首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have found that alpha‐fetoprotein (AFP) can promote the proliferation of hepatoma cells and accelerate the progression of hepatocellular carcinoma (HCC). However, the exact mechanism of action remains unclear. Recent bioinformatics studies have predicted the possible interaction between AFP and retinoic acid receptors (RARs). Thus, the purpose of this study was to investigate the molecular mechanism through which AFP promotes tumour cell proliferation by interfering with the RA‐RAR signal pathway. Our data indicated that AFP could significantly promote the proliferation and weaken ATRA‐induced apoptosis of hepatoma cells. Besides, cytoplasmic AFP interacts with RAR, disrupting its entrance into the nucleus, which in turn affects the expression of the Bcl‐2 gene. In addition, knockdown of AFP in HepG2 cells was synchronously associated with an incremental increase of RAR binding to DNA, as well as down‐regulation of Bcl‐2; the opposite effect was observed in AFP gene‐transfected HLE cells. Moreover, a similar effect of AFP was detected in tumour tissues with high serum AFP, but not in adjacent non‐cancerous liver tissues, or HCC tissues with low serum AFP levels. These results indicate that AFP acts as signalling molecule and prevents RAR from entering into the nucleus by interacting with RAR, thereby promoting the expression of Bcl‐2. Our data reveal a novel mechanism through which AFP regulates Bcl‐2 expression and further suggest that AFP may be used as a novel target for treating HCC.  相似文献   

2.
Maintaining the architecture, size and composition of an intact stem cell (SC) compartment is crucial for tissue homeostasis and regeneration throughout life. In mammalian skin, elevated expression of the anti‐apoptotic Bcl‐2 protein has been reported in hair follicle (HF) bulge SCs (BSCs), but its impact on SC function is unknown. Here, we show that systemic exposure of mice to the Bcl‐2 antagonist ABT‐199/venetoclax leads to the selective loss of suprabasal BSCs (sbBSCs), thereby disrupting cyclic HF regeneration. RNAseq analysis shows that the pro‐apoptotic BH3‐only proteins BIM and Bmf are upregulated in sbBSCs, explaining their addiction to Bcl‐2 and the marked susceptibility to Bcl‐2 antagonism. In line with these observations, conditional knockout of Bcl‐2 in mouse epidermis elevates apoptosis in BSCs. In contrast, ectopic Bcl‐2 expression blocks apoptosis during HF regression, resulting in the accumulation of quiescent SCs and delaying HF growth in mice. Strikingly, Bcl‐2‐induced changes in size and composition of the HF bulge accelerate tumour formation. Our study identifies a niche‐instructive mechanism of Bcl‐2‐regulated apoptosis response that is required for SC homeostasis and tissue regeneration, and may suppress carcinogenesis.  相似文献   

3.
This study investigated the mechanisms of migration inhibitory factor (MIF) and solute carrier family 3 member 2 (SLC3A2) in colorectal cancer progression. The levels of MIF and SLC3A2 expression in cells were measured by RT‐qPCR. SW480 and SW620 cells were transfected with sh‐MIF and sh‐SLC3A2, respectively. MIF, SLC3A2, GPX4, E‐cadherin and N‐cadherin expression were detected by immunofluorescence (IF). CCK8 and Transwell assays were performed to detect cell proliferation and migration. Co‐immunoprecipitation (CoIP) was used to measure the binding activity of MIF and SLC3A2. Finally, a nude mouse tumorigenicity assay was used to confirm the functions of MIF and SLC3A2 in colorectal cancer. Results showed that the levels of MIF and SLC3A2 expression were up‐regulated in colorectal cancer cells. Inhibition of MIF or SLC3A2 expression prevented cell proliferation, migration, epithelial‐mesenchymal transition (EMT) and invasion. In addition, knockdown of MIF and SLC3A2 promoted iron death in SW480 and SW620 cells. CoIP results showed that MIF and SLC3A2 directly interact with each other. Knockdown of both MIF and SLC3A2 inhibited tumour growth and metastasis via the AKT/GSK‐3β pathway in vivo. The Akt/GSK‐3β pathway was found to participate in regulating MIF and SLC3A2 both in vivo and in vitro. MIF and SLC3A2 might be potential biomarkers for monitoring the treatment of colorectal cancer.  相似文献   

4.
Aresenic trioxide (ATO) is proven to be active against leukaemia cells by inducing apoptosis and differentiation. Even though ATO could effectively induce remissions of leukaemia cells, the drug resistance was observed occasionally. To further dissect the mechanism of ATO resistance, we selected the ATO‐resistant SH‐SY5Y cells and found that Bcl‐2 controlled the sensitivity of ATO in SH‐SY5Y cells. We report that necroptosis, autophagy, NF‐ƘB and MAPK signalling pathway are not involved in ATO‐induced apoptosis. Moreover, the ATO‐resistant cells showed distinct mitochondrial morphology compared with that of ATO‐sensitive cells. Intriguingly, nude mice‐bearing ATO‐sensitive cells derived xenograft tumours are more sensitive to ATO treatment compared with that of ATO‐resistant cells. These data demonstrate that cancer cells can acquire the ATO‐resistance ability by increasing the Bcl‐2 expression.  相似文献   

5.
Osteoarthritis has become one of the main diseases affecting the life of many elderly people with high incidence of disability, and local chronic inflammation in the joint cavity is the most crucial pathological feature of osteoarthritis. Astilbin is the main active component in a variety of natural plants such as Hypericum perforatum and Sarcandra glabra, which possess antioxidant and anti‐inflammatory effects. At present, there is no study about the protective effect of Astilbin for osteoarthritis. The purpose of this study was to investigate the effect of Astilbin in human OA chondrocytes and mouse OA model, which was established by surgery‐mediated destabilization of the medial meniscus (DMM). In vitro, we found that Astilbin pre‐treatment inhibited lipopolysaccharide (LPS)‐induced overproduction of inflammation‐correlated cytokines such as nitric oxide (NO), prostaglandin E2 (PGE2), tumour necrosis factor α (TNF‐α) and interleukin 6 (IL‐6), and suppressed overexpression of inflammatory enzymes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX‐2). Astilbin, on the other hand, prevented the LPS‐induced degradation of extracellular matrix (ECM) by down‐regulating MMP13 (matrix metalloproteinases 13) and ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5). Moreover, by inhibiting the formation of the TLR4/MD‐2/LPS complex, Astilbin blocked LPS‐induced activation of TLR4/NF‐κB signalling cascade. In vivo, Astilbin showed the chondro‐protective effect in the surgical‐induced OA mouse models. In conclusion, our findings provided evidence that develops Astilbin as a potential therapeutic drug for OA patients.  相似文献   

6.
ObjectivesIn recent years, cellular senescence has attracted a lot of interest in researchers due to its involvement in non‐alcoholic fatty liver disease (NAFLD). However, the mechanism of cellular senescence is not clear. The purpose of this study was to investigate the effect of curcumol on hepatocyte senescence in NAFLD and the molecular mechanisms implicated.Materials and methodsLVG Golden Syrian hamsters, C57BL/6J mice and human hepatocyte cell line LO2 were used. Cellular senescence was assessed by analyses of senescence marker SA‐β‐gal, p16 and p21, H3K9me3, γ‐H2AX and telomerase activity.ResultsThe results showed that curcumol could inhibit hepatocyte senescence in both in vivo and in vitro NAFLD models, and the mechanism might be related to its regulation of ferritinophagy and subsequent alleviation of iron overload. Moreover, overexpression of nuclear receptor coactivator 4 (NCOA4) weakened the effect of curcumol on ferritinophagy‐mediated iron overload and cellular senescence. Furthermore, we demonstrated that curcumol reduced the expression of NCOA4 by Yes‐associated protein (YAP). In addition, depression of YAP could impair the effect of curcumol on iron overload and cellular senescence.ConclusionOur results clarified the mechanism of curcumol inhibition of hepatocyte senescence through YAP/NCOA4 regulation of ferritinophagy in NAFLD. These findings provided a promising option of curcumol to regulate cellular senescence by target YAP/NCOA4 for the treatment of NAFLD.  相似文献   

7.
Prostate cancer is the second most frequent malignancy in men worldwide, and its incidence is increasing. Therefore, it is urgently required to clarify the underlying mechanisms of prostate cancer. Although the long non‐coding RNA LINC00115 was identified as an oncogene in several cancers, the expression and function of LINC00115 in prostate cancer have not been explored. Our results showed that LINC00115 was significantly up‐regulated in prostate cancer tissues, which was significantly associated with a poor prognosis for prostate cancer patients. Functional studies showed that knockdown LINC00115 inhibited cell proliferation and invasion. In addition, LINC00115 served as a competing endogenous RNA (ceRNA) through sponging miR‐212‐5p to release Frizzled Family Receptor 5 (FZD5) expression. The expression of miR‐212‐5p was noticeably low in tumour tissues, and FZD5 expression level was down‐regulated with the knockdown of LINC00115. Knockdown LINC00115 inhibited the Wnt/β‑catenin signalling pathway by inhibiting the expression of FZD5. Rescue experiments further showed that LINC00115 inhibits prostate cancer cell proliferation and invasion via targeting miR‐212‐5p/ FZD5/ Wnt/β‐catenin axis. The present study provided clues that LINC00115 may be a promising novel therapeutic target for prostate cancer patients.  相似文献   

8.
The development and progression of colorectal cancer (CRC) have been associated with inflammation processes that involve the overactivation of the NF‐κB signalling pathway. The characterization of the NF‐κB expression profile in CRC is an important topic since the suppression of NF‐κB represents a potential therapeutic approach. In this study, we assessed the expression levels of 84 NF‐κB‐related genes in paired tumoral (T) and peritumoral (PT) tissues from 18 CRC patients and 18 normal colonic mucosae, and the expression levels of three miRNAs targeting the most dysregulated genes revealed by the case–control analysis. Comparing the gene expression profile of T and controls, 60 genes were dysregulated. The comparison of T and PT revealed 17 dysregulated genes in the tumoral tissues, with IL1B, CXCL8, IL1A, and CSF2 being the most upregulated. Notably, through a bioinformatics analysis, the differential gene expression of 11 out of the 17 genes was validated on a larger cohort of 308 CRC patients compared with 41 controls. Moreover, a decrease in the levels of RELA, NOD1, CASP8, BCL2L1, ELK1, and IKBKB was identified in poorly differentiated tumours compared to moderately differentiated tumours. The analysis of the three miRNAs targeting IL1B, CXCL8, IL1A, and CSF2 showed that miR‐182‐5p was upregulated in T compared with PT, whereas miR‐10b‐5p was downregulated in T compared with PT and control tissues. Our results may contribute to the design of new experimental therapeutic strategies based on endogenous molecules, such as miRNAs, to target the genetic key players of the NF‐ κB pathway.  相似文献   

9.
Platinum‐based chemotherapy drugs play a very important role in the treatment of patients with advanced colorectal cancer, but the drug resistance of platinum‐based chemotherapy drugs is an important topic that puzzles us. If we can find mechanisms of resistance, it will be revolutionary for us. We analysed the differential genes, core genes and their enrichment pathways in platinum‐resistant and non‐resistant patients through a public database. Platinum‐resistant cell lines were cultured in vitro for in vitro colony and Transwell analysis. Tumorigenesis analysis of nude mice in vivo. Verify the function of core genes. Through differential gene and enrichment analysis, we found that CUL4B was the main factor affecting platinum drug resistance and EMT. Our hypothesis was further verified by in vitro drug‐resistant and wild‐type cell lines and in vivo tumorigenesis analysis of nude mice. CUL4B leads to platinum drug resistance in colorectal cancer by affecting tumour EMT.  相似文献   

10.
Craniosynostosis is the premature fusion of skull sutures and has a severe pathological impact on childrens’ life. Mechanical forces are capable of triggering biological responses in bone cells and regulate osteoblastogenesis in cranial sutures, leading to premature closure. The mechanosensitive proteins polycystin‐1 (PC1) and polycystin‐2 (PC2) have been documented to play an important role in craniofacial proliferation and development. Herein, we investigated the contribution of PC1 to the pathogenesis of non‐syndromic craniosynostosis and the associated molecular mechanisms. Protein expression of PC1 and PC2 was detected in bone fragments derived from craniosynostosis patients via immunohistochemistry. To explore the modulatory role of PC1 in primary cranial suture cells, we further abrogated the function of PC1 extracellular mechanosensing domain using a specific anti‐PC1 IgPKD1 antibody. Effect of IgPKD1 treatment was evaluated with cell proliferation and migration assays. Activation of PI3K/AKT/mTOR pathway components was further detected via Western blot in primary cranial suture cells following IgPKD1 treatment. PC1 and PC2 are expressed in human tissues of craniosynostosis. PC1 functional inhibition resulted in elevated proliferation and migration of primary cranial suture cells. PC1 inhibition also induced activation of AKT, exhibiting elevated phospho (p)‐AKT (Ser473) levels, but not 4EBP1 or p70S6K activation. Our findings indicate that PC1 may act as a mechanosensing molecule in cranial sutures by modulating osteoblastic cell proliferation and migration through the PC1/AKT/mTORC2 cascade with a potential impact on the development of non‐syndromic craniosynostosis.  相似文献   

11.
Chemoresistance and migration represent major obstacles in the therapy of non‐small‐cell lung cancer (NSCLC), which accounts for approximately 85% of lung cancer patients in clinic. In the present study, we report that the compound C1632 is preferentially distributed in the lung after oral administration in vivo with high bioavailability and limited inhibitory effects on CYP450 isoenzymes. We found that C1632 could simultaneously inhibit the expression of LIN28 and block FGFR1 signalling transduction in NSCLC A549 and A549R cells, resulting in significant decreases in the phosphorylation of focal adhesion kinase and the expression of matrix metalloproteinase‐9. Consequently, C1632 effectively inhibited the migration and invasion of A549 and A549R cells. Meanwhile, C1632 significantly suppressed the cell viability and the colony formation of A549 and A549R cells by inhibiting DNA replication and inducing G0/G1 cell cycle arrest. Interestingly, compared with A549 cells, C1632 possesses the same or even better anti‐migration and anti‐proliferation effects on A549R cells, regardless of drug resistance. In addition, C1632 also displayed the capacity to inhibit the growth of A549R xenograft tumours in mice. Altogether, these findings reveal the potential of C1632 as a promising anti‐NSCLC agent, especially for chemotherapy‐resistant NSCLC treatment.  相似文献   

12.
Uterine leiomyoma (UL) is the most common gynaecologic tumour, affecting an estimated 70 to 80% of women. Leiomyomas develop from the transformation of myometrial stem cells into leiomyoma stem (or tumour‐initiating) cells. These cells undergo self‐renewal and differentiation to mature cells, both are necessary for the maintenance of tumour stem cell niche and tumour growth, respectively. Wnt/β‐catenin and TGF‐β/SMAD pathways, both overactive in UL, promote stem cell self‐renewal, crosstalk between stem and mature cells, cellular proliferation, extracellular matrix (ECM) accumulation and drive overall UL growth. Recent evidence suggests that simvastatin, an antihyperlipidemic drug, may have anti‐leiomyoma properties. Herein, we investigated the effects of simvastatin on UL stem cells. We isolated leiomyoma stem cells by flow cytometry using DyeCycle Violet staining and Stro‐1/CD44 surface markers. We found that simvastatin inhibits proliferation and induces apoptosis in UL stem cells. In addition, it also suppressed the expression of the stemness markers Nanog, Oct4 and Sox2. Simvastatin significantly decreased the production of the key ECM proteins, collagen 1 and fibronectin. Finally, it inhibited genes and/or proteins expression of TGF‐β1, 2 and 3, SMAD2, SMAD4, Wnt4, β‐Catenin, LRP6, AXIN2 and Cyclin D1 in UL stem cells, all are key drivers of the TGF‐β3/SMAD2 and Wnt4/β‐Catenin pathways. Thus, we have identified a novel stem cell‐targeting anti‐leiomyoma simvastatin effect. Further studies are needed to replicate these findings in vivo.  相似文献   

13.
YAP1, a key mediator of the Hippo pathway, plays an important role in tumorigenesis. Alternative splicing of human YAP1 mRNA results in two major isoforms: YAP1‐1, which contains a single WW domain, and YAP1‐2, which contains two WW domains, respectively. We here investigated the functions and the underlying regulatory mechanisms of the two YAP1 isoforms in the context of EGF‐induced epithelial‐mesenchymal transition (EMT) in non‐small cell lung cancer (NSCLC). Human NSCLC cell lines express both YAP1‐1 and YAP1‐2 isoforms—although when compared to YAP1‐1, YAP1‐2 mRNA levels are higher while its protein expression levels are lower. EGF treatment significantly promoted YAP1 expression as well as EMT process in NSCLCs, whereas EGF‐induced EMT phenotype was significantly alleviated upon YAP1 knockdown. Under normal culture condition, YAP1‐1 stable expression cells exhibited a stronger migration ability than YAP1‐2 expressing cells. However, upon EGF treatment, YAP1‐2 stable cells showed more robust migration than YAP1‐1 expressing cells. The protein stability and nuclear localization of YAP1‐2 were preferentially enhanced with EGF treatment. Moreover, EGF‐induced EMT and YAP1‐2 activity were suppressed by inhibitor of AKT. Our results suggest that YAP1‐2 is the main isoform that is functionally relevant in promoting EGF‐induced EMT and ultimately NSCLC progression.  相似文献   

14.
The N‐Myc Downstream‐Regulated Gene 4 (NDRG4), a prominent biomarker for colorectal cancer (CRC), is specifically expressed by enteric neurons. Considering that nerves are important members of the tumor microenvironment, we here establish different Ndrg4 knockout (Ndrg4 −/−) CRC models and an indirect co‐culture of primary enteric nervous system (ENS) cells and intestinal organoids to identify whether the ENS, via NDRG4, affects intestinal tumorigenesis. Linking immunostainings and gastrointestinal motility (GI) assays, we show that the absence of Ndrg4 does not trigger any functional or morphological GI abnormalities. However, combining in vivo, in vitro, and quantitative proteomics data, we uncover that Ndrg4 knockdown is associated with enlarged intestinal adenoma development and that organoid growth is boosted by the Ndrg4 −/− ENS cell secretome, which is enriched for Nidogen‐1 (Nid1) and Fibulin‐2 (Fbln2). Moreover, NID1 and FBLN2 are expressed in enteric neurons, enhance migration capacities of CRC cells, and are enriched in human CRC secretomes. Hence, we provide evidence that the ENS, via loss of Ndrg4, is involved in colorectal pathogenesis and that ENS‐derived Nidogen‐1 and Fibulin‐2 enhance colorectal carcinogenesis.  相似文献   

15.
The incidence of thyroid cancer is increasing in recent years worldwide, but the underlying mechanisms await further exploration. We utilized the bioinformatic analysis to discover that Immortalization up‐regulated protein (IMUP) could be a potential oncogene in the papillary thyroid cancer (PTC). We verified this finding in several databases and locally validated cohorts. Clinicopathological features analyses showed that high expression of IMUP is positively related to malignant clinicopathological features in PTC. Braf‐like PTC patients with higher IMUP expression had shorter disease‐free survival. The biological function of IMUP in PTC cell lines (KTC‐1 and TPC‐1) was investigated using small interfering RNA. Our results showed that silencing IMUP suppresses proliferation, migration and invasion while inducing apoptosis in PTC cell lines. Changes of the expression of apoptosis‐related molecules were identified by real‐time quantitative polymerase chain reaction and Western blotting. We also found that YAP1 and TAZ, the critical effectors in the Hippo pathway, were down‐regulated when the IMUP is silenced. Rescue experiments showed that overexpression of YAP1 reverses the tumour inhibitory effect caused by IMUP knockdown. Our study demonstrated that IMUP has an oncogenic function in PTC and might be a new target gene in the treatment of PTC.  相似文献   

16.
This study aimed to investigate the expression of B‐cell lymphoma‐extra large (Bcl‐xL) in cartilage tissues following articular cartilage injury and to determine its effects on the biological function of chondrocytes. A total of 25 necrotic cartilage tissue samples and 25 normal tissue samples were collected from patients diagnosed with osteoarthritis at our hospital from December 2015 to December 2018. The mRNA expression levels of Bcl‐xL, caspase‐3, and matrix metalloproteinase‐3 (MMP‐3) in the normal and necrotic tissues were examined via quantitative polymerase chain reaction, and their protein expression levels were detected via western blotting. The expression levels of Bcl‐xL, insulin‐like growth factor‐1 (IGF‐1), and bone morphogenetic protein (BMP) were significantly lower but those of caspase‐3, MMP‐3, interleukin‐1β (IL‐1β), and chemokine‐like factor 1 (CKLF1) levels were markedly higher in necrotic cartilage tissues than in normal tissues. Following cell transfection, the expression levels of Bcl‐xL, IGF‐1, and BMP were remarkably higher but those of caspase‐3, MMP‐3, IL‐1β, and CKLF1 were notably lower in the Si‐Bcl‐xL group than in the NC group. The Si‐Bcl‐xL group showed significantly lower cell growth and noticeably higher apoptosis rate than the NC group (normal control group). The expression of Bcl‐xL is reduced following articular cartilage injury, and this reduction promotes the proliferation and inhibits the apoptosis of chondrocytes. Therefore, Bcl‐xL could serve as a relevant molecular target in the clinical practice of osteoarthritis and other diseases causing cartilage damage.  相似文献   

17.
Although miR‐148a‐3p has been reported to function as a tumour suppressor in various cancers, the molecular mechanism of miR‐148a‐3p in regulating epithelial‐to‐mesenchymal transition (EMT) and stemness properties of pancreatic cancer (PC) cells remains to be elucidated. In the present study, we demonstrated that miR‐148a‐3p expression was remarkably down‐regulated in PC tissues and cell lines. Moreover, low expression of miR‐148a‐3p was associated with poorer overall survival (OS) in patients with PC. In vitro, gain‐of‐function and loss‐of‐function experiments showed that miR‐148a‐3p suppressed EMT and stemness properties as well as the proliferation, migration and invasion of PC cells. A dual‐luciferase reporter assay demonstrated that Wnt1 was a direct target of miR‐148a‐3p, and its expression was inversely associated with miR‐148a‐3p in PC tissues. Furthermore, miR‐148a‐3p suppressed the Wnt/β‐catenin pathway via down‐regulation of Wnt1. The effects of ectopic miR‐148a‐3p were rescued by Wnt1 overexpression. These biological functions of miR‐148a‐3p in PC were also confirmed in a nude mouse xenograft model. Taken together, these findings suggest that miR‐148a‐3p suppresses PC cell proliferation, invasion, EMT and stemness properties via inhibiting Wnt1‐mediated Wnt/β‐catenin pathway and could be a potential prognostic biomarker as well as a therapeutic target in PC.  相似文献   

18.
Incorporation of microbiome data has recently become important for prevention, diagnosis, and treatment of colorectal cancer, and several species of bacteria were shown to be associated with carcinogenesis. However, the role of commensal fungi in colon cancer remains poorly understood. Here, we report that mice lacking the c‐type lectin Dectin‐3 (Dectin‐3 −/−) show increased tumorigenesis and Candida albicans burden upon chemical induction. Elevated C. albicans load triggered glycolysis in macrophages and interleukin‐7 (IL‐7) secretion. IL‐7 induced IL‐22 production in RORγt+ (group 3) innate lymphoid cells (ILC3s) via aryl hydrocarbon receptor and STAT3. Consistently, IL‐22 frequency in tumor tissues of colon cancer patients positively correlated with fungal burden, indicating the relevance of this regulatory axis in human disease. These results establish a C. albicans‐driven crosstalk between macrophages and innate lymphoid cells in the intestine and expand our understanding on how commensal mycobiota regulate host immunity and promote tumorigenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号