluated for their developmental progression and morphology during culture. All embryos (V2, VB and controls) were fixed on the same day of development in order to assess the total number of blastomeres. The survival and blastocyst formation rates obtained from V2 embryos were very poor (9.6+/-0.7% and 3.2+/-0.5%, respectively). The survival and hatching rates of VB embryos (75.0+/-0.69% and 33.6+/-0.13%) were lower (p<0.001) than those obtained with control embryos (89.1+/-0.8% and 47.5+/-0.12%). Hatched VB embryos had a lower (p<0.01) total cell number than hatched control embryos (70.3+/-4.5 versus 90.6+/-3.2, respectively). There was no difference between expanded VB and control blastocysts. In conclusion, blastocysts derived from in vitro culture of two-to-four cell pig embryos could be successfully vitrified using SOPS straws and Vit-Master.  相似文献   

2.
The feasibility to accurately select viable embryos would be valuable for improving pregnancy rates and avoiding futile transfer attempts. The aim of our study was to assess if in vitro-produced embryo quality could be determined by the timing of blastocoelic cavity re-expansion after vitrification, warming, and in vitro culture using sheep as a model. Blastocysts were produced in vitro, vitrified/warmed, and cultured in TCM-199 plus 10% FCS for 72 hr. Embryos were divided into two groups: re-expanded within 8 hr (A) and from 8 to 16 hr (B) of IVC after warming. Fast re-expanded blastocysts showed higher in vitro hatching rates and total cell number calculated on the hatched blastocysts compared with slow re-expanded ones (P < 0.01). Peroxide status evaluation (P < 0.01) and TUNEL test (P < 0.05) revealed a higher number of positive cells in group B compared with group A. The quantitative analysis of protein synthesis revealed a higher synthesis in fast compared with slow re-expanded embryos (P < 0.05). Quantitative RT-PCR showed that 90-kDa Heat Shock Protein beta was more expressed in group A than in group B (P < 0.05), while the quantity of P34(cdc2), Cyclin b, Aquaporin 3, Na/K ATPase, and Actin did not differ between the two groups. Pregnancy rates after transfer to synchronized recipients were higher in fast compared to slow re-expanded blastocysts (P < 0.05). Our results evidenced that timing of blastocoelic cavity re-expansion after vitrification/warming and in vitro culture can be considered as a reliable index of in vitro produced embryo quality and developmental potential.  相似文献   

3.
Selection of blastocysts based on their morphological characteristics and rate of development in vitro can skew the sex ratios. The aim of this study was to determine whether an embryo's developmental rate affects its survival after vitrification, and whether male and female embryos survive vitrification differently. In vitro fertilized bovine oocytes were cultured in potassium simplex optimized medium (KSOM) + 0.1% BSA for 96 h, and then into KSOM + 1% BSA (KSOM) or in sequential KSOM + 0.1% BSA for 96 h, and then into synthetic oviduct fluid (SOF) + 5% FBS (KSOM-SOF). In part 1 of this study, embryos cultured in each medium that had developed into blastocysts at approximately 144, 156, or 180 h were recovered from culture, graded, and then vitrified. After warming, blastocyst survival rates were immediately evaluated by reexpansion of the blastocoels. In the second part of the study, all blastocysts (n = 191) were sexed by polymerase chain reaction 48 h after warming. When cultured in KSOM medium, more 144-h blastocysts survived vitrification (68%) than blastocysts vitrified at 180 h (49%). Blastocysts derived at 156 h in KSOM-SOF survived vitrification better (87%) than blastocysts vitrified at either 144 h or 180 h, and subsequently hatched at a greater rate than those vitrified at 180 h. The overall blastocyst survival rates did not differ significantly whether embryos were cultured in KSOM or sequential KSOM-SOF. Blastocysts derived at 144 and 156 h in KSOM or KSOM-SOF were predominately male, and significantly more of them survived vitrification 48 h after warming. However, blastocysts cultured in KSOM-SOF, and then vitrified at 180 h were predominately female. Overall, blastocysts that survived vitrification, and subsequently hatched 48 h after warming, were male. In summary, embryos that reached the blastocyst stage earlier were predominantly males; these males had better morphology, endured vitrification, and subsequently hatched at a greater rate than did female blastocysts.  相似文献   

4.
Porcine embryos, which had been vitrified and stored in liquid nitrogen for up to three yr, were retrospectively analyzed to evaluate the influence of duration of storage on their in vitro viability post-warming. All embryos were vitrified (OPS or SOPS) and warmed (three-step or direct warming) using procedures that resulted in the same in vitro survival, hatching rates, and numbers of cells. Therefore, embryo data obtained using the different procedures were pooled according to their developmental stage as morulae (n = 571) or blastocysts (n = 797) and to the length of their storage in liquid nitrogen: a) 1-9 d; b) 10-30 d; c) 31-90 d; d) 1-3 yr. Non-vitrified embryos of corresponding developmental stages were used as a fresh control group (n = 280). Survival and hatching rates were evaluated after in vitro culture to assess embryo viability. The total number of cells was counted in the resulting viable blastocysts as an indicator of quality. A total of 1,648 fresh and vitrified embryos were analyzed. In vitro survival and hatching rates, but not the number of cells, differed significantly between vitrified morulae and their fresh counterparts irrespective of the duration of cryostorage. Length of storage in liquid nitrogen (LN2) did not influence in vitro viability among different groups of vitrified/warmed morulae nor embryos at the blastocyst stage. In conclusion, duration of storage in LN2 has no effect on the post-warming viability of porcine embryos vitrified at morula or blastocyst stage.  相似文献   

5.
Vitrification is becoming a preferred method for pre‐implantation embryo cryopreservation. The objective of this study was to determine the differentially expressed genes of in vivo‐ and in vitro‐produced bovine embryos after vitrification. In vitro‐ (IVF) and in vivo‐derived (IVV) bovine blastocysts were identified as follows: in vitro‐produced fresh (IVF‐F), in vitro‐produced vitrified (IVF‐V), in vivo‐derived fresh (IVV‐F), in vivo‐derived vitrified (IVV‐V). The microarray results showed that 53 genes were differentially regulated between IVF and IVV, and 121 genes were differentially regulated between fresh and vitrified blastocysts (P < 0.05). There were 6, 268, 962, and 17 differentially regulated genes between IVF‐F × IVV‐F, IVF‐V × IVV‐V, IVF‐F × IVF‐V, and IVV‐F × IVV‐V, respectively (P < 0.05). While gene expression was significantly different between fresh and vitrified IVF blastocysts (P < 0.05), it was similar between fresh and vitrified IVV blastocysts. Significantly up‐regulated KEGG pathways included ribosome, oxidative phosphorylation, spliceosome, and oocyte meiosis in the fresh IVF blastocyst samples, while sphingolipid and purine metabolisms were up‐regulated in the vitrified IVF blastocyst. The results showed that in vitro bovine blastocyst production protocols used in this study caused no major gene expression differences compared to those of in vivoproduced blastocysts. After vitrification, however, in vitro‐produced blastocysts showed major gene expression differences compared to in vivo blastocysts. This study suggests that in vitro‐produced embryos are of comparable quality to their in vivo counterparts. Vitrification of in vitro blastocysts, on the other hand, causes significant up‐regulation of genes that are involved in stress responses. Mol. Reprod. Dev. 79: 613–625, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
The objective of this study was to assess the influence of specific growth factors and growth hormone (GH) in the culture medium on in vitro embryo production and post-thaw survival of vitrified blastocysts. In total, 1673 bovine oocytes were used for evaluating the nuclear status of the oocytes after in vitro maturation (n=560) or for in vitro fertilization (IVF, n=1113) and distributed in five treatment groups: (1). medium only control; (2). activin (10 ng/ml); (3). epidermal growth factor (EGF) (10 ng/ml); (4). insulin 5 microg/ml and (5). GH (100 ng/ml). There was an increase (P<0.05 and P<0.01, respectively) in the percentage of oocytes that reached meta phase II, developed to blastocysts and hatched, as well as in the blastocyst cell number in the groups treated with activin, EGF and GH compared to controls. There was no significant difference between insulin and control groups. A total of 465 blastocysts were vitrified in a three-step protocol using ethylene glycol and polyvinylpyrrolidone. After thawing, embryos were cultured in five treatments groups as described above. Groups EGF and GH had higher (P<0.05) survival rates with a mean blastocyst survival of 95.0+/-1.5 and 93.1+/-3.5%, respectively, while mean hatching rate was higher for EGF and activin groups (75.3+/-3.4 and 62.0+/-3.2%, respectively). Thawed control blastocysts had a mean cell count of 52.7+/-3.3%. With the exception of insulin, all growth factors and GH tested showed higher (P<0.01) total cell numbers when compared to controls. In conclusion, addition of growth factors and GH in the culture media has favorable effects on in vitro maturation, in vitro embryo production, and post-thaw survival of vitrified blastocysts.  相似文献   

7.
Lin TA  Chen CH  Sung LY  Carter MG  Chen YE  Du F  Ju JC  Xu J 《Theriogenology》2011,75(4):760-768
The objective was to determine cryotolerance of in vitro cultured rabbit embryos to the open-pulled straw (OPS) method. Overall, 844 rabbit embryos at pronuclear, 2- to 4-cell, 8-cell, and morula/blastocyst stages were vitrified, and ≥ 1 mo later, were sequentially warmed, rehydrated, and subjected to continuous culture (n = 691) or embryo transfer (ET, n = 153). Embryos vitrified at the 8-cell stage or beyond had greater survival, expanded blastocyst and hatched blastocyst rates in vitro, and better term development than those vitrified at earlier stages. The 8-cell group had 70.1% expanded blastocysts, 63.7% hatched blastocysts, and 25.7% term development, as compared to 1.5-17.7%, 1.5-4.3% and 2.8-3.7% in the pronuclear, 2-cell and 4-cell embryos, respectively (P < 0.05). The expanded and hatched blastocyst rates in vitrified morula/blastocyst post-warming were higher than that in the 8-cell group; however, their term development after ET was similar (8-cell vs morula/blastocyst: 25.7 vs 19.4%, P > 0.05). Development after ET was comparable between vitrified-warmed embryos and fresh controls at 8-cell and morula/blastocyst stages (19.4-25.7 vs 13.7-26.6%, P > 0.05). For embryos at pronuclear or 2- to 4-cell stages, however, term rates were lower in the vitrified-warmed (2.8-3.7%) than in fresh controls (28.6-35.6%, P < 0.05). Therefore, cultured rabbit embryos at various developmental stages had differential crytolerance. Under the present experimental conditions, the 8-cell stage appeared to be the critical point for acquiring cryotolerance. We inferred that for this OPS cryopreservation protocol, rabbit embryos should be vitrified no earlier than the 8-cell stage, and stage-specific protocols may be needed to maximize embryo survival after vitrification and re-warming.  相似文献   

8.
In 5 replicates a total of 719 immature oocytes recovered from 94 slaughterhouse-derived bovine ovaries were matured and fertilized in vitro, then cultured for 7 to 9 d on a granulosa cell monolayer in TCM 199 supplemented with calf serum. Of 338 blastocysts (47% of oocytes cultured), 301 were vitrified in Hepes/bicarbonate buffered TCM-199 medium, 20% calf serum and dimethylsulfoxide and ethylene glycol as the cryoprotectants. After thawing in 1 M sucrose and subsequent culture in vitro, 237 (79%) of the blastocysts re-expanded and 177 (59%) hatched. Re-expansion and hatching rates differed between the blastocysts vitrified on Day 7 and Day 8 (84 and 69% vs 70 and 41%, respectively). We conclude that the applied methods are relatively simple and inexpensive to use, with an overall efficiency of the in vitro production/vitrification procedure being 1.9 hatched blastocyst/ovary. Therefore, this system seems suitable for large-scale production of cryopreserved bovine embryos for various purposes.  相似文献   

9.
In the present study we characterize the developmental potential of prepubertal and adult ovine oocytes, analyzing the developmental speed to two-cell and blastocyst stages and its relationship with hatching from the zona pellucida, development after vitrification and the number and allocation of inner mass and trophoblastic cells. Prepubertal and adult ovine oocytes were matured and fertilized in vitro and first cleavage rates at 22, 26 and 32 h were recorded. Cleaved oocytes were cultured and blastocyst production was assessed at 6-9 days post-fertilization (dpf). Blastocysts from the two sources obtained on different days were divided into two groups: the first was vitrified, warmed and cultured in vitro to evaluate re-expansion of the blastocoelic cavity; blastocysts of the second were cultured separately to allow for hatching and count of trophoblastic and inner mass cells of hatched blastocysts by differential staining. We observed a significantly lower rate (P < 0.01) of cleaved prepubertal oocytes at 22 and 26 h after fertilization while it was higher (P<0.01) at 32 h than in the adult ones. Adult blastocyst production was significantly lower (P < 0.01) in prepubertal than in adult groups and began on the seventh dpf, later (P < 0.01) than in the adult group, where they appeared on the sixth dpf. Prepubertal blastocysts hatched at a lower rate than the adult ones (P < 0.01) and in both experimental groups faster blastocysts showed a higher (P < 0.01) hatching rate. Similarly, prepubertal derived blastocysts showed lower viability after vitrification (P < 0.01) compared to the adult counterparts, and in particular slower embryos had reduced viability after vitrification compared to the fastest (P < 0.01). Cell number was not different between blastocysts of both groups obtained at 6 and 7 dpf, which were higher (P < 0.01) than those obtained at 8 and 9 dpf. The ICM/trophoblast cell ratio was similar in 6- and 7-day obtained blastocyst and increased (P < 0.01) in those obtained 1 or 2 days later. These findings show that differences in kinetic development between prepubertal and adult derived embryos reflect differences in developmental capacity of the oocytes from which they derive and could be indicative of embryo quality.  相似文献   

10.
Commercial samples of bovine serum albumin (BSA) in a complex medium caused growth of 1-cell rabbit embryos to completely hatched blastocysts. Heat treatment of the BSA at 65 or 80 degrees C significantly decreased blastocyst formation and expansion and destroyed the ability to cause blastocyst hatching. Addition of trypsin at levels down to 20 ng/ml caused the formation of hatched blastocysts which degenerated rapidly. The effects of 5 protease inhibitors (ovomucoid trypsin inhibitor, alpha-1-antitrypsin, TAME, TLCK and soybean) were tested. Ovomucoid trypsin inhibitor, TAME and TLCK significantly inhibited blastocyst hatching but only at the highest concentration used. These inhibitors also reduced blastocyst formation and expansion, indicating that their effect was not specifically on blastocyst hatching in vitro. It is concluded that hatching of rabbit blastocysts is probably not dependent on protease action.  相似文献   

11.
The freezability and survivability of zona-intact and zona-free (hatched) bovine blastocysts obtained by intracytoplasmic sperm injection (ICSI) were assessed. Day 7 or 8 blastocysts were cryopreserved by slow freezing using 1.5 M glycerol and 0.2 M sucrose. Embryos were exposed to solutions in a 2-step procedure at room temperature and frozen in a programmed cell freezer. Blastocysts that re-expanded within 6 h of post-thaw culture were considered viable. The cleavage, morula and blastocyst development rates after ICSI were 52.4 (131/250), 39.7 (52/131), and 24.4% (32/131), respectively. Blastocyst stage embryos were randomly divided into 2 groups. The first group of embryos was frozen with their zonae intact, while the second group was allowed to hatch from their zonae during the additional 18 h culture, after which they were frozen. The data showed that more Group 2 blastocysts (14/16, 87.5%) than Group 1 (12/16; 75.0%; P<0.05) survived, and more zona-free bovine blastocysts frozen with glycerol as the cryoprotective agent (CPA) than zona-intact blastocysts after slow freezing retained their viability.  相似文献   

12.
The aim of this study was to assess the effect of production system and of cryopreservation of ovine embryos on their viability when transferred to recipients. The experimental design was an unbalanced 2 x 2 factorial design of two embryo production systems (in vivo versus in vitro) and two embryo preservation conditions prior to transfer (transferred fresh versus transferred after vitrification/warming). For the production of blastocysts in vivo, crossbred donor ewes (n=30) were synchronised using a 13-day intravaginal progestagen pessary. Ewes received 1500 IU equine chorionic gonadotropin (eCG) 2 days before pessary withdrawal, and were mated 2 days after pessary withdrawal and embryos were recovered surgically (6 days after mating). Blastocysts were produced in vitro (IVP) using standard techniques. Recipients (n=95) were synchronised using a progestagen pessary and received 500 IU eCG at pessary removal and were randomly assigned to receive (two per recipient) in vivo fresh (n=10), in vivo vitrified (n=10), in vitro fresh (n=35) or in vitro vitrified (n=40) blastocysts. Recipients were slaughtered at day 42 of gestation and foetuses recovered. Pregnancy and embryo survival rates were recorded and analysed using CATMOD procedures. Foetal weights and crown-rump lengths were recorded and analysed using generalised linear model (GLM) procedures. There were no statistically significant interactions between the effects of embryo production system and preservation status at transfer on pregnancy rate and embryo survival. The pregnancy rate following transfer of fresh IVP blastocysts was lower (P<0.07) than that of in vivo embryos (54.3% versus 90.0%, respectively). Vitrification resulted in a decrease in pregnancy rate, the effect being more pronounced in the case of IVP embryos (54.3-5.0%, P<0.001) compared with in vivo embryos (90.0-50.0%), although the absolute change was similar (49.3% versus 40.0%). Transfer of fresh IVP blastocysts resulted in a higher proportion of single (78.9% versus 33.3%) and lower proportion of twin (21.1% versus 66.7%) pregnancies than those produced in vivo. This was reflected in a significant difference in embryo survival rate (fresh: 32.8% versus 75.0%, P<0.01; vitrified: 2.5% versus 35.0%, P<0.001, for IVP and in vivo blastocysts, respectively). Similarly, all pregnancies resulting from the transfer of vitrified/warmed IVP blastocysts were single pregnancies, while 40% of those from vitrified/warmed in vivo blastocysts were twin pregnancies; this was reflected in an embryo survival rate of 35.0% versus 75.0%, respectively. There was a significant effect (P=0.0184) of litter size on foetal weight but not on foetal length (P=0.3304). Foetuses derived from the fresh transfer of IVP blastocysts were heavier (6.4+/-0.2g versus 5.8+/-0.2g, respectively, P<0.05) and longer (5.2+/-0.1cm versus 4.8+/-0.1cm, respectively, P<0.01) than those derived from fresh in vivo blastocysts. There was no difference in these parameters as a consequence of vitrification of IVP embryos. However, in vivo blastocysts subjected to vitrification resulted in heavier (6.6+/-0.3g versus 5.8+/-0.2g, respectively, P=0.055) and longer (5.2+/-0.1cm versus 4.8+/-0.1cm, respectively, P<0.05) foetuses than their counterparts transferred fresh.  相似文献   

13.
This study examines the effectiveness of the cryotop vitrification method for the cryopreservation of goat blastocysts. To determine the effects of embryo development stage and donor age on in vitro survival rates, good-quality blastocysts from adult and prepubertal goats were sorted into non-expanded, expanded, hatching and completely hatched. In vitro produced (IVP) blastocysts were derived from prepubertal goat oocytes by slicing of ovaries from slaughtered animals while adult goat oocytes were collected by the laparoscopic ovum pick up (LOPU) method. Blastocysts were vitrified/warmed using the cryotop technique. Survival rates were determined in terms of blastocoele re-expansion at 3 and 20 h post-warming. For prepubertal goats, survival rates at 3 h post-warming were significantly higher when expanded blastocysts (78.3%) were vitrified/warmed compared to hatched blastocysts (57.4%), whereas non-expanded (62.5%) or hatching blastocysts (71.4%) showed similar rates. For adult goats, survival rates were significantly higher after warming in expanded (36.4%), hatching (75%) or hatched (50%) blastocysts when compared to non-expanded (0%) blastocysts. When survival rates were assessed at 20 h post-warming, no differences were observed when we compared non-expanded (45.8%), expanded (56.5%), hatching (64.3%) and hatched (50.5%) blastocysts from prepubertal goats; and for blastocysts from adult goats, survival rates were only significantly lower for the non-expanded stage (0%) compared to the other stages. For adult versus prepubertal blastocysts at the same developmental stage, our data indicate significantly higher survival rates at 3 h post-warming for non-expanded and expanded blastocysts from prepubertal goats over their counterparts from adult goats. At 20 h post warming, survival rates were only higher for non-expanded blastocysts from prepubertal goats versus adult goats. Collectively, our data reveal that blastocysts produced in vitro from prepubertal goats return similar survival rates regardless of their development stage, whereas blastocysts derived from adult goats are best for vitrification at the expanded, hatching or hatched stage.  相似文献   

14.
The aim of this work was to investigate the possibilities of simplification, and to outline the limits of application, of a vitrification method for cow embryos. Morulae and blastocysts were produced by in vitro fertilization of slaughterhouse-derived, in vitro matured oocytes with frozen-thawed bull semen, and subsequent culture on a granulosa cell monolayer. Vitrification was performed by equilibration of embryos with 12.5% ethylene glycol and 12.5% dimethylsulphoxide at 20–22°C for 60 s, then with 25% ethylene glycol and 25% dimethylsulphoxide at 4°C for another 60 s. Embryos were then loaded in straws, placed in liquid nitrogen vapour for 2 min, and then plunged. Straws were thawed in a 22°C water-bath, the embryos were directly rehydrated and further incubated in straw, and were then expelled and cultured in vitro for 72 h. In the first experiment, embryos of different age and developmental stage (Day 5 compacted morulae, Day 6 early blastocysts, Days 6 and 7 blastocysts, Day 7 expanded blastocysts and Day 8 hatched blastocysts) as well as Days 7 and 5 blastocysts previously subjected to partial zona dissection were vitrified. After thawing, the re-expansion rates of blastocysts and zona-dissected embryos did not differ (67 and 87%, respectively), and hatching was more frequent for blastocysts frozen in advanced developmental stages (34, 47 and 63% for early blastocysts, blastocysts and expanded blastocysts, respectively). The re-expansion rate of morulae was lower (10%) and no hatching of these embryos was observed. In the second experiment, Day 7 expanded blastocysts were vitrified using PBS, PBS + albumin, TCM199 and TCM199 + calf serum as holding media. No differences in re-expansion and hatching rates were seen. However, when incubation with the concentrated cryoprotectant solution was performed at 20–22°C, the embryo survival rate decreased (PBS + albumin) or no embryo survived (TCM199 + calf serum) the vitrification procedure. In the third experiment, Day 7 expanded blastocysts were vitrified, thawed, cultured for 1 day, and then re-expanded embryos were again vitrified and thawed. Out of the 87% that survived the first cycle, 73% re-expanded and 47% hatched following the second vitrification and thawing. These observations prove that the vitrification procedure described is relatively harmless, that it can be used for blastocysts of different developmental stages and that an intact zona is not required to obtain high survival rates.  相似文献   

15.
Bhuiyan MM  Cho JK  Jang G  Park ES  Kang SK  Lee BC  Hwang WS 《Theriogenology》2004,62(8):1403-1416
The present study evaluated the effect of protein supplementation in potassium simplex optimization medium (KSOM) on bovine preimplantation embryo development. The in vitro fertilized (IVF) (Experiment 1), non-transgenic (Experiment 2) and transgenic cloned embryos (Experiment 3) were cultured for 192 h in KSOM supplemented with 0.8% BSA (KSOM-BSA), 10% FBS (KSOM-FBS) or 0.01% PVA (KSOM-PVA). Transfected cumulus cells with an expression plasmid for human alpha1-antitrypsin gene and a green fluorescent protein (GFP) marker were used to produce transgenic cloned embryos. Modified synthetic oviductal fluid (mSOF) supplemented with 0.8% BSA (mSOF-BSA) was used as a control medium. In Experiment 1, cleavage rate was significantly (P < 0.05) lower (69.1%) in IVF embryos cultured in KSOM-FBS than in KSOM-BSA (80.3%). The rate of hatching/hatched blastocyst formation was significantly (P < 0.05) lower in embryos cultured in KSOM-PVA than in KSOM-FBS (2.2% versus 10.8%). Blastocysts cultured in KSOM-FBS contained significantly (P < 0.06) higher numbers of inner cell mass cells (50.4 +/- 20.2) than those cultured in mSOF-BSA (36.9 +/- 19.2). In Experiment 2, the rate of blastocyst formation was significantly (P < 0.05) lower (20.5%) in embryos cultured in KSOM-PVA than in other culture media (33.3-38.5%). The rate of hatching/hatched blastocysts was significantly (P < 0.05) lower in KSOM-PVA (13.9%) and KSOM-FBS (17.1%) than in KSOM-BSA (30.8%) and mSOF-BSA (33.9%). The numbers of total and trophectoderm cells (104.6 +/- 32.2 and 71.7 +/- 25.5, respectively) were significantly (P < 0.05) lower in blastocysts cultured in KSOM-PVA than in KSOM-BSA (125.7 +/- 39.7 and 91.7 +/- 36.2, respectively). In Experiment 3, no significant differences in embryo development, GFP expression and blastocyst cell numbers were observed among the culture groups. In conclusion, the present study demonstrated that KSOM and mSOF supplemented with BSA were equally effective in supporting development of bovine non-transgenic and transgenic cloned embryos. Moreover, different developmental competence in response to protein supplementation of KSOM was observed between bovine non-transgenic and transgenic cloned embryos.  相似文献   

16.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure—that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method—that is, embryos were first pretreated in 10%E+10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E+10%D for 0.5 min, exposed to EDFS30 for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

17.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure-that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method-that is, embryos were first pretreated in 10%E + 10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E + 10%D for 0.5 min, exposed to EDFS30for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

18.
We investigated the potential of vitrified-warmed buffalo oocytes to develop to blastocysts after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT). In vitro-matured oocytes before and after enucleation (M-II oocytes and enucleated oocytes, respectively) were put in 7.5% DMSO and 7.5% ethylene glycol (EG) for 4, 7 and 10 min, and then vitrified (Cryotop device) after 1-min equilibration in 15% DMSO, 15% EG and 0.5M sucrose. Following 4-, 7- and 10-min exposure, proportions of the post-warm oocytes with a normal vitelline membrane were similar (66-71% in M-II oocytes and 69-71% in enucleated oocytes). However, 18-20% of the normal M-II oocytes had no detectable first polar body in their perivitelline space (no potential for subsequent enucleation). When the post-warm M-II oocytes were treated for PA by 7% ethanol, 10 microg/mL cycloheximide and 1.25 microg/mL cytochalasin-D, parthenogenetic development into Day-7 blastocysts occurred in 10-13% of cultured oocytes, lower (P<0.05) than fresh (control) oocytes (24%). In the absence of the cooling and warming, blastocyst rates in the 4-min exposure group (22%), but not in the 7-min and 10-min exposure groups (14-15%), were similar to that in the fresh group (23%). The total cell number (group average 117-132 cells) and the ICM ratio (22-24%) of the PA blastocysts derived from vitrified M-II oocytes were comparable with fresh oocytes (127 cells and 25%). After SCNT (with fibroblast cells and vitrified-warmed oocytes), blastocyst rates were similar for the three exposure periods for M-II oocytes (8-10%) and enucleated oocytes (7-9%), but were lower (P<0.05) than in the fresh group (15%). The total cell number of the SCNT blastocysts derived from vitrified M-II and enucleated oocytes (80-90 and 82-101 cells) was smaller (P<0.05) than from fresh oocytes (135 cells); the ICM ratio of blastocysts derived from the M-II and enucleated oocytes after vitrification in 7- or 10-min exposure groups (20-22%) was not different (P>0.05) from fresh control oocytes (24%) or those in 4-min exposure group (M-II 23%, enucleated 24%). Thus, SCNT of swamp buffalo oocytes following vitrification before or after enucleation resulted in blastocysts with a slightly decreased cell number.  相似文献   

19.
Vitrification of mouse oocytes using a nylon loop   总被引:10,自引:0,他引:10  
Cryopreservation of mouse oocytes was improved by the use of ultra-rapid vitrification using a nylon loop of 0.5 mm diameter. Oocytes that were vitrified using the loop survived at high rates and were fertilized following a small hole being made in the zona pellucida (69.8%) and developed to the blastocyst stage in culture (67.4%) at similar rates to that of oocytes that were not cryopreserved. Blastocysts resulting from oocytes vitrified using the nylon loop had similar development of the inner cell mass and trophectoderm as blastocysts from non-cryopreserved oocytes. In contrast, oocytes that were cryopreserved using a slow-freezing protocol where most of the Na+ is replaced with choline had lower rates of fertilization (39.5%), reduced development to the blastocyst stage (25.7%), and blastocysts had reduced development of the inner cell mass. Blastocysts derived from oocytes that were vitrified with the nylon loop were able to implant (88.0%) and develop into fetuses (56.5%) at significantly higher rates compared to blastocysts derived from oocytes that were slow-frozen (52.4 and 26.2%, respectively). Vitrification of mouse oocytes using the nylon loop results in the retention of viability of the oocytes and subsequent embryos.  相似文献   

20.
The objectives of this study were: (1) to evaluate the influence of porcine embryo developmental stage on in vitro embryo development after vitrification, (2) to study the efficiency of the one-step dilution procedure, compared with conventional warming, for vitrified embryos at different stages of development, and (3) to determine the influence of the embryo donor on the in vitro survival of vitrified embryos at morulae and blastocyst stages. Two to four cell embryos, morulae and blastocysts were collected by laparotomy from weaned crossbred sows (n=55). Vitrification and conventional warming were performed using the OPS procedure with Superfine Open Pulled Straws (SOPS). For one-step dilution, embryos were placed in 800 microl TCM199-HEPES containing 20% of new born calf serum and 0.13 M sucrose for 5 min. To evaluate development, two to four cell embryos, morulae and blastocysts were cultured in vitro for 120, 48 and 24h, respectively. Some fresh embryos from each developmental stage were not vitrified and cultured as controls. Embryos were morphologically evaluated for their developmental capacity during the in vitro culture by stereomicroscopy. The total cell number of embryos was assessed by Hoechst-33342 staining and fluorescence microscope observation. There was a significant effect of the stage of development on the in vitro survival, perihatching rate and the number of cells of embryos after vitrification and warming (Experiment 1; p<0.001). The survival and perihatching rates of two to four cell embryos were lower than those obtained for morulae and blastocysts (p<0.001). No differences (p>0.05) in survival rates were found between vitrified and fresh blastocysts. The warming procedure did not affect the development and total cell number of vitrified two to four cell embryos, morulae or blastocysts (Experiment 2). However, donor had a significant effect (p<0.001) on the in vitro development and the number of cells of morulae and blastocysts after vitrification and warming (Experiment 3). In conclusion, the embryo developmental stage and the embryo donor were important factors that affected the development of porcine embryos after OPS-vitrification and warming. OPS-vitrification and the one-step dilution are efficient procedures to be used with intact porcine morulae and blastocysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号