首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The nucleotide sequence of the alanine racemase (EC 5.1.1.1) gene from a thermophile, Bacillus stearothermophilus, was determined by the dideoxy chain termination method with universal and synthetic site-specific primers. The amino acid sequence of the enzyme predicted from the nucleotide sequence was confirmed by peptide sequence information derived from the N-terminal amino acid residues and several tryptic fragments. The alanine racemase gene consists of 1158 base pairs encoding a protein of 386 amino acid residues; the molecular weight of the apoenzyme is estimated as 43,341. The racemase gene of B. stearothermophilus has a closely similar size (1158 vs 1167 base pairs) to that of the gene of a mesophile, B. subtilis, but shows a higher preference for codons ending in G or C. A comparison of the amino acid sequence with those of Bacillus subtilis and Salmonella typhimurium dadB and alr enzymes revealed overall sequence homologies of 31-54%, including an identical octapeptide bearing the pyridoxal 5'-phosphate binding site. Although the residues common in the four racemases are not continuously arrayed, these constitute distinct domains and their hydropathy profiles are very similar. The secondary structure of B. stearothermophilus alanine racemase was predicted from the results obtained by theoretical analysis and circular dichroism measurement.  相似文献   

2.
从恶臭假单胞菌(Pseudomonas putida)200的基因组出发,用PCR方法克隆到两个独立作用的丙氨酸消旋酶基因,称之为dadX和alr。DadX编码357个氨基酸长的多肽,计算分子量为38.82kDa,alr编码409个氨基酸长的多肽,计算分子量为44.182kDa。序列分析显示,DadX的氨基酸序列与Pseudomonas putidaKT2440,铜绿假单胞菌(Pseudomonas aeruginosa),鼠伤寒沙门氏菌(Salmonella typhimurium)和大肠杆菌(Escherichia coli)的DadX比较,相似性分别为96.64%、71.99%、44.88%和47.37%。Alr的氨基酸序列与Pseudomonas putidaKT2440比较,同源性为94.38%,而与铜绿假单胞菌(P.aeruginosa)、鼠伤寒沙门氏菌(S.typhimurium)和大肠杆菌(E.coli)的Alr比较,同源性均较低,分别为22.89%、25.72%和26.44%。在P.putida200的DadX和Alr氨基酸序列中部发现有对于酶活性至关重要的保守区域,如磷酸吡哆醛(PLP)结合位点。DadX和alr在大肠杆菌中得到表达,DadX丙氨酸消旋酶只对丙氨酸有消旋作用,而Alr丙氨酸消旋酶可以作用于丙氨酸和丝氨酸两种底物,且对丝氨酸特异性更高。Alr的表达不依赖于外源启动子,说明在其结构基因上游存在启动子结构。  相似文献   

3.
The Lactobacillus plantarum alr gene encoding alanine racemase was cloned by complementation of an Escherichia coli Alr- DadX- double mutant strain. Knockout of the alr gene abolished all measurable alanine racemase activity, and the mutant was shown to be strictly dependent on D-alanine for growth.  相似文献   

4.
Mutations were isolated in a previously undescribed Salmonella typhimurium gene encoding an alanine racemase essential for utilization of L-alanine as a source of carbon, energy, and nitrogen. This new locus, designated dadB, lies within one kilobase of the D-alanine dehydrogenase locus (dadA), which is also required for alanine catabolism. The dadA and dadB genes are coregulated. Mutants (including insertions) lacking the dadB alanine racemase do not require D-alanine for growth unless a mutation is introduced at a second locus, designated dal. Two genes specifying alanine racemase activity were cloned from S. typhimurium. The two cloned DNA sequences do not cross-hybridize with each other; one was shown to contain the dadB gene.  相似文献   

5.
This paper describes the use of the alr gene, encoding alanine racemase, as a promoter-screening tool for the identification of conditional promoters in Lactobacillus plantarum. Random fragments of the L. plantarum WCFS1 genome were cloned upstream of the promoterless alr gene of Lactococcus lactis in a low-copy-number plasmid vector. The resulting plasmid library was introduced into an L. plantarum Deltaalr strain (MD007), and 40,000 clones were selected. The genome coverage of the library was estimated to be 98%, based on nucleotide insert sequence and restriction analyses of the inserts of randomly selected clones. The library was screened for clones that were capable of complementing the D-alanine auxotroph phenotype of MD007 in media containing up to 10, 100, or 300 micro g of the competitive Alr inhibitor D-cycloserine per ml. Western blot analysis with polyclonal antibodies raised against lactococcal Alr revealed that the Alr production level required for growth increased in the presence of increasing concentrations of D-cycloserine, adding a quantitative factor to the primarily qualitative nature of the alr complementation screen. Screening of the alr complementation library for clones that could grow only in the presence of 0.8 M NaCl resulted in the identification of eight clones that upon Western blot analysis showed significantly higher Alr production under high-salt conditions than under low-salt conditions. These results established the effectiveness of the alanine racemase complementation screening method for the identification of promoters on their conditional or constitutive activity.  相似文献   

6.
N Esaki  C T Walsh 《Biochemistry》1986,25(11):3261-3267
An alanine racemase, encoded by the alr (dal) gene and believed to be the biosynthetic source of D-alanine for cell wall formation, was purified to homogeneity from an overproducing strain of Salmonella typhimurium (dadB), and the enzymological properties of this enzyme were compared with those of the dadB alanine racemase that functions in the catabolism of L-alanine [Wasserman, S. A., Daub, E., Grisafi, P., Botstein, D., & Walsh, C. T. (1984) Biochemistry 23, 5182]. The alr-encoded enzyme has a monomeric structure with a molecular weight of about 40 000. One mole of pyridoxal 5'-phosphate is bound per mole of enzyme, which is essential for catalytic activity of the enzyme. After the internal Schiff base with pyridoxal 5'-phosphate was reduced with NaB3H4, followed by carboxamidomethylation and tryptic digestion of the enzyme, the amino acid sequence of the pyridoxal 5'-phosphate binding peptide was determined. The sequence of 10 amino acid residues around the lysine residue, to which pyridoxal 5'-phosphate is bound, was identical with that of the dadB racemase. No homology was found in the amino-terminal amino acid sequence between the two enzymes. The enzyme was inactivated with D- and L-beta-fluoroalanine, D- and L-beta-chloroalanine, and D-O-acetylserine in a mechanism-based fashion with a common partition ratio of about 150. The enzyme was labeled with an equimolar amount of [14C]-D-beta-chloroalanine. The inactivator-pyridoxal 5'-phosphate adduct was isolated and shown to be the same structure formed in the dadB racemase inactivation [Roise, D., Soda, K., Yagi, T., & Walsh, C. (1984) Biochemistry 23, 5195].  相似文献   

7.
Alanine racemase, encoded by the gene alr, is an important enzyme in the synthesis of d-alanine for peptidoglycan biosynthesis. Strains of Mycobacterium smegmatis with a deletion mutation of the alr gene were found to require d-alanine for growth in both rich and minimal media. This indicates that alanine racemase is the only source of d-alanine for cell wall biosynthesis in M. smegmatis and confirms alanine racemase as a viable target gene for antimycobacterial drug development.  相似文献   

8.
The Helicobacter pylori NCTC 11637 alanine racemase gene, alr1, was cloned based on a putative alanine racemase gene, alr, of H. pylori 26695. The protein, Alr1, was purified to homogeneity from Escherichia coli MB2795 cells harboring the alr1 gene. The protein exclusively catalyzes the conversion of l-alanine to the d-isomer with K(m) and V(max) values of 100 mM and 909 mumol min(-1) mg(-1), respectively. The values are 16-fold higher than those for the reaction in the reverse direction. The molecular weight of Alr1 is 42,000 by SDS-PAGE, and 68,000 by gel-filtration analysis. The optimal pH and temperature are pH 8.3 and 37 degrees C, respectively, in good accordance with the characteristics shown by the alanine racemase purified from H. pylori NCTC 11637 cells. Pyridoxal 5'-phosphate was suggested to be the cofactor. The physiological function of Alr1 is discussed regarding energy production in the microbial cells.  相似文献   

9.
The gene coding aspartate racemase (EC 5.1.1.13) was cloned from the lactic acid bacteria Streptococcus thermophilus IAM10064 and expressed efficiently in Escherichia coli. The 2.1 kilobase pairs long full length clone had an open reading frame of 729 nucleotides coding for 243 amino acids. The calculated molecular weight of 27,945 agreed well with the apparent molecular weight of 28,000 found in sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis of the aspartate racemase purified from S. thermophilus. The N-terminal amino acid sequence from the purified protein exactly matches the derived sequence. In addition, the amino acid composition compiled from the derived sequence is very similar to that obtained from the purified recombinant protein. No significantly homologous proteins were found in a protein sequence data bank. Even the homology scores with alanine racemases of Salmonella typhimurium and Bacillus stearothermophilus were low. Aspartate racemase was overproduced in Escherichia coli NM522 with plasmid pAG6-2-7, which was constructed from two copies of the gene linked with a tac promoter and plasmid vector pUC18. The amount of aspartate racemase increases with the growth of E. coli and almost no degradation of the enzyme was observed. The maximum amount of the produced enzyme reached approx. 20% of the total protein of E. coli.  相似文献   

10.
Schizosaccharomyces pombe has an open reading frame, which we named alr1(+), encoding a putative protein similar to bacterial alanine racemase. We cloned the alr1(+) gene in Escherichia coli and purified the gene product (Alr1p), with an M(r) of 41,590, to homogeneity. Alr1p contains pyridoxal 5'-phosphate as a coenzyme and catalyzes the racemization of alanine with apparent K(m) and V(max) values as follows: for L-alanine, 5.0 mM and 670 micromol/min/mg, respectively, and for D-alanine, 2.4 mM and 350 micromol/min/mg, respectively. The enzyme is almost specific to alanine, but L-serine and L-2-aminobutyrate are racemized slowly at rates 3.7 and 0.37% of that of L-alanine, respectively. S. pombe uses D-alanine as a sole nitrogen source, but deletion of the alr1(+) gene resulted in retarded growth on the same medium. This indicates that S. pombe has catabolic pathways for both enantiomers of alanine and that the pathway for L-alanine coupled with racemization plays a major role in the catabolism of D-alanine. Saccharomyces cerevisiae differs markedly from S. pombe: S. cerevisiae uses L-alanine but not D-alanine as a sole nitrogen source. Moreover, D-alanine is toxic to S. cerevisiae. However, heterologous expression of the alr1(+) gene enabled S. cerevisiae to grow efficiently on D-alanine as a sole nitrogen source. The recombinant yeast was relieved from the toxicity of D-alanine.  相似文献   

11.
Both Lactococcus lactis and Lactobacillus plantarum contain a single alr gene, encoding an alanine racemase (EC 5.1.1.1), which catalyzes the interconversion of D-alanine and L-alanine. The alr genes of these lactic acid bacteria were investigated for their application as food-grade selection markers in a heterologous complementation approach. Since isogenic mutants of both species carrying an alr deletion (Deltaalr) showed auxotrophy for D-alanine, plasmids carrying a heterologous alr were constructed and could be selected, since they complemented D-alanine auxotrophy in the L. plantarum Deltaalr and L. lactis Deltaalr strains. Selection was found to be highly stringent, and plasmids were stably maintained over 200 generations of culturing. Moreover, the plasmids carrying the heterologous alr genes could be stably maintained in wild-type strains of L. plantarum and L. lactis by selection for resistance to D-cycloserine, a competitive inhibitor of Alr (600 and 200 micro g/ml, respectively). In addition, a plasmid carrying the L. plantarum alr gene under control of the regulated nisA promoter was constructed to demonstrate that D-cycloserine resistance of L. lactis is linearly correlated to the alr expression level. Finally, the L. lactis alr gene controlled by the nisA promoter, together with the nisin-regulatory genes nisRK, were integrated into the chromosome of L. plantarum Deltaalr. The resulting strain could grow in the absence of D-alanine only when expression of the alr gene was induced with nisin.  相似文献   

12.
W S Faraci  C T Walsh 《Biochemistry》1988,27(9):3267-3276
Alanine racemases are bacterial pyridoxal 5'-phosphate (PLP) dependent enzymes providing D-alanine as an essential building block for biosynthesis of the peptidoglycan layer of the cell wall. Two isozymic alanine racemases, encoded by the dadB gene and the alr gene, from the Gram-negative mesophilic Salmonella typhimurium and one from the Gram-positive thermophilic Bacillus stearothermophilus have been examined for the racemization mechanism. Substrate deuterium isotope effects and solvent deuterium isotope effects have been measured in both L----D and D----L directions for all three enzymes to assess the degree to which abstraction of the alpha-proton or protonation of substrate PLP carbanion is limiting in catalysis. Additionally, experiments measuring internal return of alpha-3H from substrate to product and solvent exchange/substrate conversion experiments in 3H2O have been used with each enzyme to examine the partitioning of substrate PLP carbanion intermediates and to obtain the relative heights of kinetically significant energy barriers in alanine racemase catalysis.  相似文献   

13.
Among the archaea, Methanococcus maripaludis has the unusual ability to use L- or D-alanine as a nitrogen source. To understand how this occurs, we tested the roles of three adjacent genes encoding homologs of alanine dehydrogenase, alanine racemase, and alanine permease. To produce mutations in these genes, we devised a method for markerless mutagenesis that builds on previously established genetic tools for M. maripaludis. The technique uses a negative selection strategy that takes advantage of the ability of the M. maripaludis hpt gene encoding hypoxanthine phosphoribosyltransferase to confer sensitivity to the base analog 8-azahypoxanthine. In addition, we developed a negative selection method to stably incorporate constructs into the genome at the site of the upt gene encoding uracil phosphoribosyltransferase. Mutants with in-frame deletion mutations in the genes for alanine dehydrogenase and alanine permease lost the ability to grow on either isomer of alanine, while a mutant with an in-frame deletion mutation in the gene for alanine racemase lost only the ability to grow on D-alanine. The wild-type gene for alanine dehydrogenase, incorporated into the upt site, complemented the alanine dehydrogenase mutation. Hence, the permease is required for the transport of either isomer, the dehydrogenase is specific for the L isomer, and the racemase converts the D isomer to the L isomer. Phylogenetic analysis indicated that all three genes had been acquired by lateral gene transfer from the low-moles-percent G+C gram-positive bacteria.  相似文献   

14.
The alanine racemase encoded by the Salmonella typhimurium dadB gene was purified to 90% homogeneity from an overproducing strain. At 37 degrees C the enzyme has a specific activity of 1400 units/mg (V max, L- to D-alanine). Active enzyme molecules are monomers of Mr 39 000 with one molecule of pyridoxal 5'-phosphate bound per subunit. The Km's for L- and D-alanine are 8.2 and 2.1 mM, respectively. Measurement of turnover numbers yielded the expected Keq value of 1.0. Determination of 22 of the 25 N-terminal amino acid residues of the purified polypeptide allowed localization of cloned DNA encoding the structural gene. Sequencing of subcloned DNA revealed that the dadB gene encodes a polypeptide of 356 amino acids whose calculated molecular weight (apoenzyme) was 39 044.  相似文献   

15.
Alanine racemase genes (alr) from Shigella dysenteriae, Shigella boydii, Shigella flexneri, and Shigella sonnei were cloned and expressed in Escherichia coli JM109. All genes encoded a polypeptide of 359 amino acids, and showed more than 99% sequence identities with each other. In particular, the S. dysenteriae alr was identical with the S. flexneri alr. Differences in the amino acid sequences between the four Shigella enzymes were only two residues: Gly138 in S. dysenteriae and S. flexneri (Glu138 in the other) and Ile225 in S. sonnei (Thr225 in the other). The S. boydii enzyme was identical with the E. coli K12 alr enzyme. Each Shigella alr enzyme purified to homogeneity has an apparent molecular mass about 43,000 by SDS-gel electrophoresis, and about 46,000 by gel filtration. However, all enzymes showed an apparent molecular mass about 60,000 by gel filtration in the presence of a substrate, 0.1 M l-alanine. These results suggest that the Shigella alr enzymes having an ordinary monomeric structure interact with other monomer in the presence of the substrate. The enzymes were almost identical in the enzymological properties, and showed lower catalytic activities (about 210 units/mg) than those of homodimeric alanine racemases reported.  相似文献   

16.
B Badet  K Inagaki  K Soda  C T Walsh 《Biochemistry》1986,25(11):3275-3282
An alanine racemase encoded by a gene from the thermophilic Gram-positive bacterium Bacillus stearothermophilus is overproduced to 0.3% of the soluble protein when carried on plasmid pICR4 in Escherichia coli [Inagaki, K., Tanizawa, K., Badet, B., Walsh, C. T., Tanaka, H., & Soda, K. (1986) Biochemistry (third paper of four in this issue)]. Purification of large quantities (50 mg) of racemase permits study of time-dependent inactivation by D and L isomers of the antibacterial (1-aminoethyl)phosphonate (Ala-P), the phosphonate analogue of alanine. The time-dependent activity loss by this compound now appears general to Gram-positive but not to Gram-negative racemases [Badet, B., & Walsh, C. (1985) Biochemistry 24, 1333] and is shown to occur by extremely slow dissociation of a noncovalent E X Ala-P complex. Ala-P binds initially in a weak, reversible (KI = 1 mM) competitive manner but is slowly isomerized (kinact = 6-9 min-1) to a stoichiometric enzyme complex, which in turn dissociates extremely slowly, with a half-time about 25 days. Thus, Ala-P is a slow but not a tight-binding inhibitor. The E X Ala-P complex is not reducible by borohydride but does perturb the fluorescence of bound pyridoxal 5'-phosphate coenzyme. Determination of the sequence of an active site octapeptide of the B. stearothermophilus alanine racemase shows homology with the sequence of a Gram-negative Salmonella typhimurium alanine racemase that is not susceptible to time-dependent inhibition by Ala-P. Studies with Ala-P analogues suggest the phosphonate dianion is crucial for stable formation of an isomerized long-lived E X Ala-P-inhibited complex.  相似文献   

17.
18.
19.
20.
The araB and araC genes of Erwinia carotovora were expressed in Escherichia coli and Salmonella typhimurium. The araB and araC genes in E. coli, E. carotovora, and S. typhimurium were transcribed in divergent directions. In E. carotovora, the araB and araC genes were separated by 3.5 kilobase pairs, whereas in E. coli and S. typhimurium they were separated by 147 base pairs. The nucleotide sequence of the E. carotovora araC gene was determined. The predicted sequence of AraC protein of E. carotovora was 18 and 29 amino acids longer than that of AraC protein of E. coli and S. typhimurium, respectively. The DNA sequence of the araC gene of E. carotovora was 58% homologous to that of E. coli and 59% homologous to that of S. typhimurium, with respect to the common region they share. The predicted amino acid sequence of AraC protein was 57% homologous to that of E. coli and 58% homologous to that of S. typhimurium. The 5' noncoding regions of the araB and araC genes of E. carotovora had little homology to either of the other two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号