首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Summary Late third instar imaginal discs of Drosophila melanogaster cultured in vitro in Robb's tissue culture medium synthesize 38S, 28S and 18S ribosomal RNAs which are qualitatively indistinguishable from their in vivo synthesized counterparts (Fig. 1). As found in other insect systems, the 38S molecule appears to be the precursor for both the 28S and 18S rRNAs (Figs. 2, 3 and 4). The 28S rRNA and a portion of the 38S pre-rRNA shift in sedimentation value upon exposure to heat or dimethylsulfoxide (Figs. 5 and 8). Studies of the thermal denaturations of these molecules (Figs. 6, 7 and 9) indicate the existence of a single class of 28S rRNA, but three classes of 38S pre-rRNAs. The addition of -ecdysone to the in vitro culture medium stimulates the net amount of rRNA synthesized, increases the rate of processing of the 38S precursor and increases the relative amount of 18S material produced (Figs. 10 and 12).This work was supported in part by grants from the National Science Foundation (GB-8176) and from the Atomic Energy Commission (AT-04-3-34).Predoctoral Trainees, PHS Training Grant No. 2-Tl-GM367 from Research Training Grants Branch, National Institute of General Medical Sciences.1 For purposes of simplification we shall refer to the rRNA molecules of D. melanogaster as being 38S, 30S, 28S and 18S; however, it should be noted that these values are approximate (see Hastings and Kirby, 1966; Greenberg, 1969; Tartof and Perry, 1970).  相似文献   

4.
Patterns of protein synthesis in imaginal discs of Drosophila melanogaster.   总被引:3,自引:0,他引:3  
M E Rodgers  A Shearn 《Cell》1977,12(4):915-921
Patterns of polypeptide synthesis in wing, leg and eye-antenna imaginal discs and in whole larvae of wild-type and and mutant Drosophila melanogaster have been examined using two-dimensional polyacrylamide gel electrophoresis and autoradiography. After 2 hr of labeling with 35S during the third larval instar, the synthesis of more than 318 polypeptides has been detected in imaginal discs. Of these, 268 are present in similar amounts in all three disc types. The remaining polypeptides detected in the three imaginal disc types fall into two categories: those unique to a particular disc type, and those specific for a particular pair of disc types. These results are discussed in relation to the spectrum of gene expression in imaginal discs.  相似文献   

5.
Summary Imaginal discs ofDrosophila melanogaster larvae, 24–53 hrs after oviposition, were transplanted into mature immobile larval hosts. The transplants did not respond to the hormonal stimuli of metamorphosis, but instead completed their larval development. When reinjected into mature larval hosts, they now differentiated the full set of their presumptive imaginal structures. The process of acquiring competence for metamorphosis appears to be independent of the hormonal conditions.Supported by a credit of the Swiss National Foundation granted to Prof. Dr. E. Hadorn. I thank Dr. R. Nöthiger for his valuable criticism during this investigation.  相似文献   

6.
Wilson CL  Shirras AD  Isaac RE 《Peptides》2002,23(11):2007-2014
The imaginal discs of Drosophila melanogaster give rise to the adult epidermis during metamorphosis. During this developmental period several peptidase genes are expressed in disc cells, but there is a paucity of biochemical information regarding substrate specificity. We have used peptides and peptidyl 7-amino-4-methylcoumarin (AMC) substrates to detect several peptidases either positioned on the surface of wing discs or secreted by the imaginal cells. Using [Leu(5)]enkephalin as a substrate, a captopril sensitive dipeptidyl carboxypeptidase (angiotensin I-converting enzyme) and an amastatin-sensitive aminopeptidase were detected as prominent activities associated with intact discs. The formation of [Leu(5)]enkephalin-derived Phe was attributed to the concerted action of the D. melanogaster angiotensin I-converting enzyme (Ance) and a dipeptidase. The disc Ance also showed endopeptidic activity towards locust tachykinin-1 (LomTK-I) by cleaving the Gly-Val peptide bond, but this enzyme was not the sole endopeptidase activity associated with discs. Complete inhibition of the endopeptidic hydrolysis of the LomTK-1 by a disc homogenate required a combination of captopril and the neprilysin inhibitor, phosphoramidon, providing biochemical evidence for a neprilysin-like peptidase, in addition to Ance, in imaginal discs of D. melanogaster. Peptidyl AMC substrates for furin, prohormone convertase and tryptase provided evidence for trypsin-like serine endopeptidases in addition to the metalloendopeptidases. We conclude that imaginal discs are endowed with a variety of peptidases from different families that together are capable of hydrolyzing a broad range of peptides and proteins. Some of these peptidases might be responsible for the metabolic activation/inactivation of signaling peptides, as well as being involved in the production of dipeptides and free amino acids required for protein synthesis and osmotic balance during adult morphogenesis.  相似文献   

7.
The pyridine nucleotide metabolism of imaginal discs of Drosophila melanogaster has been studied in vitro by incubating discs with labeled nicotinic acid in the presence and absence of ecdysterone. The major labeled compounds found within the discs are NAD, NADP, and nicotinic acid. There is preferential uptake of nicotinamide over nicotinic acid, although the Priess-Handler pathway is used exclusively. The presence of ecdysterone produces a small increase in the NADP/NAD ratio, and an increase in NAD synthesis, probably to compensate for increased NAD turnover.Supported by Grant GB 43569 from the National Science Foundation.  相似文献   

8.
9.
Proteomic analysis of the wing imaginal discs of Drosophila melanogaster   总被引:1,自引:0,他引:1  
Alonso J  Santarén JF 《Proteomics》2005,5(2):474-489
We have combined high-resolution two-dimensional (2-D) gel electrophoresis and mass spectrometry with the aim of identifying proteins represented in the 2-D gel database of the wing imaginal discs of Drosophila melanogaster. First, we obtained a high-resolution 2-D gel pattern of [35S]methionine + [35S]cysteine-labeled polypeptides of Schneider cells, a permanent cell line of Drosophila embryonic origin, and compared it with the standard pattern of polypeptides of the wing imaginal disc. These studies reveal qualitative and quantitative differences between the two samples, but have more than 600 polypeptides in common. Second, we carried out preparative 2-D polyacrylamide gel electrophoresis using Schneider cells mixed with radioactively labeled wing imaginal discs in order to isolate some of the shared polypeptides and characterize them by matrix-assisted laser desorption/ionization-time of flight MALDI-TOF analysis. Using this strategy we identified 100 shared proteins represented in the database, and in each case confirmed their identity by MALDI-TOF/TOF analysis.  相似文献   

10.
High-resolution two dimensional gel electrophoresis has been used to study the patterns of protein synthesis in imaginal discs of Drosophila melanogaster. In this paper we first compare the patterns of protein synthesis in wing, haltere, leg 1, leg 2, leg 3 and eye antenna imaginal discs of late third instar larvae. We have detected only quantitative changes: differences in 17 proteins among the different imaginal discs. In addition, we have analysed the variations in pattern of proteins in the wing disc of the last larval stage and early pupae as well as in wing discs cultured in vivo for 6 days. Variations in these patterns affect more than 20% of the proteins and involve both qualitative and quantitative changes. Some of the changes may correspond to protein phosphorylation. Correlations of these changes between discs and through development are also discussed. Correspondence to: F. Santaren  相似文献   

11.
12.
《Insect Biochemistry》1982,12(2):207-213
In vitro incorporation of labelled amino acids into TCA insoluble protein in the imaginal wing discs of vg mutant and wild-type Drosophila melanogaster is compared and correlated with the extent of cellular degeneration during development. (1) With 96–100-hr-old larvae, wing discs isolated from vg mutant incorporate radiolabelled amino acids at a higher rate than wild-type discs, although cellular degeneration is more extensive in vg discs than wild-type discs. This may reflect the larger size of the vg discs since they have more protein than the wild-type discs. (2) The vg discs of 105–110-hr-old larvae have a lower rate of incorporation than the wild-type disc, although both types of discs have the same protein content. This may be due to the presence of more degenerating cells in the vg discs. (3) The rate of incorporation in vg discs of 115–118-hr-old larvae is lower than that of wild-type discs; the vg discs have less protein but more degenerative cells than the wild-type discs. The rates of protein degradation are similar in both discs. Electrophoretic comparison reveals a general reduction in protein synthesis in vg discs as compared with wild-type discs.  相似文献   

13.
《Insect Biochemistry》1987,17(6):919-927
The incorporation of [1-3H]d-glucosamine in Drosophila melanogaster imaginal discs revealed the synthesis of glycoproteins represented by a family of subfractions with roughly the same molecular mass of about 80,000 and discrete isoelectric point values in the range of 5.0 to 6.5 pH units. The incorporation of [1-3H]d-glucosamine was not inhibited by tunicamycin, an inhibitor of N-glycosylation. This family of glycoproteins is relatively protease-resistant but can be digested by high concentrations of pronase E (100 μg/ml) or pepsin (1 mg/ml). The carbohydrate component of these glycoproteins is sensitive to chitinase. The properties of the glycoproteins in imaginal discs are similar to those of chitinase sensitive glycoproteins found in established cell cultures of D. melanogaster [Kramerov et al., Insect Biochem. 16, 417–432 (1986)]. Incorporation of [1-3H]d-glucosamine into the family of glycoproteins decreases as the imaginal discs undergo evagination induced by 20-hydroxyecdysone.  相似文献   

14.
The embryonic development of the primordia of the Drosophila head was studied by using an enhancer trap line expressed in these structures from embryonic stage 13 onward. Particular attention was given to the question of how the adult head primordia relate to the larval head segments. The clypeo-labral bud to the stage 13 embryo is located at a lateral position in the labrum adjacent to the labral sensory complex (epiphysis). Both clypeo-labral bud and sensory complex are located anterior to the engrailed-expression domain of the labrum. Throughout late embryogenesis and the larval period, the clypeo-labral bud forms integral part of the epithelium lining the roof of the atrium. The labial disc originates from the lateral labial segment adjacent to the labial sensory complex (hypophysis). It partially overlaps with the labial en-domain. After head involution, the labial disc forms a small pocket in the ventro-lateral wall of the atrium. The eye-antenna disc develops from a relatively large territory occupying the dorso-posterior part of the procephalic lobe, as well as parts of the dorsal gnathal segments. Cells in this territory are greatly reduced in number by cell death during stages 12–14. After head involution, the presumptive eye-antenna disc occupies a position in the lateral-posterior part of the dorsal pouch. Evagination of this tissue occurs during the first hours after hatching. In the embryo, no en-expression is present in the presumptive eye-antenna disc. en-expression starts in three separate regions in the third instar larva.  相似文献   

15.
We have established a primary culture system for Drosophila eye imaginal discs. With this system, we were able to obtain neurite outgrowth from intact eye discs, eye disc fragments, and dissociated eye imaginal disc cells. Immunoreactivity to antibody 24B10 indicates that these extending neurites are photoreceptor axons. Three culture media were tested for their ability to support the survival of and neurite extension from eye disc fragments in vitro at 23°C. These, with supplements, were: five parts of Schneider's Drosophila medium with four parts of basal Eagle's medium (“4+5”); Leibovitz's L-15 medium (L-15); and Shields and Sang's M3 modified medium (MM3). We obtained the best results with MM3 supplemented with 2% fetal bovine serum (FBS). Eye disc fragments survived in this medium for at least 20 days. Pigmentation in the nonphotoreceptor pigment cells in cultures from the prepupa required the presence of 20-hydroxyecdysone (20-HE) (1 μg/ml), whereas neurite outgrowth was seen in the absence of 20-HE. Donor animals had to fall within a range of ages to obtain appropriate eye disc differentiation in vitro. Eye discs from 5-h pupae (P+5) or older commenced ommachrome synthesis in vitro, in a temporal sequence close to that found in vivo, whereas the in vitro synthesis of this pigment was delayed in eye discs from younger flies. Average neurite length was not affected by age among pupae younger than P+5; but neurite outgrowth from P+24 was scarce, probably because by this time photoreceptor axons had already grown in vivo and were severed and unable to regenerate in vitro. Eye discs taken from third instar larvae or white prepupae continued their mitotic activity in vitro. Together with the advance of the morphogenetic furrow at the leading edge of retinal development, this observation is consistent with the evidence that pattern formation continues in vitro. Morphogenetic changes were manifested in cultures. Viability tests with calcein AM and ethidium bromide revealed few dead cells in living cultures. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
Upon fragmentation of a leg imaginal disc, cells near parts of the wounded surface are reprogrammed and form a blastema. This occurs without a change in fate and without the direct contact of the two wounded surfaces (G. H. Karpen and G. Schubiger, Nature (London) 294, 744-747, 1981). Two phases of the cell cycle have now been analyzed for several areas of disc fragments prior to and during wound healing. A mitotic index was used to compare the location of cell division, and autoradiography was used to reveal patterns of DNA synthesis. In contrast to the uniform division pattern in noncultured fragments, more dividing cells were observed near the two wound surfaces after 1 day of in vivo culture. During the second day, wound healing began and mitotic activity increased dramatically near both wound areas, and decreased in distant areas. Three and a half days of culture led to more complete wound closure and only cells on one site continued to show the highest frequency of labeled cells. It is concluded that changes in patterns of DNA synthesis and an increase in cell division begin prior to wound closure. This proliferation is consistent with the morphological changes and regulative behavior observed. In addition, the role of compartmental identity during regulation was tested. After wound closure began an increase in mitotic activity near wounds in the anterior compartment was observed whereas such an increase in division level was not seen in posterior cells near a wound.  相似文献   

17.
18.
Summary l(1)su(f)mad-ts (mad) is a new temperature-sensitive (ts) lethal mutant ofDrosophila melanogaster which produces duplicated legs after temperature pulse treatment during larval development. The ts-lethality was studied in temperature experiments and genetic mosaics. Temperature pulses given during two distinct TSPs of larval development result in two different types of leg pattern duplication. Total differ from partial duplications with respect to the affected leg compartments and the orientation of the planes of symmetry which are perpendicular to the dorso-ventral and the proximo-distal leg axes in total and partial duplications, respectively. Genetic mosaic studies indicate (i) disc autonomy of leg pattern duplication, (ii) clonal separation of the anlagen of the two pattern copies, and (iii) clonal restriction along the antero-posterior compartment border in the two pattern copies of totally duplicated legs.The results suggest thatmad leg pattern duplication is caused by a change in positional information rather than by cell death and subsequent regeneration. Our data are compatible with the assumption that during normal development the leg disc cells acquire information about their position within the disc with respect to the different leg axes independently and at different times.  相似文献   

19.
Klebes A  Biehs B  Cifuentes F  Kornberg TB 《Genome biology》2002,3(8):research0038.1-research003816

Background  

In the Drosophila larva, imaginal discs are programmed to produce adult structures at metamorphosis. Although their fate is precisely determined, these organs remain largely undifferentiated in the larva. To identify genes that establish and express the different states of determination in discs and larval tissues, we used DNA microarrays to analyze mRNAs isolated from single imaginal discs.  相似文献   

20.
To explore the effects of cell death on pattern formation in the developing imaginal discs of Drosophila melanogaster, I have isolated a number of cell-autonomous temperature-sensitive lethal mutants. Sex-linked temperature-sensitive lethals were screened for cell-autonomy by scoring the survival of lethal-bearing clones in genetic mosaics. The mutant with the strongest effect on clone viability gave rise to a high frequency of structural deficiencies and duplications in the derivatives of the eye-antennal discs, when subjected to pulse-treatments at the nonpermissive temperature during the late second and third instars. The patterns produced were nonrandom, with some structures showing a tendency to become deficient, and others a tendency to duplicate. Duplicated structures were only found in heads in which other structures were missing. Genetic tests identified the lethal as a point mutation at the suppressor-of-forked locus. Recombination, and complementation tests with a small duplication of this region showed that a second mutational lesion is in all probability not involved in the generation of abnormal patterns in the imaginal discs. It is therefore proposed that the cell-lethal action of the mutant is sufficient to account for phenotypic effects described. According to this hypothesis, cell death primarily causes deficiencies, and duplications occur as a response of the discs to injury. In agreement with this, it was found that in gynandromorphs, pattern duplications can be found in wild-type tissue in the presence of lethal tissue in the same disc. Thus, a cell-autonomous lethal may affect the process of pattern formation in a nonautonomous way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号