首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urine prostaglandin E excretion rates were determined by hepatic receptor assay in three groups of conscious animals. Although 24-hour urine collections gave reproducibly similar levels of prostaglandin E excretion rates, levels obtained with consecutive 20-minute urine collections were extremely variable despite no obvious changes in renal function. Since short urine collection periods are used frequently in physiologic studies, the significance of variations in prostaglandin excretion rates in these studies may have to be re-evaluated.  相似文献   

2.
Studies were performed to assess the effect of alterations in prostaglandin biosynthesis on glomerular filtration rate in rabbits with normal renal function and after surgical reduction of renal mass. In normal animals, the administration of either of two cyclo-oxygenase inhibitors resulted in a 53% reduction in urine prostaglandin E excretion, but no change in creatinine clearance. Creatinine clearance rates were almost 71% lower in the uremic animals when compared to the animals with normal renal function. Despite the reduction in renal mass, urine prostaglandin E excretion rates in the uremic animals were over twice that seen in normal rabbits. When factored by either glomerular filtration rate or remaining renal mass, urine prostaglandin E excretion rates in uremic rabbits when compared to normal animals were increased more than 9-times and 4-times respectively. Administration of cyclo-oxygenase inhibitors in the uremic animals resulted in a 71% decrease in urine prostaglandin E excretion and, unlike the non-uremic animals, a 53% fall in creatinine clearance. These findings suggest that intact renal prostaglandin biosynthesis is a necessary factor in the homeostatic adaptive mechanisms which maintain the glomerular filtration rate in animals with decreased renal mass.  相似文献   

3.
Previous studies have demonstrated a diuretic effect of clonidine at low intrarenal infusion rates with a natriuretic effect being observed at high infusion rates (greater than or equal to 3 micrograms.kg-1.min-1). The natriuresis at high infusion rates may have been secondary to increased renal prostaglandin production. We therefore evaluated the effects of indomethacin (a cyclooxygenase inhibitor) on the response to clonidine in the anesthetized rat. Intrarenal infusions of saline (vehicle) or clonidine (0.1, 0.3, 1, and 3 micrograms.kg-1.min-1) were examined both in the presence and absence of pretreatment with indomethacin (5 mg/kg, i.p.). Clonidine produced a dose-related increase in urine volume and free water clearance at 0.3, 1, and 3 micrograms.kg-1.min-1 as compared with the vehicle group. Sodium excretion and osmolar excretion were increased only at the highest infusion rate investigated. Following indomethacin pretreatment, clonidine produced a greater increase in urine volume at each infusion rate investigated. The indomethacin pretreatment also resulted in a potentiation of the natriuretic effect of clonidine at all infusion rates. Interestingly, this was associated with an increase in osmolar clearance but not free water clearance. These effects of indomethacin were reversed by infusion of prostaglandin E2. An infusion of prostaglandin E2 attenuated the indomethacin-induced increase in both urine flow rate and sodium excretion, indicating that the effects of indomethacin were mediated by prostaglandin inhibition. These results suggest that endogenous prostaglandin production attenuates the renal effects of clonidine, and as well, that in the presence of alpha 2-adrenoceptor stimulation, prostaglandin E2 mediates an antidiuretic and antinatriuretic effect.  相似文献   

4.
The contribution of sex steroids to sex-related differences in renal prostaglandin dehydrogenase activity and urinary prostaglandin excretion was examined in 7-8-week-old male and female rats subjected to sham-operation or gonadectomy at 3 weeks of age. Rats were injected subcutaneously twice over a 6-day interval with vehicle (peanut oil, 0.5 mg/kg) or with depot forms of testosterone (10 mg/kg), estradiol (0.1 mg/kg), progesterone (5 mg/kg), or with estradiol and progesterone combined (0.1 and 5 mg/kg). After the second injection, 24-h urine samples were collected for prostaglandin measurement by radioimmunoassay; the rats were killed, and renal and pulmonary prostaglandin dehydrogenase activities were determined by radiochemical assay. Renal prostaglandin dehydrogenase activity was 10-times higher in intact male rats than in intact females. Gonadectomy increased renal prostaglandin dehydrogenase activity 4-fold in females, but had no effect in males; estradiol, alone or combined with progesterone, markedly suppressed renal prostaglandin dehydrogenase activity in both sexes, while testosterone or progesterone alone had no effect. Pulmonary prostaglandin dehydrogenase did not differ between the sexes and was unaffected by gonadectomy or sex-steroid treatment. Intact female sham-operated rats excreted 70-100% more prostaglandin E2, prostaglandin F2 alpha, and 6-keto-prostaglandin F1 alpha in urine than did males; gonadectomy abolished the difference in urinary prostaglandin E2 excretion. Estradiol decreased urinary prostaglandin E2 in females but not in males; treatment with other sex steroids did not alter urinary prostaglandin excretion.  相似文献   

5.
Urinary excretion of prostaglandin E was measured radioimmunologically in 19 healthy persons ( 15 men and 4 women ) and in 16 patients ( 10 men and 6 women ) with essential hypertension before and after the administration of furosemide. The excretion rates were increased from 26.3±3.0 to 64.5±11.3 ng/hr in the former and from 11.9±2.7 to 26.9±85 ng/hr in the latter. There was a significant difference between them, healthy subjects showing a greater increase than patients with essential hypertension.There was an obvious sexual difference in urinary excretion of prostaglandin. In men, greater increase in the excretion rates was found than in the women. Greater increases were also obtained in healthy men than in hypertensive men and in healthy women than in hypertensive women. The present results suggest that furosemide enhances urinary excretion of prostaglandin E by mechanisms which entails either an increase in prostaglandin synthesis or a decrease in renal metabolism.  相似文献   

6.
The excretion of urinary immunoreactive prostaglandin E (iPGE), sodium, potassium, creatinine and volume was studied in 4 hr collections in normal women at normal activity. iPGE exhibited a circadian rhythm with an amplitude of 29% and peak excretion at 4:55 P.M. There were also significant circadian rhythms for sodium, potassium, creatinine, and volume, all peaking in late afternoon. There were no significant changes either in the total excretion or in the circadian rhythms of iPGE, potassium, or creatinine excretion when the subjects remained in bed for an entire day while the circadian rhythms of sodium and volume were significantly modified in amplitude and phase, respectively. Urinary aldosterone excretion decreased significantly when the subjects were at bed rest. iPGE excretion increased 33% when subjects were first recumbent and then erect for consecutive 4 hr periods on the same day (but when subjects were erect 1 day for a 4 hr period, iPGE excretion was lower by 32% than for the same 4 hr period the preceding day when they were recumbent). These data indicate that: 1) the sympathetic nervous system and renin-angiotensin-aldosterone system do not affect the circadian rhythm of urinary iPGE, and 2) short-term experiments of prostaglandin E excretion must be designed to avoid misleading results due to the circadian rhythm.  相似文献   

7.
Although non-steroidal anti-inflammatory agents have been used to reduce levels of urinary protein excretion in patients with the nephrotic syndrome, the general usefulness of these drugs in proteinuric states remains unclear. The present study was designed to confirm the efficacy and to investigate some of the mechanism/s of action of non-steroidal anti-inflammatory agents in animals with proteinuria as the result of a single form experimental renal disease. Autologous immune complex nephropathy was produced in groups of Lewis rats by the administration of autologous tubular Fx1A antigen. After marked proteinuria developed, indomethacin (8 mg/kg/day) was administered orally to one group of animals for five days while a control group received only vehicle. The level of urinary protein excretion in the indomethacin treated animals was 420 +/- 198 mg/day compared to a level of 1180 +/- 306 seen in the untreated animals (p less than 0.05). When the indomethacin-treated and control animals were compared, the reduction in proteinuria could not be found to be associated with a change in the glomerular filtration rate, urine electrolyte or osmolar excretion rates, electron microscopic appearance of the glomerular basement membrane, or a change in the glomerular permeability to neutral dextran. Treatment of animals with either sodium salicylate or lower does of indomethacin (both of which resulted also in significant falls in urinary prostaglandin E excretion rates) failed to reduce the levels of proteinuria. Thus, indomethacin was capable of reducing the levels of protein excretion in rats with autologous immune complex nephropathy although the mechanism of action of this agent remains unclear.  相似文献   

8.
Urine volume and excretion of cyclic AMP, cyclic GMP, prostaglandin E2 (PGE2), thromboxane B2 (TxB2) and creatinine were evaluated as potential indicators of radiation damage in mice given 2-5 Gy to the whole body from an enhanced neutron field. In general, urinary cyclic AMP, cyclic GMP, creatinine and urine volumes were positively correlated across time postexposure, for each radiation dose. TxB2 levels positively correlated with urine volume and cyclic AMP excretion only in animals given 2.0 Gy. None of these parameters suggests their use as a prognostic indicator of the extent of radiation damage. Urinary excretion of PGE2 was negatively correlated with other urinary parameters. Biphasic increases in urinary PGE2 were also observed. The initial transient elevation 2-3 days postexposure was not correlated with the dose (2-5 Gy). The second elevation of PGE2 excretion occurred at 6-10 days. The magnitude of the latter increase suggests that urinary PGE2 excretion may be a useful indicator of whole-body or kidney exposure to neutron fields.  相似文献   

9.
Spironolactone was administered to spontaneously hypertensive rats (SHRs) in order to examine the urinary excretions of prostaglandin E2 (PGE2) and kinin. Thirteen SHRs were divided into 2 groups: 0.1 ml of sesame oil was administered to one group (the spironolactone-lactone-untreated group, n = 6) and 20 mg of spironolactone in 0.1 ml of sesame oil was administered to the other group (the spironolactone-treated group, n = 7) by the subcutaneous route for 10 days in succession. Determinations were then made of the body weight, blood pressure, urine volume, and excretion levels of Na, K, kinin and PGE2 in the 24-hour urine. After the animals had been killed by decapitation, blood samples were drawn for determination of the plasma renin activity (PRA). The results obtained indicated decreased blood pressure and increased urinary Na excretion in the spironolactone-treated group. On the other hand, the PGE2 excretion level in the 24-hour urine decreased markedly immediately after administration of spironolactone (p less than 0.05) and was maintained at lower levels up to the end of the experiment. However, the 24-hour urinary kinin levels showed similar changes in both the spironolactone-treated group and the untreated group with no significant difference between them. These findings suggest that spironolactone has a suppressive effect on urinary PGE2 excretion, the activity of which is not mediated by kinin production in the kidneys but is the result of a direct action of spironolactone itself.  相似文献   

10.
V L Hood  M J Dunn 《Prostaglandins》1978,15(2):273-280
Potassium-deficiency was induced in rats by dietary deprivation of potassium. The animals became polyuric and urine osmolality decreased more then three-fold compared to controls. Urinary excretion of prostaglandin E2 (PGE2) and prostaglandin F2alpha (PGF2alpha) did not increase during 2 weeks of potassium depletion. Partial inhibition of renal prostaglandin synthesis by meclofenamate did not increase the urine osmolality after water deprivation. These results make unlikely the hypothesis that the polyuria of potassium-deficiency, is the result of enhanced renal synthesis of prostaglandins with subsequent antagonism of the hydro-osmotic effect of vasopressin. Male animals consistently excreted less PGE2 than female animals.  相似文献   

11.
目的确定上海地区成人雌马酚代谢表型及雌马酚的生理范围;把握由于大豆异黄酮负荷而产生的雌马酚产生者比例;调查雌马酚表型和食物摄取频率及有关激素间的关系。方法应用现状调查方法,筛选出172名居住在上海市区健康成年男女。填写问卷获得研究对象日常饮食频率,检测研究对象血清获得血液激素浓度,采用HPLC法分析负荷大豆异黄酮前后尿中雌马酚等大豆异黄酮24 h排泄量,统计产雌马酚者比例及其与摄食频率和激素的关系。结果负荷前雌马酚生理范围0~33.74μmol/24 h,产雌马酚者比例为30.2%,负荷大豆异黄酮后比例提高至53.5%。产雌马酚者与非产雌马酚者之间日常食品摄取频率的差别无统计学意义(P>0.05)。产Eq者血中游离雌二醇的浓度较非产Eq者低(P<0.05)。结论在通常膳食条件下,约有1/3上海成人尿液中能检测到雌马酚,但负荷大豆异黄酮后,约有1/2能产生雌马酚。  相似文献   

12.
The effects of water deprivation on the urinary excretion rate of prostaglandin E2 (PGE2) were examined in conscious Brattleboro rats. In order to study the time course of the changes in the PGE2 excretory rate, urine was collected in 6 periods, Control: 0-1 hour (h.). 1: 3-4.5 h., 8-10 h., III: 12-15 h., IV: 24-28 h. and V: 32-36 h. after removal of water and food. It was found that the PGE2 excretion rate changed in a biphasic pattern. During the first 2 experimental periods it increased. Thereafter it decreased towards the control value. There was an increase in PGE2 excretion with urinary flows down to 3 microliter/(min*100 g b. wt). At further reductions in urinary flow rate, PG excretion decreased towards basal levels.  相似文献   

13.
The effect of acute infusion of the prostaglandin synthetase inhibitors - meclofenamate or indomethacin - was examined in awake rats. Studies were performed in normal rats undergoing either sodium or water diuresis and in salt-replete rats with chronic renal insufficiency. Prostaglandin synthetase inhibitors had no effect on renal plasma flow, glomerular filtration rate or fractional excretion of sodium in any of the groups. Absolute urinary excretion rates for sodium and potassium decreased only in the normal, salt-replete rats. In contrast, prostaglandin synthetase inhibitors consistently decreased urinary flow and osmolar clearance under all experimental conditions studied. In the normal, salt-replete rats the fall in urine flow was preceded by an increase in urinary excretion of cyclic AMP. These results show that inhibitors of prostaglandin synthesis enhance the ability of the kidney to reabsorb water. This effect may be secondary to increased cyclic AMP generation and to increased urea recirculation resulting in higher urea accumulation in the renal medulla.  相似文献   

14.
The effect of in vivo lipid peroxidation on the excretion of immunoreactive prostaglandin E2 (PGE2) in the urine of rats was studied. Weanling, male Sprague-Dawley rats were fed a vitamin E-deficient diet containing 10% tocopherol-stripped corn oil (CO) or 5% cod liver oil (CLO) with or without 40 mg dl-alpha-tocopheryl acetate/kg. To induce a high, sustained level of lipid peroxidation, some rats were injected intraperitoneally with 100 mg of iron as iron dextran after 10 days of feeding. Iron overload stimulated in vivo lipid peroxidation in rats, as measured by the increase in expired ethane and pentane. Dietary vitamin E reversed this effect. Rats fed the CLO diet excreted 9.5-fold more urinary thiobarbituric acid-reactive substances (TBARS) than did rats fed the CO diet. Iron overload increased the excretion of TBARS in the urine of rats fed the CO diet, but not in urine of rats fed the CLO diet. Dietary vitamin E decreased TBARS in the urine of rats fed either the CO or the CLO diet. Iron overload decreased by 40% the urinary excretion of PGE2 by rats fed the CO diet, and dietary vitamin E did not reverse this effect. Iron overload had no statistically significant effect on urinary excretion of PGE2 by rats fed the CLO diet. A high level of lipid peroxidation occurred in iron-treated rats, as evidenced by an increase in alkane production and in TBARS in urine in this study, and by an increase in alkane production by slices of kidney from iron-treated rats in a previous study [V. C. Gavino, C. J. Dillard, and A. L. Tappel (1984) Arch. Biochem. Biophys. 233, 741-747]. Since PGE2 excretion in urine was not correlated with these effects, lipid peroxidation appears not to be a major factor in renal PGE2 flux.  相似文献   

15.
The effect of acute infusion of the prostaglandin synthetase inhibitors — meclofenamate or indomethacin — was examined in awake rats. Studies were performed in normal rats undergoing either sodium or water diuresis and in salt-replete rats with chronic renal insufficiency. Prostaglandin synthetase inhibitors had no effect on renal plasma flow, glomerular filtration rate or fractional excretion of sodium in any of the groups. Absolute urinary excretion rates for sodium and potassium decreased only in the normal, salt-replete rats. In contrast, prostaglandin synthetase inhibitors consistently decreased urinary flow and osmolar clearance under all experimental conditions studied. In the normal, salt-replete rats the fall in urine flow was preceded by an increase in urinary excretion of cyclic AMP. These results show that inhibitors of prostaglandin synthesis enhance the ability of the kidney to reabsorb water. This effect may be secondary to increased cyclic AMP generation and to increased urea recirculation resulting in higher urea accumulation in the renal medulla.  相似文献   

16.
Summary Renal clearance studies were performed in European starlings (Sturnus vulgaris) in order to determine the extent of ureteral sodium excretion under control conditions and during an acute, hyperosmotic salt stress. These experiments also estimated the contribution of the lower intestine (colon and cloaca) to postrenal solute reabsorption by making both cloacal and ureteral urine collections in the same birds. A comparison of ureteral vs cloacal excretion rates found significantly higher sodium (9.09±1.30 vs 1.03±0.38 Eq·kg–1·min–1) and chloride (4.15±0.56 vs 1.00±0.38 Eq·kg–1·min–1) excretion rates during the ureteral collections. Fractional excretion of sodium was also significantly higher during ureteral collections, but this value did not exceed 1% of the filtered sodium load during either collection series. Urine flow rate was significantly higher during cloacal collections, suggesting osmotic back-flux of water across the cloacal wall. Infusion of a 1M NaCl solution resulted in rapid increases in glomerular filtration rate (GFR), urine flow rate, and urine osmolality. Fractional sodium and water reabsorption decreased by 11% and 4%, respectively. Glomerular counts and size distribution profiles, measured by in vivo alcian blue labelling, provided no evidence for a reduction in the number of filtering glomeruli during hyperosmotic saline loading. We conclude that renal sodium excretion rates for the starling are similar to those seen in other avian species and in mammals. These studies also provide direct evidence for postrenal modification of urine in this species, even under conditions of continuous flow. Acute hyperosmotic salt stress can, under some conditions, cause increased rather than decreased GFR, indicating multiple regulatory pathways. Finally, there was no evidence in these studies for glomerular shutdown in response to salt loading.  相似文献   

17.
To study the relationship between urine flow, urinary prostaglandin (PG) and kallikrein excretion in the rat high urine flow was induced in hydropenic Long-Evans rats by either hypotonic volume expansion or with manniitol or with furosemide. PGE, excretion remained unchanged during hypotonic volume expansion (134.5 ± 29.7 before and 153.0 ± 48.9 pg/min after) while it decreased significantly with mannitol (from 166.3 ± 32.4 to 45.2 ± 8.2 pg/min, p<0.01) and with furosemide (from 170.0 ± 20.4 to 29.5 ± 5.3 pg/min, p<0.001). PGF excretion rates were slightly reduced following all three interventions. Urinary kallikrein excretion remained unchanged in all three groups of animals. It is concluded that, in contrast to human and dogs in the rat urine flow and urinary PG excretion are not interlinked.  相似文献   

18.
A Fujimura  A Ebihara 《Life sciences》1986,38(13):1215-1220
The present experiment was undertaken to determine whether or not the effects of furosemide depend upon the administration time and, if so, to study the mechanism(s) for these variations. After administration of furosemide (5 mg/kg) in Wistar rats at 10:00 or at 22:00, urine volume and urinary excretion of sodium, furosemide, and prostaglandin E2 (PGE2) were measured. Urine volume and urinary excretion of sodium and furosemide, but not PGE2, were significantly greater when furosemide was administered at 10:00 than when it was administered at 22:00. There was a good correlation between the urinary output of furosemide and the urine volume, or the urinary sodium. It is concluded that the effects of furosemide vary with the administration time and these variations depend upon the amount of furosemide secreted in urine.  相似文献   

19.
Prostaglandin E2, when infused into the renal artery of the dog, is a vasodilator and increases both renal interstitial hydrostatic pressure and sodium excretion. Similar studies in the rat, however, have been inconclusive. The present study examined the effect of prostaglandin E2 infusion into the renal interstitium, by means of a chronically implanted matrix, on renal blood flow, renal interstitial hydrostatic pressure and sodium excretion in the rat. Prostaglandin E2 was continuously infused directly into the kidney interstitium to mimic endogenous prostaglandin E2 production by renal cells. The maximum change in each of these parameters occurred when 10(-5) M PGE2 was infused. Renal blood flow increased from 4.70 +/- 0.91 to 5.45 +/- 0.35 ml/min (p less than 0.05) while renal interstitial hydrostatic pressure decreased from 3.9 +/- 0.4 to 2.6 +/- 0.5 mmHg (p less than 0.05) and fractional excretion of sodium decreased from 1.02 +/- 0.20 to 0.61 +/- 0.12% (p less than 0.05). Thus, the present study demonstrates that renal interstitial infusion of prostaglandin E2 increases total renal blood flow but decreases both renal interstitial hydrostatic pressure and urinary sodium excretion in the rat.  相似文献   

20.
The radioimmunological (RIA) determination of prostaglandin (PG) E2 and of PGF2alpha in urine of humans and rats is described in detail. After extraction and chromatography PGE2 was determined by using a PGE specific antibody or by using either PGB or PGF2alpha specific antibodies after the respective conversion procedures. The three different RIA procedures were compared to each other. PGF2alpha was determined by a specific antibody to PGF2alpha. Basal excretion of PGE2 and of PGF2alpha in healthy women on free diet was 9.3 ng/hour+/-0.98 and 18.3 ng/hour +/- 2.5 respectively. Furosemide increased the excretion of PGE2 and of PGF2alpha in humans significantly, while PG-excretion rates decreased on indomethacin. In rat urine PGE2 and PGF2alpha increased markedly from 46.2 pg/min +/- 9.3 and 27+/- 3.4 to 253.8 +/- 43.3 and 108 +/- 12.6 pg/min (per one kidney) in the anesthetized-laparotomized animal. This increase was abolished after giving two different PG synthetase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号