共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
One of the grand challenges of the postgenomics era is to mechanistically link the genotype with the phenotype. Here, we consider the link between the mitochondrial genotype and the organismal phenotype that is provided by bioenergetic studies of the electron transport chain. That linkage is pertinent for the fields of molecular ecology and phylogeography as it tests if, and potentially how, natural selection can influence the evolutionary and demographic past of both populations and species. We introduce the mitochondrial genotype in terms of mitochondrial‐encoded genes, nuclear‐encoded genes that produce structural proteins imported into the mitochondria, and mitochondrial DNA–nuclear interactions. We then review the potential for quaternary structure modelling to predict the functional consequence of specific naturally occurring mutations. We discuss how the energy‐producing reactions of oxidative phosphorylation can be used to provide a mechanistic biochemical link between genotype and phenotype. Experimental manipulations can then be used to test the functional consequences of specific mutations in multiple genetic backgrounds. Finally, we examine how mitochondria can influence the organismal mitochondrial phenotype using the examples of lifespan, fertility and starvation resistance and discuss how mitochondria may be involved in establishing both the upper and lower thermal limits of organisms. We conclude that mitochondrial DNA mutations can be important in determining aspects of organism life history. The question that remains to be resolved is how common are these adaptive mutations? 相似文献
4.
Qiufen He Xiao He Yun Xiao Qiong Zhao Zhenzhen Ye Limei Cui Ye Chen Min-Xin Guan 《The Journal of biological chemistry》2021,297(2)
Mammalian mitochondrial tRNA (mt-tRNA) plays a central role in the synthesis of the 13 subunits of the oxidative phosphorylation complex system (OXPHOS). However, many aspects of the context-dependent expression of mt-tRNAs in mammals remain unknown. To investigate the tissue-specific effects of mt-tRNAs, we performed a comprehensive analysis of mitochondrial tRNA expression across five mice tissues (brain, heart, liver, skeletal muscle, and kidney) using Northern blot analysis. Striking differences in the tissue-specific expression of 22 mt-tRNAs were observed, in some cases differing by as much as tenfold from lowest to highest expression levels among these five tissues. Overall, the heart exhibited the highest levels of mt-tRNAs, while the liver displayed markedly lower levels. Variations in the levels of mt-tRNAs showed significant correlations with total mitochondrial DNA (mtDNA) contents in these tissues. However, there were no significant differences observed in the 2-thiouridylation levels of tRNALys, tRNAGlu, and tRNAGln among these tissues. A wide range of aminoacylation levels for 15 mt-tRNAs occurred among these five tissues, with skeletal muscle and kidneys most notably displaying the highest and lowest tRNA aminoacylation levels, respectively. Among these tissues, there was a negative correlation between variations in mt-tRNA aminoacylation levels and corresponding variations in mitochondrial tRNA synthetases (mt-aaRS) expression levels. Furthermore, the variable levels of OXPHOS subunits, as encoded by mtDNA or nuclear genes, may reflect differences in relative functional emphasis for mitochondria in each tissue. Our findings provide new insight into the mechanism of mt-tRNA tissue-specific effects on oxidative phosphorylation. 相似文献
5.
6.
7.
Many proteins are modified by posttranslational methylation, introduced by a number of methyltransferases (MTases). Protein methylation plays important roles in modulating protein function and thus in optimizing and regulating cellular and physiological processes. Research has mainly focused on nuclear and cytosolic protein methylation, but it has been known for many years that also mitochondrial proteins are methylated. During the last decade, significant progress has been made on identifying the MTases responsible for mitochondrial protein methylation and addressing its functional significance. In particular, several novel human MTases have been uncovered that methylate lysine, arginine, histidine, and glutamine residues in various mitochondrial substrates. Several of these substrates are key components of the bioenergetics machinery, e.g., respiratory Complex I, citrate synthase, and the ATP synthase. In the present review, we report the status of the field of mitochondrial protein methylation, with a particular emphasis on recently discovered human MTases. We also discuss evolutionary aspects and functional significance of mitochondrial protein methylation and present an outlook for this emergent research field. 相似文献
8.
9.
10.
Cdk5 phosphorylates p53 and regulates its activity 总被引:2,自引:0,他引:2
12.
13.
14.
Stefano Ferrari Vittorio Moret Noris Siliprandi 《Molecular and cellular biochemistry》1990,97(1):9-16
Summary Incubation of rat liver mitochondria in the presence of either [32P] Pi or
32
y
-P] ATP resulted in a phosphorylation of four proteins with Mr 50, 47, 44 and 36 kDa, respectively. The endogenous phosphorylation of these proteins in the presence of [32P] Pi was markedly influenced by the osmolarity of the incubation medium and differentially affected by various effectors of mitochondrial functions, such as Ca2+, oligomycin, FCCP, arsenite and dichloroacetate. In particular, the 36 kDa protein, unlike the other proteins, appears to be phosphorylated also by direct incorporation of [32P], independently of respiratory chain-linked ATP synthesis. The four proteins, located in the mitoplasts, seem to be phosphorylated by diiferent protein kinases, as suggested by the observation that the endogenous phosphorylation of 36 kDa protein resulted selectively increased by addition of exogenous protein kinases, such as casein kinases S and TS. A tentative identification of these phosphorylatable protein is discussed. 相似文献
15.
16.
17.
18.
19.
20.