首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
延伸因子4 (EF4)是一种非传统的线粒体延伸因子,参与调控线粒体蛋白质合成过程.在本研究中,我们进一步探索了其在膀胱癌中的作用机制.通过检测EF4在膀胱癌及邻近正常组织中的表达,发现EF4在膀胱癌患者肿瘤组织中异常升高,并在T分期较高的肿瘤中高表达.随后,通过在HTB-9和T-24膀胱癌细胞中敲低EF4的表达,进一步...  相似文献   

3.
One of the grand challenges of the postgenomics era is to mechanistically link the genotype with the phenotype. Here, we consider the link between the mitochondrial genotype and the organismal phenotype that is provided by bioenergetic studies of the electron transport chain. That linkage is pertinent for the fields of molecular ecology and phylogeography as it tests if, and potentially how, natural selection can influence the evolutionary and demographic past of both populations and species. We introduce the mitochondrial genotype in terms of mitochondrial‐encoded genes, nuclear‐encoded genes that produce structural proteins imported into the mitochondria, and mitochondrial DNA–nuclear interactions. We then review the potential for quaternary structure modelling to predict the functional consequence of specific naturally occurring mutations. We discuss how the energy‐producing reactions of oxidative phosphorylation can be used to provide a mechanistic biochemical link between genotype and phenotype. Experimental manipulations can then be used to test the functional consequences of specific mutations in multiple genetic backgrounds. Finally, we examine how mitochondria can influence the organismal mitochondrial phenotype using the examples of lifespan, fertility and starvation resistance and discuss how mitochondria may be involved in establishing both the upper and lower thermal limits of organisms. We conclude that mitochondrial DNA mutations can be important in determining aspects of organism life history. The question that remains to be resolved is how common are these adaptive mutations?  相似文献   

4.
    
Mammalian mitochondrial tRNA (mt-tRNA) plays a central role in the synthesis of the 13 subunits of the oxidative phosphorylation complex system (OXPHOS). However, many aspects of the context-dependent expression of mt-tRNAs in mammals remain unknown. To investigate the tissue-specific effects of mt-tRNAs, we performed a comprehensive analysis of mitochondrial tRNA expression across five mice tissues (brain, heart, liver, skeletal muscle, and kidney) using Northern blot analysis. Striking differences in the tissue-specific expression of 22 mt-tRNAs were observed, in some cases differing by as much as tenfold from lowest to highest expression levels among these five tissues. Overall, the heart exhibited the highest levels of mt-tRNAs, while the liver displayed markedly lower levels. Variations in the levels of mt-tRNAs showed significant correlations with total mitochondrial DNA (mtDNA) contents in these tissues. However, there were no significant differences observed in the 2-thiouridylation levels of tRNALys, tRNAGlu, and tRNAGln among these tissues. A wide range of aminoacylation levels for 15 mt-tRNAs occurred among these five tissues, with skeletal muscle and kidneys most notably displaying the highest and lowest tRNA aminoacylation levels, respectively. Among these tissues, there was a negative correlation between variations in mt-tRNA aminoacylation levels and corresponding variations in mitochondrial tRNA synthetases (mt-aaRS) expression levels. Furthermore, the variable levels of OXPHOS subunits, as encoded by mtDNA or nuclear genes, may reflect differences in relative functional emphasis for mitochondria in each tissue. Our findings provide new insight into the mechanism of mt-tRNA tissue-specific effects on oxidative phosphorylation.  相似文献   

5.
6.
7.
    
Many proteins are modified by posttranslational methylation, introduced by a number of methyltransferases (MTases). Protein methylation plays important roles in modulating protein function and thus in optimizing and regulating cellular and physiological processes. Research has mainly focused on nuclear and cytosolic protein methylation, but it has been known for many years that also mitochondrial proteins are methylated. During the last decade, significant progress has been made on identifying the MTases responsible for mitochondrial protein methylation and addressing its functional significance. In particular, several novel human MTases have been uncovered that methylate lysine, arginine, histidine, and glutamine residues in various mitochondrial substrates. Several of these substrates are key components of the bioenergetics machinery, e.g., respiratory Complex I, citrate synthase, and the ATP synthase. In the present review, we report the status of the field of mitochondrial protein methylation, with a particular emphasis on recently discovered human MTases. We also discuss evolutionary aspects and functional significance of mitochondrial protein methylation and present an outlook for this emergent research field.  相似文献   

8.
9.
线粒体转录终止因子蛋白家族研究进展   总被引:3,自引:0,他引:3  
余敏  伍红  谭德勇 《生命科学》2007,19(5):496-500
线粒体转录终止因子蛋白的作用是与线粒体DNA的特异位点结合,导致线粒体基因转录停止。近年来,随着人们对线粒体基因转录机制和人线粒体疾病的深入研究,线粒体转录终止因子的功能开始受到人们的关注。本文介绍了线粒体转录终止因子及其家族成员的研究进展和有待解决的一些问题。  相似文献   

10.
Cdk5 phosphorylates p53 and regulates its activity   总被引:2,自引:0,他引:2  
  相似文献   

11.
12.
13.
14.
Summary Incubation of rat liver mitochondria in the presence of either [32P] Pi or 32 y -P] ATP resulted in a phosphorylation of four proteins with Mr 50, 47, 44 and 36 kDa, respectively. The endogenous phosphorylation of these proteins in the presence of [32P] Pi was markedly influenced by the osmolarity of the incubation medium and differentially affected by various effectors of mitochondrial functions, such as Ca2+, oligomycin, FCCP, arsenite and dichloroacetate. In particular, the 36 kDa protein, unlike the other proteins, appears to be phosphorylated also by direct incorporation of [32P], independently of respiratory chain-linked ATP synthesis. The four proteins, located in the mitoplasts, seem to be phosphorylated by diiferent protein kinases, as suggested by the observation that the endogenous phosphorylation of 36 kDa protein resulted selectively increased by addition of exogenous protein kinases, such as casein kinases S and TS. A tentative identification of these phosphorylatable protein is discussed.  相似文献   

15.
16.
17.
    
《Cell》2021,184(23):5824-5837.e15
  1. Download : Download high-res image (179KB)
  2. Download : Download full-size image
  相似文献   

18.
19.
20.

Background

Mitochondrial DNA (mtDNA) is important for energy production as it encodes some of the key genes of electron transfer chain, where the majority of cellular energy is generated through oxidative phosphorylation (OXPHOS). MtDNA replication is mediated by nuclear DNA-encoded proteins or enzymes, which translocate to the mitochondria, and is strictly regulated throughout development. It starts with approximately 200 copies in each primordial germ cell and these copies undergo expansion and restriction events at various stages of development.

Scope of review

I describe the patterns of mtDNA replication at key stages of development. I explain that it is essential to regulate mtDNA copy number and to establish the mtDNA set point in order that the mature, specialised cell acquires the appropriate numbers of mtDNA copy to generate sufficient adenosine triphosphate (ATP) through OXPHOS to undertake its specialised function. I discuss how these processes are dependent on the controlled expression of the nuclear-encoded mtDNA-specific replication factors and that this can be modulated by mtDNA haplotypes. I discuss how these events are altered by certain assisted reproductive technologies, some of which have been proposed to prevent the transmission of mutant mtDNA and others to overcome infertility. Furthermore, some of these technologies are predisposed to transmitting two or more populations of mtDNA, which can be extremely harmful.

Major conclusions

The failure to regulate mtDNA replication and mtDNA transmission during development is disadvantageous.

General significance

Manipulation of oocytes and embryos can lead to significant implications for the maternal-only transmission of mtDNA.This article is part of a Special Issue entitled Frontiers of mitochondrial research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号