首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Complex formation between Pd(II), Pt(II) and iodide has been studied at 25 °C for an aqueous 1.00 M perchloric acid medium. Measurements of the solubility of PdI2(s) in aqueous mercury(II) perchlorate and of AgI(s) and PdI2(s) in aqueous solutions of Pd2+(aq) and Ag+(aq) gave the solubility product of PdI2(s) as Kso=(7±3) × 10−32 M3, which is much smaller than previous literature values.The stability constants β1=[MI(H2O)3+]/([M(H2O)42+][I]) for the two systems were obtained as the ratio between rate constants for the forward and reverse reactions of (i).
The following values of k1 (s−1 M−1), k−1 (s−1) and β1 (M−1) were obtained at 25 °C: (1.14±0.11) × 106, (0.92±0.18), (12±4) × 105 for MPd, and (7.7±0.4), (8.0±0.7) × 10−5, (9.6±1.3) × 104 for MPt. Combination with previous literature data gives the following values of log(β1 (M−1)) to log(β4 (M−4)): 6.08, ∼22, 25.8 and 28.3 for MPd, and 4.98, ∼25, ∼28, and ∼30 for MPt. The present results show that the large overall stability constants β4 observed for the M2+I systems are most likely due to a very large stability of the second complex MI2(H2O)2, which is probably a cis-isomer. A distinct plateau in the formation curve for mean ligand number 2 is obtained both for MPd and Pt. The other iodo complexes are not especially stable compared to those of chloride and bromide.ΔH (kJ mol−1) and ΔS (JK−1 mol−1) for the forward reaction of (i), MPd, are (17.3±1.7) and (−71±5), and for the reverse reaction of (i) MPd, (45±3) and (−95±6), respectively. The kinetics are compatible with associative activation (Ia). The contribution from bond-breaking in the formation of the transition state seems to be less important for Pd than for Pt.  相似文献   

2.
To test the possibility of inorganic carbon limitation of the marine unicellular alga Emiliania huxleyi (Lohmann) Hay and Mohler, its carbon acquisition was measured as a function of the different chemical species of inorganic carbon present in the medium. Because these different species are interdependent and covary in any experiment in which the speciation is changed, a set of experiments was performed to produce a multidimensional carbon uptake scheme for photosynthesis and calcification. This scheme shows that CO2 that is used for photosynthesis comes from two sources. The CO2 in seawater supports a modest rate of photosynthesis. The HCO is the major substrate for photosynthesis by intracellular production of CO2 (HCO+ H+→ CO2+ H2O → CH2O + O2). This use of HCO is possible because of the simultaneous calcification using a second HCO, which provides the required proton (HCO+ Ca2+→ CaCO3+ H+). The HCO is the only substrate for calcification. By distinguishing the two sources of CO2 used in photosynthesis, it was shown that E. huxleyi has a K½ for external CO2 of “only” 1.9 ± 0.5 μM (and a Vmax of 2.4 ± 0.1 pmol·cell−1·d−1). Thus, in seawater that is in equilibrium with the atmosphere ([CO2]= 14 μM, [HCO]= 1920 μM, at fCO2= 360 μatm, pH = 8, T = 15° C), photosynthesis is 90% saturated with external CO2. Under the same conditions, the rate of photosynthesis is doubled by the calcification route of CO2 supply (from 2.1 to 4.5 pmol·cell−1·d−1). However, photosynthesis is not fully saturated, as calcification has a K½ for HCO of 3256 ± 1402 μM and a Vmax of 6.4 ± 1.8 pmol·cell−1·d−1. The H+ that is produced during calcification is used with an efficiency of 0.97 ± 0.08, leading to the conclusion that it is used intracellularly. A maximum efficiency of 0.88 can be expected, as NO uptake generates a H+ sink (OH source) for the cell. The success of E. huxleyi as a coccolithophorid may be related to the efficient coupling between H+ generation in calcification and CO2 fixation in photosynthesis.  相似文献   

3.
  • 1.1. Unidirectional Na+ influx in lamprey red blood cells was determined using 22Na as a tracer.
  • 2.2. Total Na+ uptake and amiloride-inhibitable Na+ influx increased in a saturable fashion as a function of external Na+ concentration (Nae).
  • 3.3. At 141 mM Nae, the average value of net Na+ influx was 13 ± 1.1 and the amiloride-sensitive Na+ influx was 5.3±1.1 mmol/l cells per hr (±SE).
  • 4.4. The amiloride-sensitive component of Na+ influx was significantly activated by 10−5 M isoproterenol, by 2 × 10−5 M DNP, and by cell shrinkage.
  • 5.5. Furosemide (1 mM) had no effect on the Na+ transport in red cells.
  • 6.6. The residual amiloride-insensitive component of Na+ transport was a linear function of Nae in the range of 5–141 mM. This transport seems to be accounted for by simple diffusion.
  相似文献   

4.
It has been shown that addition of phosphate to phosphate deficient yeast gives rise to an immediate increase in the rate of Na+ uptake and an immediate decrease in the rate of Rb+ uptake. In addition, phosphate uptake is enhanced specifically by Na ions presumably by a process with a very high affinity for phosphate with a Km of about 2 × 10−6M at pH 7.2, whereas the Km for phosphate uptake of the Na+ independent process amounts to 1.3 × 10−4M.  相似文献   

5.
To determine if calcium-dependent secretagogues directly act on epithelial cells to elicit CI secretion, their effects on CI transport and intracellular Ca2+ concentrations ([Ca2+]i) were determined in primary cultures of rabbit distal colonic crypt cells. The Cl sensitive fluorescent probe, 6-methoxyquinolyl acetoethyl ester, MQAE and the Ca2+-sensitive fluorescent probe, fura-2AM were used to assess Cl transport and [Ca2+]i, respectively. Basal Cl transport (0.274 ± 0.09 mM/sec) was inhibited significantly by the Cl channel blocker diphenylamine-2-carboxylate (DPC, 50 μM, 0.068 ± 0.02 mM/sec; P < 0.001) and the Na+/K+/2Cl cotransport inhibitor furosemide (1 μM, 0.137 ± 0.04 mM/sec; P < 0.01). Ion substitution studies using different halides revealed the basal influx to be I > F ≥ Cl > Br. DPC inhibited I influx by ∼50%, F influx by 80%, Cl influx by 85%, and Br influx by 90%. Furosemide significantly inhibited influx of Br (84%) and Cl (81%) but not of F and I. The effects of agents known to alter biological response by increasing [Ca2+]i in other epithelial systems were used to stimulate Cl transport. Cl influx in mM/second was stimulated by 1 μM histamine (0.58 ± 0.05), 10 μM neurotensin (2.07 ± 0.32), 1 μM serotonin (1.63 ± 0.28), and 0.1 μM of the Ca2+ ionophore A23187 (2.05 ± 0.40). The Cl permeability stimulated by neurotensin, serotonin, and A23187 was partially blocked by DPC or furosemide added alone or in combination. Histamine-induced Cl influx was significantly inhibited by only furosemide. Indomethacin blocked histamine-stimulated Cl permeability but had no effect on the actions of the other agents. These studies, focusing on isolated colonocytes without the contribution of submucosal elements, reveal that (1) histamine stimulates Cl transport by activating the Na+/K+/2Cl cotransporter via a cyclooxygenase-dependent pathway; (2) neurotensin, serotonin, and A23187 activate both Cl channels and the cotransporter, and their actions are cyclooxygenase-independent. © 1996 Wiley-Liss, Inc.  相似文献   

6.
dl-N-Methyl-3-(o-methoxyphenoxy)-3-phenylpropylamine hydrochloride, Lilly 94949, is a potent inhibitor for uptake of norepinephrine (NE) into synaptosomes of rat brain with inhibitor constant (Ki) value of 1.8 × 10−7M. Lilly 94939 profoundly reduces the in vivo accumulation of radioactivity from labeled NE in heart with ED50 value of 1.5 mg/kg i.p. The inhibitory effects of the compound in synaptosomes and heart are most profound within 15 min of an intraperitoneal injection of Lilly 94939 at 10 mg/kg but much deminished at the 4th hr. These properties are in great contrast with its trifluoromethyl analog, Lilly 110140, which has previously been reported as a selective inhibitor of serotonin uptake in synaptosomes and without any effect on the accumulation of radioactivity from labeled NE in heart.  相似文献   

7.
The neuropeptide kyotorphin (Tyr-Arg) was degraded by rat brain synaptosomes via a synaptic membrane-bound peptidase which was inhibited by bestatin but not by amastatin. The Km for kyotorphin was 8×10–6 M and the Ki for bestatin was 1×10–7 M. The kyotorphin-degrading enzyme was distinguished from at least one other dipeptide-hydrolyzing activity in synaptosomes which was inhibited by both bestatin and amastatin. Gel permeation chromatography of detergentextracted synaptosomes resulted in the separation of the dipeptide-hydrolyzing activities. A single kyotorphin-degrading enzyme peak was observed which had a Mr=52,000. The activity peak could degrade other dipeptides including Phe-Arg, a synaptic membrane-generated metabolic of bradykinin. The kyotorphin-degrading enzyme appears to be novel and can be distinguished from other known dipeptidases on the basis of substrate specificity, subcellular localization, and inhibition profile.  相似文献   

8.
《Life sciences》1995,56(20):PL383-PL388
To examine the role of the renin-angiotensin system on human vascular smooth muscle cell (VSMC) replication, we studied the effect of DUP753, an angiotensin II (ANG II) type 1 receptor antagonist, on ANG II stimulated tritiated-thymidine (3H-Tdr) incorporation into cultured human aortic VSMC. ANG II stimulated DNA synthesis of VSMC in a dose-dependent manner as estimated by 3H-Tdr incorporation (control; 2993 ± 486 cpm, 10−8M; 3360 ± 350 cpm, 10−7M; 3474 ± 516 cpm, 10−6M; 4889 ± 320 cpm, P < 0. 01). The effects of ANG II were clearly inhibited by 10−6M DUP 753 (ANG II 10−8M; 3360 ± 350 vs 509 ± 39 cpm, 10−7M; 3474 ± 516 vs 661 ± 36 cpm, 10−6M; 4889 ± 320 vs 806 ± 76 cpm, each P < 0. 01). This receptor antagonist decreased the basal 3H-Tdr incorporation of VSMC from 2933 ± 486 to 411 ±78 cpm (P < 0. 01). Furthermore, DUP 753 decreased 10−7M ANG II-stimulated 3H-Tdr incorporation of VSMC in a dose-dependent manner (control; 2627 ± 256 cpm, 10−9M; 2145 ± 143 cpm, 10−8M; 1047 ± 543 cpm, 10−7M; 639 ± 169 cpm, 10−6M; 642 ± 59 cpm, P < 0. 01). These observations suggest that, in human VSMC, ANG II type 1 receptors are important for the regulation of both stimulated and basal cell proliferation. It may therefore be worth while to examine the clinical usefulness of DUP 753 for preventing abnormal VSMC growth.  相似文献   

9.
The uptake and accumulation of N-methyl-4-phenylpyridinium ion (MPP+), a neurotoxin produced by oxidation of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), into PC12h pheochromocytoma cells were examined. Concentration gradients of MPP+ were established at its low concentrations of 10 to 100 nM. Uptake of MPP+ into PC12h cells was mediated by saturable, carrier mediated transport systems with two different kinetic properties; a high-affinity and low-capacity system and a low-affinity and high-capacity system. The apparent Km values of these two systems were obtained to be 254.4 ± 96.5 nM and 23.1 ± 6.9 μM, respectively, and the maximal uptake velocity was obtained to be 8.47 ± 1.72 and 28.6 ± 5.2 pmol/min/mg protein, respectively. The uptake by a high-affinity system was mediated by a carrier system common to dopamine and noradrenalin and MPTP itself proved to be taken up by this system, which was further confirmed by the inhibition of the MPP+ uptake by nomifensine and mazindol. The uptake was inhibited by metabolic inhibitors, such as carbonyl cyanide m-chlorophenyl hydrazone, sodium cyanide and 2,4-dinitrophenol, and the uptake was inhibited by ouabain and nigercin. By subcellular fractionation, MPP+ taken up was found to be localized mainly in cytosol fraction, but a definite amount of MPP+ was found also in mitochondrial fraction.  相似文献   

10.
The effects of inorganic nutrient (ammonium [NH4 + ] and nitrate [NO3 ]) and amino acid (glutamate [glu] and glutamine [gln]) additions on rates of N2 fixation, N uptake, glutamine synthetase (GS) activity, and concentrations of intracellular pools of gln and glu were examined in natural and cultured populations of Trichodesmium. Additions of 1 μM glu, gln, NO3 , or NH4 + did not affect short-term rates of N2 fixation. This may be an important factor that allows for continued N2 fixation in oligotrophic areas where recycling processes are active. N2 fixation rates decreased when nutrients were supplied at higher concentrations (e.g. 10 μM). Uptake of combined N (NH4 + , NO3 , and amino acids) by Trichodesmium was stimulated by increased concentrations. For NO3 , proportional increases in NO3 uptake and decreases in N2 fixation were observed when additions were made to cultures before the onset of the light period. GS activity did not change much in response to the addition of NH4 + , NO3 , glu, or gln. GS is necessary for N metabolism, and the bulk of this enzyme pool may be conserved. Intracellular pools of glu and gln varied in response to 10 μM additions of NH4 + , glu, or gln. Cells incubated with NH4 + became depleted in intracellular glu and enriched with intracellular gln. The increase in the gln/glu ratio corresponded to a decrease in the rate of N2 fixation. Although the gln/glu ratio decreased in cells exposed to the amino acids, there was only a corresponding decrease in N2 fixation after the gln addition. The results presented here suggest that combined N concentrations on the order of 1 μM do not affect rates of N2 fixation and metabolism, although higher concentrations (e.g. 10 μM) can. Moreover, these effects are exerted through products of NH4 + assimilation rather than exogenous N, as has been suggested for other species. These results may help explain how cultures of Trichodesmium are able to simultaneously fix N2 and take up NH4 + and how natural populations continue to fix N2 once combined N concentrations increase within a bloom.  相似文献   

11.
《Inorganica chimica acta》1986,121(2):175-183
Chloride anation of trans-Pt(CN)4ClOH2 has been studied with and without Pt(CN)42− present at 25.0°C by use of stopped-flow and conventional spectrophotometry and a 1.00 M perchlorate medium. The rate law in the absence of Pt(CN)42− is Rate=(p1 + p2 [H+] ) [Cl]2 [complex]/(1 + q [Cl]) with p1=(3.0 ± 0.1) × 10−5 M−2s−1, p2=(3.6 ± 0.1) × 10−5 M−3 s−1 and q=(0.62 ± 0.02) M−1. It is compatible with a chloride assistance via an intermediate of the type Cl-Cl-Pt(CN)4···OH22−, in which the reactivity of the aqua ligand is enhanced due to a partial reduction of the platinum. This mechanism of halide assistance is in principle the same as the modified reductive elimination oxidative addition (REOA) mechanism proposed by Poë, in which the intermediate is not split into free halogen, platinum(II) and water, and in which electron transfer not necessarily involves complete reduction to platinum(II). To avoid confusion with complete reductive eliminations, reactions without split of the intermediates are here termed halide-assisted reactions. The pH-dependence indicates acid catalysis via a protonated intermediate ClClPt(CN)4···OH3.The Pt(CN)42−accelerated path has the rate law Rate=
[Cl-] [Pt(CN)42−] [complex] where k=(39.9±0.5) M−2 s−1 and Ka=(4.0±0.2)10−2 M is the protolysis constant of trans-Pt(CN)4ClOH2−.Reaction between PtCl5OH2 and chloride is accelerated by Pt(CN)42− and gives PtCl62− as the reaction product. The rate law is Rate=k [Cl] [Pt(CN)42−] [PtCl5OH2] with k=(5.6 ± 0.2)10−3 M−2 s−1 at 35.0°C and for a 1.50 M perchlorate acid medium. The reaction takes place without central ion exchange. Alternative mechanisms with two consecutive central ion exchanges can be excluded. The role of Pt(CN)42− in this reaction is very similar to that of the assisting halide in the halide assisted anations. [p ]Reaction between trans-Pt(CN)4ClOH2 and PtCl42− gives Pt(CN)42− and PtCl5OH2 as products and has the rate law Rate=k[PtCl42−] [trans-Pt(CN)4ClOH2] with k=(3.32 ± 0.02) M−1 s−1 at 25 °C for a 1.00 M perchloric acid medium. The formation of an aqua complex as the primary reaction product and the rate independent of [Cl] shows that formation of a bridged intermediate of the type Pt(II)Cl4ClPt(IV)(CN)4OH23− is formed in the initial reaction step, not five-coordinated PtCl53−.  相似文献   

12.
Cl absorption across isolated, perfused gills of freshwater adapted Chinese crabs (Eriocheir sinensis) was analysed by measuring transepithelial potential differences (PDte) and radioactive tracer fluxes across isolated, perfused posterior gills. Applying hemolymph-like NaCl salines on both sides of the epithelium PDte amounted to −30±1 mV (n=14). Undirectional Cl influxes of 470±38 and effluxes of 245±27 μmol·hr−1·g−1 wet weight (ww) (n=14) resulted in a Cl net influx of 226±31 μmol·hr−1·g−1 ww. Symmetrical substitution of Na+ by choline resulted in a substantial hyperpolarisation of the gill. Cl influx was unchanged under these conditions. However, net influx of Cl decreased by 40%, due to an increase of the Cl efflux.Nevertheless, a significant Cl net influx remained which was independent of the presence of Na+. When 2 mmol/l ouabain were added to the internal perfusion medium, PDte increased, although the fluxes remained unchanged. Following external application of 1μmol/l of the V-type H+-ATPase inhibitor bafilomycin, Al PDte and Cl effluxes were not significantly affected. However, Cl influxes decreased. These findings suggest that Cl can be taken up independently of Na+ and that active Na+ independent Cl uptake across the posterior gill of Eriocheir sinensis is probably driven by a V-type H+-ATPase localized in the apical membrane.  相似文献   

13.
[22,23-3H2]dihydroazadirachtin was incorporated by Sf9 cells in culture and was bound specifically to the nuclear fraction. The observed association constant of the binding of the radioligand to a purified nuclear fraction was determined to be 0.037 ± 0.008 min 1 using a one-phase exponential association equation, and binding appeared to be to a single population of sites. The binding was essentially irreversible, and the dissociation constant was estimated to be 0.00065 ± 0.00013 min 1. An association rate constant of 7.3 × 106 M 1 min 1 was calculated from these data. Binding was saturable, and the receptor number and affinity were determined as Bmax = 23.87 ± 1.15 pmol/mg protein, Kd = 18.1 ± 2.1 nM. The order of potency of semisynthetic azadirachtin analogues for competition for the binding site was as follows (IC30 in parentheses): azadirachtin (1.55 × 10−8 M) > dihydroazadirachtin (3.16 × 10−8 M) > dansyl dihydroazadirachtin (7.40 × 10−8 M) > DNP-azadirachtin (7.50 × 10−8 M) > biotin dihydroazadirachtin (1.27 × 10−7 M) ≫ 11-methoxy 22,23-dihydroazadirachtin (6.67 × 10−7 M). Arch. Insect Biochem. Physiol. 34:461–473, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
We studied the postulated involvement of the protein kinase C β1 (PKCβ1) isoform in the regulation of endothelial permeability using human dermal microvascular endothelial cell line (HMEC-1). We overexpressed the recombinant PKCβ1 gene via retroviral-mediated transduction in these cells. PKCβ1 gene transfer was stable, and PKCβ1 protein production was persistent for at least 1 month posttransduction. Addition of 2 × 10−9 M and 2 × 10−8 M phorbol 12-myristate 13-acetate (PMA) to the control (nontransduced) HMEC-1 cells increased the transendothelial 125I-albumin clearance rate (an index of endothelial permeability) from 2.5 ± 0.2 × 10−2 μl/min to 5.4 ± 1.2 × 10−2 μl/min and 16.8 ± 3.1 × 10−2 μl/min, respectively. However, addition of 2 × 10−9 M PMA to PKCβ1-overexpressing HMEC-1 cells produced a maximal increase in the transendothelial 125I-albumin clearance rate of 15.9 ± 2.0 × 10−2 μl/min. Challenge of these cells with 2 × 10 −8 M PMA did not further augment the increase in permeability. Activation with PMA was associated with the translocation of the PKCβ1 from the cytosol to the membrane. These data show that PKCβ1 overexpression augments the increase in endothelial permeability in response to PKC activation, suggesting an important function for the PKCβ1 isoform in the regulation of endothelial barrier. © 1996 Wiley-Liss, Inc.  相似文献   

15.
1. SCH 23390 (SCH, R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine) produced the relaxation of ACh-induced contraction in the anterior byssus retractor muscle of Mytilus edulis (ABRM) in a dose-dependent manner between 10−9-10−6M.2. The dose-response curve of SCH was shifted in parallel to the right by ketanserin (KET) with pA2 value of 5.14 ± 0.08 and by 1-(1-naphthyl)piperazine (NAP) with that of 5.06 ± 0.01, but not by cyproheptadine (CYP), mianserin (MIA), butaclamol (BUTA), ICS 205–930 (ICS) and MDL 72222 (MDL) at 3 × 10−5 M.3. α-Methyl-serotonin (α-Me-5-HT), a selective 5-HT2 receptor agonist dose-dependently relaxed the ACh-induced contraction of ABRM. The dose-response curve of α-Me-5-HT was shifted in parallel to the right by KET with pA2 value of 5.01 ± 0.02, but not by BUTA, CYP, MIA, ICS and MDL at 3 × 10−5 M.4. These findings suggest that 5-HT2-like receptors exist in the ABRM, and that the relaxation induced by SCH is mediated through these receptors.  相似文献   

16.
The effects of membrane lipid disturbances induced by ischemia and exogenously added lipids on the uptake of GABA and Ca2+ were investigated in gerbil brain synaptosomes. Ischemia was produced by bilateral ligation of common carotid arteries in Mongolian gerbil for 10 min. The level of the free fatty acids (FFA) increased significantly in ischemic synaptosomes. Incorporation of [1-14C]arachidonate into membrane phosphatidylinositol and phosphatidylcholine was decreased by about 20–35%. Furthermore ischemia exerted an inhibitory effect on GABA uptake but remained without effect on calcium accumulation. Thiopental application in dose of 100 mg per kg body weight 30 min before ischemia caused a protective effect on membrane lipid disturbances induced by ischemia and enhanced GABA uptake. Unsaturated fatty acids (arachidonate and docosahexanoate) in concentration of 10−5−10−4 mol/l and lysocompounds (lysophosphatidylcholine and lysophosphatidylethanolamine) in concentrations higher than 10−4 mol/l decreased GABA and Ca2+ uptake in synaptosomes from normoxic brains. No effect was seen with saturated stearic acid. These results suggest that the inhibition of GABA uptake into ischemic synaptosomes resulted from an action of unsaturated fatty acids, arachidonic and docosahexanoic acids which were liberated during ischemia. Moreover the transient higher local concentration of lysophospholipids close to GABA carrier system may also have contributed to the inhibition observed during ischemia.  相似文献   

17.
This study investigated the action of enprostil, a synthetic analog of PGE2, on gastric HCO3 secretion in humans and on duodenal HCO3 secretion in the anesthetized rat. A previously validated 2-component model was used to calculate gastric HCO3 and H+ secretion in 10 human subjects. Compared to placebo, a single 70 μg oral dose of enprostil increased basal gastric HCO3 secretion from 1810 +- 340 to 3190 ± 890 μmol/hr (P < 0.05). In addition, enprostil reduced basal gastric H+ secretion from 5240 ± 1140 to 1680 ± 530 μmol/hr (P < 0.02). Enprostil also increased HCO3 and reduced H+ secretion during intravenous pentagastrin infusion. In the rat, duodenal HCO3 secretion was measured by direct titration in situ using perfused segments of duodenum just distal to the Brunner gland area dn devoid of pancreatic and biliary secretions. Addition of enprostil(10 μg/ml) to the duodenal bathing solution increased duodenal HOC3 secretion from 6.3 ± 1.3 to 15.1 ± 2.0 μmol/cm·hr (P < 0.01, n = 6). The stimulatory action of enprostil on duodenal HCO3 secretion at 10 μg/ml was comparable in magnitude and duration to that of 10 μg/ml natural PGE2. In summary, the PGE2 analog enprostil stimulated gastroduodenal HCO3 secretion, effects which may be beneficial in protection of the gastroduodenal mucosa against luminal acid.  相似文献   

18.
19.
Abstract: The voltage-dependent calcium channels present in mammalian and chicken brain synaptosomes were characterized pharmacologically using specific blockers of L-type channels (1,4-dihydropyridines), N-type channels (ω-conotoxin GVIA), and P-type channels [funnel web toxin (FTX) and ω-agatoxin IVA]. K+-induced Ca2+ uptake by chicken synaptosomes was blocked by ω-conotoxin GVIA (IC50 = 250 nM). This toxin at 5 µM did not block Ca2+ entry into rat frontal cortex synaptosomes. FTX and ω-agatoxin IVA blocked Ca2+ uptake by rat synaptosomes (IC50 = 0.17 µl/ml and 40 nM, respectively). Likewise, in chicken synaptosomes, FTX and ω-agatoxin IVA affected Ca2+ uptake. FTX (3 µl/ml) exerted a maximal inhibition of 40% with an IC50 similar to the one obtained in rat preparations, whereas with ω-agatoxin IVA saturation was not reached even at 5 µM. In chicken preparations, the combined effect of saturating concentrations of FTX (1 µl/ml) and different concentrations of ω-conotoxin GVIA showed no additive effects. However, the effect of saturating concentrations of FTX and ω-conotoxin GVIA was never greater than the one observed with ω-conotoxin GVIA. We also found that 60% of the Ca2+ uptake by rat and chicken synaptosomes was inhibited by ω-conotoxin MVIID (1 µM), a toxin that has a high index of discrimination against N-type channels. Conversely, nitrendipine (10 µM) had no significant effect on Ca2+ uptake in either the rat or the chicken. In conclusion, Ca2+ uptake by rat synaptosomes is potently inhibited by different P-type Ca2+ channel blockers, thus indicating that P-type channels are predominant in this preparation. In contrast, Ca2+ uptake by chicken synaptosomes is sensitive to ω-conotoxin GVIA, FTX, ω-agatoxin IVA, and ω-conotoxin MVIID. This suggests that a channel subtype with a mixed pharmacology is present in chicken synaptosomes.  相似文献   

20.
《Inorganica chimica acta》1988,152(2):117-124
We report here on the antineoplastic, toxicologic, and transmembrane transfer properties of vanadocene dichloride (VDC), a representative metallocene dihalide. VDC is cytotoxic to HEp-2 human epidermoid carcinoma cells, in vitro, in a dose dependent manner, with a Do value (dose increment reducing the survival fraction by 1/e) of 0.530 ± 0.005 μg/ml. Under similar experimental conditions, the Do for cisplatin (CDDP) against these cells is 0.46 ± 0.08 μg/ml. In a murine mammary adenocarcinoma (TA3Ha) system, 125 μg/ml VDC inhibits the tumor-forming ability of 105 cells upon i.p. inoculation into syngeneic Strain A mice. The transmembrane transfer rate constants for the metal uptake of VDC and CDDP by TA3Ha cells in vitro were found to be 3.3 ± 0.8 × 10−4 min−1 and 12 ± 2.0 × 10t-4 min−1, respectively. In vivo studies with TA3Ha cells show that two i.p. treatments of 20, 40, and 60 mg/kg VDC increase the host survival by 30, 50, and 90%, respectively. Under similar conditions, 2, 4, and 6 mg/kg CDDP (equitoxic dose levels) prolong the host survival 50, 75, and 83%, respectively. Morphological, blood urea nitrogen level, and serum creatinine level data for Strain A mice treated with 60 mg/kg VDC give no evidence of renal or small intestinal damage. However, changes in the liver consistent with fatty cell degeneration are observed in these mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号