首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A  Ruhan  Wang  Huijuan  Wang  Wenling  Tan  Wenjie 《中国病毒学》2020,35(6):699-712
Virologica Sinica - The on-going global pandemic of coronavirus disease 2019 (COVID-19) caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been...  相似文献   

2.
Li  Zhengtu  Li  Yinhu  Sun  Ruilin  Li  Shaoqiang  Chen  Lingdan  Zhan  Yangqing  Xie  Mingzhou  Yang  Jiasheng  Wang  Yanqun  Zhu  Airu  Gu  Guoping  Yu  Le  Li  Shuaicheng  Liu  Tingting  Chen  Zhaoming  Jian  Wenhua  Jiang  Qian  Su  Xiaofen  Gu  Weili  Chen  Liyan  Cheng  Jing  Zhao  Jincun  Lu  Wenju  Zheng  Jinping  Li  Shiyue  Zhong  Nanshan  Ye  Feng 《中国科学:生命科学英文版》2021,64(12):2129-2143
Science China Life Sciences - Prolonged viral RNA shedding and recurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in coronavirus disease 2019 (COVID-19) patients have been...  相似文献   

3.
目的分析内蒙地区发热患者中冠状病毒的感染情况。方法以SARS冠状病毒感染Vero细胞涂片为冠状病毒抗原片,用间接免疫荧光法分别检测55例发热患者和68例正常人血清中冠状病毒的IgG、IgM抗体。结果发热患者血清中冠状病毒IgG抗体和IgM抗体阳性率分别为29.1%(16/55)和10.9%(6/55),而正常人血清中只检测到2.9%(2/68)的IgG抗体,且未检测到IgM抗体,2组患者的IgG和IgM抗体阳性率比较差异均有显著性;随机选取7例患者的IgG阳性血清进行SRAS冠状病毒的特异性抗体封闭实验,结果有6例血清仍为阳性,有1例血清转为阴性,说明冠状病毒IgG抗体阳性血清中85.7%为普通冠状病毒特异性,14.3%为SARS冠状病毒特异性。结论普通冠状病毒是内蒙地区发热患者的主要病原体之一,部分患者还存在SARS冠状病毒的既往感染。  相似文献   

4.
Biochemistry (Moscow) - The novel coronavirus disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a major public health emergency...  相似文献   

5.
6.
Singh  Ashutosh  Singh  Rahul Soloman  Sarma  Phulen  Batra  Gitika  Joshi  Rupa  Kaur  Hardeep  Sharma  Amit Raj  Prakash  Ajay  Medhi  Bikash 《中国病毒学》2020,35(3):290-304
The recent outbreak of coronavirus disease(COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) has already affected a large population of the world. SARS-CoV-2 belongs to the same family of severe acute respiratory syndrome coronavirus(SARS-CoV) and Middle East respiratory syndrome coronavirus(MERSCoV). COVID-19 has a complex pathology involving severe acute respiratory infection, hyper-immune response, and coagulopathy. At present, there is no therapeutic drug or vaccine approved for the disease. There is an urgent need for an ideal animal model that can reflect clinical symptoms and underlying etiopathogenesis similar to COVID-19 patients which can be further used for evaluation of underlying mechanisms, potential vaccines, and therapeutic strategies. The current review provides a paramount insight into the available animal models of SARS-CoV-2, SARS-CoV, and MERS-CoV for the management of the diseases.  相似文献   

7.
Molecular and Cellular Biochemistry - Corona virus disease-19 (covid-19) is caused by a coronavirus that is also known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and is...  相似文献   

8.
由严重急性呼吸综合征冠状病毒2型(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)感染引起的2019冠状病毒病(coronavirus disease 2019,COVID-19)暴发,给人类公共卫生安全和全球经济发展造成了严重威胁。疫苗和药物是防治疫情的重要手段,但目前研发的针对冠状病毒的疫苗和药物大多以SARS-CoV-2为靶点,该病毒若发生重大突变或出现新的高致病性冠状病毒,目前研发的有效疫苗或药物可能会无效,而且疫苗和新药的研发往往比较滞后,难以在疫情发生早期投入使用。因此,亟须研发高效、安全、广谱的冠状病毒疫苗和药物,以应对未来可能出现的冠状病毒疫情。本文对广谱冠状病毒疫苗和抗冠状病毒多肽的研究进展进行综述,期望为研发此类疫苗和药物提供参考。  相似文献   

9.
10.
本研究旨在调查新冠疫情期间我国部分地区犬新型冠状病毒(SARS-CoV-2)以及犬冠状病毒(CCoV)感染状况。从14个城市的动物医院收集表现为呼吸道症状和或腹泻症状的犬的鼻拭子和直肠拭子样品,RTPCR检测样品是否存在SARS-CoV-2和CCoV核酸。结果显示,206只犬鼻拭子和直肠拭子样品均未检出SARS-CoV-2,24只犬检出CCoV,阳性率为11.65%,以犬肠道冠状病毒(CECoV)感染为主(19/24),CECoVⅠ和Ⅱ型均在我国流行。CECoV的M基因序列与人α冠状病毒属病毒相似性为47.3-61.3%,犬呼吸道冠状病毒(CRCoV)的M和N基因的部分基因序列与人β冠状病毒属病毒相似性为9.2%-46.2%。结果说明,新冠疫情期间,我国14个城市动物医院就诊犬未感染SARS-CoV-2,CCoV与SARS-CoV-2亲缘关系较远,表现呼吸道和消化道症状的犬应高度关注CCoV感染。  相似文献   

11.
12.
Feline coronavirus (FCoV), porcine transmissible gastroenteritis coronavirus (TGEV), canine coronavirus (CCoV), and human coronavirus HCoV-229E, which belong to the group 1 coronavirus, use aminopeptidase N (APN) of their natural host and feline APN (fAPN) as receptors. Using mouse-feline APN chimeras, we identified three small, discontinuous regions, amino acids (aa) 288 to 290, aa 732 to 746 (called R1), and aa 764 to 788 (called R2) in fAPN that determined the host ranges of these coronaviruses. Blockade of infection with anti-fAPN monoclonal antibody RG4 suggested that these three regions lie close together on the fAPN surface. Different residues in fAPN were required for infection with each coronavirus. HCoV-229E infection was blocked by an N-glycosylation sequon present between aa 288 to 290 in murine APN. TGEV required R1 of fAPN, while FCoV and CCoV required both R1 and R2 for entry. N740 and T742 in fAPN and the homologous R741 in human APN (hAPN) were key determinants of host range for FCoV, TGEV, and CCoV. Residue N740 in fAPN was essential only for CCoV receptor activity. A conservative T742V substitution or a T742R substitution in fAPN destroyed receptor activity for the pig, dog, and cat coronaviruses, while a T742S substitution retained these receptor activities. Thus, the hydroxyl on T742 is required for the coronavirus receptor activity of fAPN. In hAPN an R741T substitution caused a gain of receptor activity for TGEV but not for FCoV or CCoV. Therefore, entry and host range of these group 1 coronaviruses depend on the ability of the viral spike glycoproteins to recognize small, species-specific amino acid differences in the APN proteins of different species.  相似文献   

13.
严重急性呼吸综合征冠状病毒2(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)自被发现以来就引起了人们的广泛关注,开发针对该病毒的安全、有效疫苗成为近期的研究热点。本文以高致病性冠状病毒疫苗(包括灭活疫苗、重组亚单位疫苗、重组病毒载体疫苗和核酸疫苗)的研究展开综述,为研制SARS-CoV-2疫苗提供参考。  相似文献   

14.
《Trends in genetics : TIG》2023,39(3):169-171
Since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, convergent studies have provided evidence that host genetic background may contribute to the development of severe coronavirus disease (COVID-19). Here, we summarize how some genetic variations, such as in SARS-CoV-2 receptor angiotensin-converting enzyme 2 or interferon signaling pathway, may help to understand why some individuals can develop severe COVID-19.  相似文献   

15.
The sudden appearance and potential lethality of severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) in humans has resulted in a focusing of new attention on the determination of both its origins and evolution. The relationship existing between SARS-CoV and other groups of coronaviruses was determined via analyses of phylogenetic trees and comparative genomic analyses of the coronavirus genes: polymerase (Orf1ab), spike (S), envelope (E), membrane (M) and nucleocapsid (N). Although the coronaviruses are traditionally classed into 3 groups, with SARS-CoV forming a 4th group, the phylogenetic position and origins of SARS-CoV remain a matter of some controversy. Thus, we conducted extensive phylogenetic analyses of the genes common to all coronavirus groups, using the Neighbor-joining, Maximum-likelihood, and Bayesian methods. Our data evidenced largely identical topology for all of the obtained phylogenetic trees, thus supporting the hypothesis that the relationship existing between SARS-CoV and group 2 coronavirus is a monophyletic one. Additional comparative genomic studies, including sequence similarity and protein secondary structure analyses, suggested that SARS-CoV may bear a closer relationship with group 2 than with the other coronavirus groups. Although our data strongly suggest that group 2 coronaviruses are most closely related with SARS-CoV, further and more detailed analyses may provide us with an increased amount of information regarding the origins and evolution of the coronaviruses, most notably SARS-CoV.  相似文献   

16.
Autophagy plays important roles in modulating viral replication and antiviral immune response. Coronavirus infection is associated with the autophagic process, however, little is known about the mechanisms of autophagy induction and its contribution to coronavirus regulation of host innate responses. Here, we show that the membrane-associated papain-like protease PLP2 (PLP2-TM) of coronaviruses acts as a novel autophagyinducing protein. Intriguingly, PLP2-TM induces incomplete autophagy process by increasing the accumulation of autophagosomes but blocking the fusion of autophagosomes with lysosomes. Furthermore, PLP2-TM interacts with the key autophagy regulators, LC3 and Beclin1, and promotes Beclin1 interaction with STING, the key regulator for antiviral IFN signaling. Finally, knockdown of Beclin1 partially reverses PLP2-TM’s inhibitory effect on innate immunity which resulting in decreased coronavirus replication. These results suggested that coronavirus papain-like protease induces incomplete autophagy by interacting with Beclin1, which in turn modulates coronavirus replication and antiviral innate immunity.  相似文献   

17.
18.
Bhardwaj K  Guarino L  Kao CC 《Journal of virology》2004,78(22):12218-12224
Nonstructural protein 15 (Nsp15) of the severe acute respiratory syndrome coronavirus (SARS-CoV) produced in Escherichia coli has endoribonuclease activity that preferentially cleaved 5' of uridylates of RNAs. Blocking either the 5' or 3' terminus did not affect cleavage. Double- and single-stranded RNAs were both substrates for Nsp15 but with different kinetics for cleavage. Mn(2+) at 2 to 10 mM was needed for optimal endoribonuclease activity, but Mg(2+) and several other divalent metals were capable of supporting only a low level of activity. Concentrations of Mn(2+) needed for endoribonuclease activity induced significant conformation change(s) in the protein, as measured by changes in tryptophan fluorescence. A similar endoribonucleolytic activity was detected for the orthologous protein from another coronavirus, demonstrating that the endoribonuclease activity of Nsp15 may be common to coronaviruses. This work presents an initial biochemical characterization of a novel coronavirus endoribonuclease.  相似文献   

19.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates infection of cells expressing angiotensin-converting enzyme 2 (ACE2). ACE2 is also the viral receptor of SARS-CoV (SARS-CoV-1), a related coronavirus that emerged in 2002–2003. Horseshoe bats (genus Rhinolophus) are presumed to be the original reservoir of both viruses, and a SARS-like coronavirus, RaTG13, closely related to SARS-CoV-2, has been identified in one horseshoe-bat species. Here we characterize the ability of the S-protein receptor-binding domains (RBDs) of SARS-CoV-1, SARS-CoV-2, pangolin coronavirus (PgCoV), RaTG13, and LyRa11, a bat virus similar to SARS-CoV-1, to bind a range of ACE2 orthologs. We observed that the PgCoV RBD bound human ACE2 at least as efficiently as the SARS-CoV-2 RBD, and that both RBDs bound pangolin ACE2 efficiently. We also observed a high level of variability in binding to closely related horseshoe-bat ACE2 orthologs consistent with the heterogeneity of their RBD-binding regions. However five consensus horseshoe-bat ACE2 residues enhanced ACE2 binding to the SARS-CoV-2 RBD and neutralization of SARS-CoV-2 pseudoviruses by an enzymatically inactive immunoadhesin form of human ACE2 (hACE2-NN-Fc). Two of these mutations impaired neutralization of SARS-CoV-1 pseudoviruses. An hACE2-NN-Fc variant bearing all five mutations neutralized both SARS-CoV-2 pseudovirus and infectious virus more efficiently than wild-type hACE2-NN-Fc. These data suggest that SARS-CoV-1 and -2 originate from distinct bat species, and identify a more potently neutralizing form of soluble ACE2.  相似文献   

20.
Swine acute diarrhea syndrome coronavirus (SADS‐CoV) is a novel coronavirus that is involved in severe diarrhea disease in piglets, causing considerable agricultural and economic loss in China. The emergence of this new coronavirus increases the importance of understanding SADS‐CoV as well as antivirals. Coronaviral proteases, including main proteases and papain‐like proteases (PLP), are attractive antiviral targets because of their essential roles in polyprotein processing and thus viral maturation. Here, we describe the biochemical and structural identification of recombinant SADS papain‐like protease 2 (PLP2) domain of nsp3. The SADS‐CoV PLP2 was shown to cleave nsp1 proteins and also peptides mimicking the nsp2|nsp3 cleavage site and also had deubiquitinating and deISGynating activity by in vitro assays. The crystal structure adopts an architecture resembling that of PLPs from other coronaviruses. We characterize both conserved and unique structural features likely directing the interaction of PLP2 with the substrates, including the tentative mapping of active site and other essential residues. These results provide a foundation for understanding the molecular basis of coronaviral PLPs' catalytic mechanism and for the screening and design of therapeutics to combat infection by SADS coronavirus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号