首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Degranulation of IgE-sensitized rat mast cells by antigen was studied quantitatively in vitro and in vivo by electron microscopy. The inhibition of this degranulation by an anti-allergic drug, N-(3,4-dimethoxycinnamoyl)anthranilic acid (Tranilast), was also examined both in vitro and in vivo. In the in vitro study using peritoneal mast cells, alteration of the granules, cavity formation by fusion of the perigranular membrane and granule discharge due to fusion of the cavity membrane with the cell membrane were observed and were accompanied by histamine release. Scanning electron microscopy disclosed the extrusion of smooth, round bodies from pores formed on the cell surface. In the in vivo study of passive cutaneous anaphylaxis (PCA), the characteristic features of mast cell degranulation were obvious 5 min after the injection of antigen; leakage of dye increased progressively from 5 to 30 min but was not found at 6 h. From quantitative analysis of the substructure of mast cells, it was demonstrated that degranulation of IgE-sensitized mast cell induced by antigen was achieved by sequential exocytosis both in vitro and in vivo. Tranilast inhibited these changes to a remarkable extent and it was concluded that the inhibition of mast cell degranulation by this drug might play an important role in anti-allergic treatment.  相似文献   

2.
The examination of insulin exocytosis at the single cell level by conventional electrophysiologic and amperometric methods possesses inherent limitations, and may not accurately reflect the morphologic events of exocytosis of the insulin granule. To overcome some of these limitations, we show by epifluorescent microscopy of a fluorescent dye, FM1-43, its incorporation into the plasma membrane and oncoming insulin granules undergoing exocytosis, and their core proteins. Using this method, we tracked exocytosis in real-time in insulinoma INS-1 and single rat islet beta cells in response to KCl and glucose. We observed both single transient and multi-stepwise increases in membrane FM1-43 fluorescence, suggesting single granule exocytosis as well as sequential and compound exocytosis, respectively. Confocal microscopy of nonpermeabilized cells shows that some of the exocytosed insulin granules labeled by the FM1-43 dye could also be labeled with insulin antibodies, suggesting prolonged openings of the fusion pores and slow dissolution of the granule core proteins on the membrane surface.  相似文献   

3.
Summary The N-quaternized derivative of dimethyl-POPOP (termed Q4) induces a bluish-green fluorescent reaction in mast cell granules from paraffin sections and cell smears, in addition to a previously described bluish-white fluorescent reaction in chromatin DNA. The chromatin reaction was abolished by staining the samples either with Mayer's Haematoxylin before Q4 treatment or by Q4 treatment at pH 1.5. The reaction in mast cell granules was absent after substrate methylation. The staining sequence Haematoxylin-Eosin-Q4 also worked well in paraffin sections, allowing the observation of the current histological image under bright-field illumination as well as double-colour emission under fluorescence microscopy. The sequence is proposed as a new diagnostic procedure for demonstrating mast cell granules.  相似文献   

4.
Changes of mast cells stimulated with compound 48/80 were morphologically investigated at different temperatures. Peritoneal mast cells of male rats were stimulated in vitro at 4 or 17° C. At 17° C, mast cells stimulated for 10 s gave decreased fluorescent reactions for phalloidin. At 30 s stimulation, they showed typical exocytosis initiated by fusions of peripherally located secretory granules to the plasma membrane. In contrast, mast cells stimulated at 4° C exhibited neither decrease of phalloidin reactions nor typical excytosis even after 30 s. It was inferred that the fusions were mediated by cytoplasmic elements, probably the actin filaments previously suggested to prevent release of secretory granules. Furthermore, the space between the perigranular membrane and granular contents was enlarged in some mast cells stimulated at 4° C. The morphological changes suggested that equivocal events occurred also in the cytoplasm of these cells. The mast cells showed no typical exocytosis at 4° C.  相似文献   

5.
Intracellular localization of serotonin (5-HT) in the mast cells of two phenotypes in normal rat colon and dextran sodium sulphate-induced colitis was studied by immunoelectron microscopy with a quantitative analysis of the distribution of immunogold labelling. Mucosal mast cells in normal rats contained round shape secretory granules with varying electron density. Immunogold labelling for 5-HT was concentrated over the secretory granules. In mucosal mast cells from colitis rats, vacuolated granules without 5-HT labelling were frequently observed and immunogold labelling over the secretory granules was significantly increased compared to controls. On the other hand, connective tissue mast cells in normal rats contained oval shape secretory granules with homogeneous electron density. Their immunogold labelling was diffusely scattered over the secretory granules as well as over the cytoplasm. In connective tissue mast cells from colitis rats, secretory granules with high electron density were increased and the immunogold labelling over the secretory granules was much higher than that in controls. The present results suggest that intracellular localization of 5-HT is different in two phenotypes of mast cells and they may release 5-HT in a different manner. Mucosal mast cells may release 5-HT by a degranulation or exocytosis, while connective tissue mast cells may release 5-HT by a diacrine manner of secretion.  相似文献   

6.
W Almers  E Neher 《FEBS letters》1985,192(1):13-18
The Ca concentration ([Ca2+]i) in single rat peritoneal mast cells was measured by means of the new fluorescent Ca-indicator dye fura-2. Dye-loaded cells were made to degranulate with either antigen or compound 48/80. In cells loaded with extracellularly applied, membrane-permeant fura-2 ester, degranulation was accompanied by a permanent loss of 40-60% of the fluorescence, but comparison of fluorescence at different wavelengths indicated no or only small changes in [Ca2+]i. When cells were loaded by microinjection of the impermeant potassium salt of the dye, degranulation resulted in no permanent loss of fluorescence, but instead was preceded by transient fluorescence changes that indicate a rapid, large and transient increase in [Ca2+]i. We suggest that ester-loaded fura-2 accumulates to a significant degree in the secretory granules and is lost from the cell during exocytosis.  相似文献   

7.
We combined confocal and live-cell imaging with a novel molecular strategy aimed at revealing mechanisms underlying glucose-regulated insulin vesicle secretion. The 'Ins-C-GFP' reporter monitors secretory peptide targeting, trafficking, and exocytosis without directly tagging the mature secreted peptide. We trapped a green fluorescent protein (GFP) reporter in equimolar quantity within the secretory vesicle by fusing it within the C peptide of proinsulin which only after nascent vesicle sealing and acidification is cleaved from the mature secreted A and B chains of insulin. Ins-C-GFP expression in mouse islets without fail exhibited punctate distribution of green fluorescence by confocal microscopy. Ins-C-GFP colocalized GFP with insulin at vesicle dense cores by immuno-electron microscopy. Glucose stimulation decreased vesicle fluorescence coordinately with enhanced secretion from islets of C-GFP detected by anti-GFP Western blots, and of insulin detected by anti-insulin radioimmunoassay. An insulin secretagogue with a red fluorescent label, glibenclamide BODIPY®TR, was applied to islets expressing Ins-C-GFP. The stimulus response was imaged as a rise in red secretagogue leading to marked loss in green granules. Since neuropeptides as well as peptide hormones are processed from propeptides after sealing of secretory granules, vesicle trapping likely is widely applicable for studies on targeting, trafficking, and regulated release of secretory peptides.  相似文献   

8.
The rat mast cell line RBL-2H3 contains both phospholipase D (PLD)1 and PLD2. Previous studies with this cell line indicated that expressed PLD1 and PLD2 are both strongly activated by stimulants of secretion. We now show by use of PLDs tagged with enhanced green fluorescent protein that PLD1, which is largely associated with secretory granules, redistributes to the plasma membrane in stimulated cells by processes reminiscent of exocytosis and fusion of granules with the plasma membrane. These processes and secretion of granules are suppressed by expression of a catalytically inactive mutant of PLD1 or by the presence of 50 mM 1-butanol but not tert-butanol, an indication that these events are dependent on the catalytic activity of PLD1. Of note, cholera toxin induces translocation of PLD1-labeled granules to the plasma membrane but not fusion of granules with plasma membrane or secretion. Subsequent stimulation of calcium influx with Ag or thapsigargin leads to rapid redistribution of PLD1 to the plasma membrane and accelerated secretion. Also of note, PLD1 is recycled from plasma membrane back to granules within 4 h of stimulation. PLD2, in contrast, is largely confined to the plasma membrane, but it too participates in the secretory process, because expression of catalytically inactive PLD2 also blocks secretion. These data indicate a two-step process: translocation of granules to the cell periphery, regulated by granule-associated PLD1, and a calcium-dependent fusion of granules with the plasma membrane, regulated by plasma membrane-associated PLD2 and possibly PLD1.  相似文献   

9.
Stimulation of rat serosal mast cells in vitro with compound 48/80, a degranulating agent, resulted in an immediate increase in binding of low density lipoproteins (LDL) to the stimulated mast cells. The increase in binding was dose-dependent and closely followed the increase in histamine release, i.e., the exocytosis of mast cell granules. It could be demonstrated that the LDL were bound to exocytosed secretory granules which remained cell-associated. During the recovery period the granule-bound LDL were internalized by the mast cells along with the granules. A single stimulation of mast cells rendered their cytoplasm to be filled with granular material showing positive staining for both apoB and neutral lipid. This change was accompanied by a 30-fold increase in the cellular content of cholesteryl esters. Thus, rat serosal mast cells possess a specific mechanism for uptake of LDL that is activated by stimuli that lead to degranulation, the result being massive uptake of LDL by stimulated mast cells during recovery from degranulation.  相似文献   

10.
Hrs binding protein (Hbp) tightly associated with Hrs is thought to play a regulatory role in vesicular trafficking during endocytosis and exocytosis. In this study, we have expressed dominant-negative mutants of Hbp to evaluate their effects on the degranulation of secretory granules in RBL-2H3 mast cells. The dominant-negative mutants of Hbp significantly inhibited IgE receptor (FcepsilonRI)-triggered secretory response as tested by beta-hexosaminidase release. These results suggest that Hbp functions as a regulator in the FcepsilonRI-triggered degranulation of secretory granules in mast cells.  相似文献   

11.
Secretory vesicles of sympathetic neurons and chromaffin granules maintain a pH gradient toward the cytosol (pH 5.5 versus 7.2) promoted by the V-ATPase activity. This gradient of pH is also responsible for the accumulation of amines and Ca2+ because their transporters use H+ as the counter ion. We have recently shown that alkalinization of secretory vesicles slowed down exocytosis, whereas acidification caused the opposite effect. In this paper, we measure the alkalinization of vesicular pH, caused by the V-ATPase inhibitor bafilomycin A1, by total internal reflection fluorescence microscopy in cells overexpressing the enhanced green fluorescent protein-labeled synaptobrevin (VAMP2-EGFP) protein. The disruption of the vesicular gradient of pH caused the leak of Ca2+, measured with fura-2. Fluorimetric measurements, using the dye Oregon green BAPTA-2, showed that bafilomycin directly released Ca2+ from freshly isolated vesicles. The Ca2+ released from vesicles to the cytosol dramatically increased the granule motion of chromaffin- or PC12-derived granules and triggered exocytosis (measured by amperometry). We conclude that the gradient of pH of secretory vesicles might be involved in the homeostatic regulation of cytosolic Ca2+ and in two of the major functions of secretory cells, vesicle motion and exocytosis.  相似文献   

12.
Mast cells are granular immunocytes that reside in the body's barrier tissues. These cells orchestrate inflammatory responses. Proinflammatory mediators are stored in granular structures within the mast cell cytosol. Control of mast cell granule exocytosis is a major therapeutic goal for allergic and inflammatory diseases. However, the proteins that control granule biogenesis and abundance in mast cells have not been elucidated. In neuroendocrine cells, whose dense core granules are strikingly similar to mast cell granules, granin proteins regulate granulogenesis. Our studies suggest that the Secretogranin III (SgIII) protein is involved in secretory granule biogenesis in mast cells. SgIII is abundant in mast cells, and is organized into vesicular structures. Our results show that over-expression of SgIII in mast cells is sufficient to cause an expansion of a granular compartment in these cells. These novel granules store inflammatory mediators that are released in response to physiological stimuli, indicating that they function as bona fide secretory vesicles. In mast cells, as in neuroendocrine cells, we show that SgIII is complexed with Chromogranin A (CgA). CgA is granulogenic when complexed with SgIII. Our data show that a novel non-granulogenic truncation mutant of SgIII (1-210) lacks the ability to interact with CgA. Thus, in mast cells, a CgA-SgIII complex may play a key role in secretory granule biogenesis. SgIII function in mast cells is unlikely to be limited to its partnership with CgA, as our interaction trap analysis suggests that SgIII has multiple binding partners, including the mast cell ion channel TRPA1.  相似文献   

13.
It has been previously demonstrated that eosinophil peroxidase (EPO) when supplemented with hydrogen peroxide and a halide induces noncytotoxic mast cell degranulation. Using a more highly purified EPO preparation, the ultrastructure of EPO-induced mast cell secretion has been studied using transmission and scanning electron microscopy and freeze-fracture techniques. At relatively low EPO concentrations, secretory changes were comparable to those caused by other mast cell secretagogues. Swollen and less electron-dense granules were seen in intracellular channels, some of which opened to the outside of the cell. EPO stimulation led to bulging of the surface membrane by submembranous granules and formation of pores in the cell surface that also contained fewer villous projections than control cells. During the secretory process, plasma membrane bulges were depleted of intramembranous particles in both the E and P faces of the apical regions of the perigranular and plasma membranes. Higher EPO concentrations caused a marked cytotoxic disruption of the mast cells. Diaminobenzidine cytochemistry was used to detect EPO reaction products on the mast cell surface by scanning electron microscopy; this technique should prove useful in detecting peroxidase reaction products on a variety of target cells.  相似文献   

14.
By tagging secretory granules with the fluorescent protein dsRed-E5, which changes its emission from green to red over time, Duncan et al. analysed the age-dependent distribution of secretory vesicles within chromaffin cells. This elegant study illustrates as never before how age is a critical factor that segregates granules with respect to their localization and mobility and the probability of them undergoing exocytosis in response to different stimuli.  相似文献   

15.
We tested whether the giant secretory granules observed in the mast cells of the naturally occurring mutant beige mouse (BM) (C57BL/6N-bg) were also present in the adrenal chromaffin cells. The presence of large chromaffin granules (CG) would be a valuable tool for the study of exocytosis in neuronal tissues. Conversely, the observation of large vesicles within chromaffin cells that are different from CG could indicate that CG are of a different origin than granules of mast cells. Ultrastructural analysis demonstrated the presence of large lysososmal-like vesicles in the BM, and also a discrete increase in the number of CG with diameters larger than 240 nm but not of giant CG. In addition, amperometric measurements of single-event exocytosis, using carbon fiber microelectrodes, showed no differences between the quantal size of secretory events from BM and wildtype or bovine chromaffin cells. Minor but significant differences were found between the kinetics of exocytosis in BM cells andwild-type mouse cells. We conclude that CG, but not the abnormal-sized vesicles found in BM chromaffin cells contribute to the catecholamine secretion and that abnormal secretory granules are not present in adrenergic cell lineage.  相似文献   

16.
Compound versus multigranular exocytosis in peritoneal mast cells   总被引:5,自引:0,他引:5       下载免费PDF全文
We have used the whole-cell patch-pipette technique to measure the step increases in the cell membrane capacitance (equivalent to the membrane area) caused by the fusion of secretory granules in degranulating murine mast cells. We have observed that up to 30% of the total membrane expansion caused by degranulation results from large fusion events that cannot be explained by the fusion of single secretory granules. These large events are observed mainly in the initial phase of a degranulation. We have developed a simple mathematical model for a mast cell to test whether these large events are caused by a stimulus-induced, granule-to-granule fusion that occurs before their exocytosis (multigranular exocytosis). Our results suggest that the large fusion events are caused by the exocytosis of granule aggregates that existed before stimulation and that are located at the cell's periphery. We propose a novel mechanism by which granule aggregates can be formed at the periphery of the cell. This mechanism relies on the ability of a transiently fused granule ("flicker") to fuse with more internally located granules in a sequential manner. This pattern may result in the formation of larger peripheral granules that later on can fuse with the membrane. The formation of peripheral granule aggregates may potentiate a subsequent secretory response.  相似文献   

17.
Mucosal mast cells of the gastrointestinal tract constitute a separate cell line within the mast cell system of the rat, differing in several respects from the classical connective tissue mast cells and, unlike the latter, requiring special fixation techniques for their demonstration. We have examined some histochemical properties of mucosal mast cells of the duodenum and compared them with connective tissue mast cells of the tongue or skin. The results indicate that the structural integrity of the granules of both types of mast cell is partly dependent on ionic linkages between glycosaminoglycan and protein. The so far unidentified glycosaminoglycan of mucosal mast cells appears to be more soluble than the heparin of connective tissue mast cells. The strongly fluorescent binding of Berberine to the granules of connective tissue mast cells and, depending on their content, of heparin is absent from mucosal mast cells, confirming previous findings which suggested that they contain a glycosaminoglycan with a lower degree of sulphation. Aldehyde fixation by routine procedures reversibly blocks the cationic dye binding of mucosal mast cell granules. The dye binding groups may be unmasked by trypsination or by long staining times of the order of several days. The results suggest that the blocking of staining by aldehydes is caused by a diffusion barrier of a protein nature. Mucosal and connective tissue mast cells thus differ with respect to the spatial arrangement of glycosaminoglycan and protein in their granules. As a result of the study a modified method for the demonstration of mucosal mast cells in tissue sections is described, based on normal formaldehyde fixation and staining in Toluidine Blue for a long time. It has some advantages over previous methods and preserves the structure of mucosal and connective tissue mast cells equally well.  相似文献   

18.
Secretory processes via exocytosis in rat peritoneal mast cells were visualized by two complementary fluorescence techniques; one staining pre-exocytotic granules with a basic probe and the other staining post-exocytotic granules with acidic probes. Granules within mast cells were selectively stained with acridine orange and emitted orange yellow fluorescence. Upon stimulation with compound 48/80, release of acridine orange from granules was observed both in population and single cell measurements. This release was seen in some localized area of mast cells. Opening of pores between plasma membranes and granule membranes was monitored using acidic fluorescence probes such as 6-carboxyfluorescein or lucifer yellow CH. Not only granules located at peripheral region, but also granules near the core region participated in exocytosis. The existence of junctions between these granules was suggested. TMA-DPH, a lipophilic membrane probe, which was localized at plasma membrane before stimulation, diffused into granule membranes after stimulation. This shows that after stimulation, some constituents of plasma and granule membranes were mixed. Even after extensive degranulation, mast cells extruded acidic probes, indicating the plasma membranes still play a role of barrier. Activation of lateral motion of granules preceding to exocytosis was not observed. It was concluded that the visualization of secretory processes by fluorescence and image processing techniques will be useful for the study of molecular mechanisms underlying exocytosis.  相似文献   

19.
Using patch-clamp techniques, we have followed the attributes of the secretory granules of peritoneal mast cells obtained from rats of different ages. The granule attributes were determined by following the step increases in the cell surface membrane area caused by the exocytosis of the granules in GTP gamma S stimulated mast cells. Our data show that the amount of granule membrane available for exocytosis depends exponentially on the weight (age) of the donor rat, reaching a maximum at approximately 300 g. The data are consistent with an exponential growth in the number of granules contained by mast cells of maturing animals. Histograms of the sizes of the step increases in surface area caused by exocytosis of the granules showed at least four equally spaced peaks of similar variance where the position of the first peak and the spacing between peaks averaged 1.3 +/- 0.4 micron2. In all cells recorded, no more than seven peaks could be found, the higher order peaks having a lower probability of occurrence. The distribution of granule sizes did not change measurably between young and adult animals. This study suggests that at least two separate steps may determine the size of a secretory granule: granule to granule fusion that may account for the subunit composition of granule sizes and traffic of microvesicles through the maturing granules that may account for the variance observed in the granule sizes. This study also demonstrates a novel way to study granulo-genesis in living cells.  相似文献   

20.
Summary Rat mast cells pretreated with the tricyclic antidepressant drug amitriptyline and stimulated with compound 48/80 secreted 60% of the total serotonin present in the cells, but only 15% of histamine, another amine stored in the same granules. Ultrastructural studies demonstrated that mast cells undergoing such differential release do not exhibit classical degranulation by compound sequential exocytosis. However, there were changes in granule shape and size, as well as alterations in many morphometric parameters consistent with secretion. Storage granules lost their homogeneity, exhibited greatly reorganized matrix and were surrounded by clear spaces which were often associated with small (0.1–0.01 m) cytoplasmic vesicles, some of which contained electron-dense material. Secretory granules often had bud-like protrusions or were fused together in series. Quantitative autoradiography localized 3H-serotonin outside the storage granules, close to small vesicles, while staining with ruthenium red demonstrated that vesicular structures associated with differential release were not endocytotic. These results suggest that amitriptyline may inhibit regular exocytosis and permit at least serotonin to be moved selectively from storage granules to the cytosol or small vesicles from which it is eventually released.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号