首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sugarcane borer, Diatraea saccharalis (F.), is a primary corn stalk borer pest targeted by transgenic corn expressing Bacillus thuringiensis (Bt) proteins in many areas of the mid-southern region of the United States. Recently, genes encoding for Cry1A.105 and Cry2Ab2 Bt proteins were transferred into corn plants (event MON 89034) for controlling lepidopteran pests. This new generation of Bt corn with stacked-genes of Cry1A.105 and Cry2Ab2 will become commercially available in 2009. Susceptibility of Cry1Ab-susceptible and -resistant strains of D. saccharalis were evaluated on four selected Bt proteins including Cry1Aa, Cry1Ac, Cry1A.105, and Cry2Ab2. The Cry1Ab-resistant strain is capable of completing its larval development on commercial Cry1Ab-expressing corn plants. Neonates of D. saccharalis were assayed on a meridic diet containing one of the four Cry proteins. Larval mortality, body weight, and number of surviving larvae that did not gain significant weight (<0.1 mg per larva) were recorded after 7 days. Cry1Aa was the most toxic protein against both insect strains, followed in decreasing potency by Cry1A.105, Cry1Ac, and Cry2Ab2. Using practical mortality (larvae either died or no significant weight gain after 7 days), the median lethal concentration (LC50) of the Cry1Ab-resistant strain was estimated to be >80-, 45-, 4.1-, and −0.5-fold greater than that of the susceptible strain to Cry1Aa, Cry1Ac, Cry1A.105 and Cry2Ab2 proteins, respectively. This information should be useful to support the commercialization of the new Bt corn event MON 89034 for managing D. saccharalis in the mid-southern region of the United States.  相似文献   

2.
贺明霞  何康来  王振营  王新颖  李庆 《昆虫学报》2013,56(10):1135-1142
亚洲玉米螟Ostrinia furnacalis (Guenée) 是危害玉米的重要害虫之一, 转Bt基因抗虫玉米为其防治提供了新的途径。然而, 靶标害虫产生抗性将严重阻碍Bt制剂及转Bt基因抗虫玉米的持续应用。明确害虫对转Bt基因玉米表达的毒素蛋白的抗性演化, 对于制定科学有效的抗性治理策略具有重要的理论和实际意义。本实验通过人工饲料汰选法研究了Bt Cry1Ie毒素胁迫下亚洲玉米螟的抗性发展及汰选14代的种群对其他Bt毒素(Cry1Ab, Cry1Ac和Cry1Fa)的交互抗性, 并观察了Cry1Ie蛋白胁迫对亚洲玉米螟生物学的影响。结果表明: 随着汰选压不断提高, 亚洲玉米螟种群对Cry1Ie毒素的敏感性逐渐下降。汰选14代后, 种群对Cry1Ie毒素的抗性水平提高了23倍。然而, Cry1Ab, Cry1Ac和Cry1Fa对所获Cry1Ie汰选种群的毒力与对敏感种群的毒力相比没有显著差异, 说明Cry1Ie汰选没有引起亚洲玉米螟对Cry1Ab, Cry1Ac和Cry1Fa毒素产生交互抗性。同时, 与敏感种群相比, Cry1Ie汰选14代的种群幼虫平均发育历期延长5.7 d, 蛹重减轻13.7%, 单雌产卵量下降40.0%。本研究结果说明, 大面积单一种植转cry1Ie基因抗虫玉米, 可能引起亚洲玉米螟产生抗性; 亚洲玉米螟Cry1Ie抗性种群对Cry1Ab, Cry1Ac和Cry1Fa没有交互抗性, 含有cry1Ie和cry1Ab, cry1Ac或cry1F双/多基因抗虫玉米, 可作为靶标害虫抗性治理的重要策略。  相似文献   

3.
Crops producing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are widely planted to manage insect pests. Bt crops can provide an effective tool for pest management; however, the evolution of Bt resistance can diminish this benefit. The European corn borer, Ostrinia nubilalis Hübner, is a significant pest of maize and is widely managed with Bt maize in the Midwest of the United States. When Bt crops are grown in conjunction with non‐Bt refuges, fitness costs of Bt resistance can delay the evolution of resistance. Importantly, fitness costs often vary with ecological factors, including host‐plant genotype and diapause. In this study, we examined fitness costs associated with Cry1F resistance in O. nubilalis when insects were reared on three maize lines. Fitness costs were tested in two experiments. One experiment assessed the fitness costs when Cry1F‐resistant and Cry1F‐susceptible insects were reared on plants as larvae and experienced diapause. The second experiment tested resistant, susceptible and F1 heterozygotes that were reared on plants but did not experience diapause. Despite some evidence of greater adult longevity for Cry1F‐resistant insects, these insects produced fewer fertile eggs than Cry1F‐susceptible insects, and this occurred independent of diapause. Reduced fecundity was not detected among heterozygous individuals, which indicated that this fitness cost was recessive. Additionally, maize lines did not affect the magnitude of this fitness cost. The lower fitness of Cry1F‐resistant O. nubilalis may contribute to the maintenance of Cry1F susceptibility in field populations more than a decade after Cry1F maize was commercialized.  相似文献   

4.
5.
Sugarcane borer (Diatraea saccharalis) is a major pest of sugarcane (Saccharum spp. hybrids), across the Americas. The insect is partially controlled by biological and chemical means, but still causes significant economic losses to sugarcane growers and processors. Proteins derived from Bacillus thuringiensis, Bt proteins, have been used to control sugarcane borer in maize (Zea mays) for the past decade. In sugarcane, the expression of individual Bt proteins has been reported several times. However practical use of Bt proteins requires their use as part of an Integrated Pest Management (IPM) system that includes the delivery of high doses of protein and the use of a refuge to slow the evolution of insect resistance to the protein. Here we demonstrate the feasibility of using Bt proteins to protect sugarcane from sugarcane borer in a commercial setting. We have expressed two Bt proteins with differing modes of action (Cry1Ab and Cry2Ab) in commercial sugarcane varieties, demonstrated efficacy against sugarcane borer in the field and describe a strategy for trait deployment in this tropical crop with complex genetics that limits trait introgression by backcrossing.  相似文献   

6.
Evolution of resistance by insect pests is the greatest threat to the continued success of Bacillus thuringiensis (Bt) toxins used in insecticide formulations or expressed by transgenic crop plants such as Cry1F‐expressing maize [(Zea mays L.) (Poaceae)]. A strain of European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), obtained from field collections throughout the central US Corn Belt in 1996 was selected in the laboratory for resistance to Cry1F by exposure to the toxin incorporated into artificial diet. The selected strain developed more than 3000‐fold resistance to Cry1F after 35 generations of selection and readily consumed Cry1F expressing maize tissue; yet, it was as susceptible to Cry1Ab and Cry9C as the unselected control strain. Only a low level of cross‐resistance (seven‐fold) to Cry1Ac was observed. These lacks of cross‐resistance between Cry1F and Cry1Ab suggest that maize hybrids expressing these two toxins are likely to be compatible for resistance management of O. nubilalis.  相似文献   

7.
One field strain each of the European corn borer, Ostrinia nubilalis (Hübner); southwestern corn borer, Diatraea grandiosella Dyar; and sugarcane borer, Diatraea saccharalis (F.); were collected from cornfields in northeastern Louisiana. Susceptibilities of the field strain and a corresponding laboratory strain of the three borer species to Cry1Ab protein in DK69-70 Bacillus thuringiensis (Bt) corn hybrid were determined by exposing neonates to intact leaf tissues from whorl stage plants or by feeding neonates or third instars on a meridic diet treated with different concentrations of Cry1lAb protein extracted from Bt corn leaves. Mortality and growth of larvae were evaluated after 2 and 4 d posttreatment in the bioassays by using intact leaf tissues or after 7 d in the bioassays by using diet incorporating Cry1Ab protein. D. saccharalis was the least susceptible species to Cry1Ab protein among the three species, followed by D. grandiosella, whereas O. nubilalis was most susceptible. The 2-d mortality of D. saccharalis neonates on intact Bt leaf tissues was lower than that of O. nubilalis and D. grandiosella. All neonates of O. nubilalis were killed on the diet treated with Cry1Ab protein at 0.5 and 1 mg/kg. The mortality of D. grandiosella was > 75% at 1 mg/kg, but it was < 6% for D. saccharalis at 1 mg/kg. The LC50 values of D. saccharalis were 3- and 11-fold higher than those of D. grandiosella and O. nubilalis, respectively. The LC90 values of D. saccharalis were 8- and 32-fold higher than those of D. grandiosella and O. nubilalis, respectively. Larval growth of the three species on Cry1Ab-treated diet was inhibited, but the inhibition was greater for O. nubilalis and D. grandiosella than for D. saccharalis. The lower susceptibility of D. saccharalis to Cry1Ab protein suggests that it is necessary to verify if a high-dose Bt corn for O. nubilalis and D. grandiosella is also a high dose for D. saccharalis.  相似文献   

8.
Characterization of Chimeric Bacillus thuringiensis Vip3 Toxins   总被引:5,自引:0,他引:5       下载免费PDF全文
Bacillus thuringiensis vegetative insecticidal proteins (Vip) are potential alternatives for B. thuringiensis endotoxins that are currently utilized in commercial transgenic insect-resistant crops. Screening a large number of B. thuringiensis isolates resulted in the cloning of vip3Ac1. Vip3Ac1 showed high insecticidal activity against the fall armyworm Spodoptera frugiperda and the cotton bollworm Helicoverpa zea but very low activity against the silkworm Bombyx mori. The host specificity of this Vip3 toxin was altered by sequence swapping with a previously identified toxin, Vip3Aa1. While both Vip3Aa1 and Vip3Ac1 showed no detectable toxicity against the European corn borer Ostrinia nubilalis, the chimeric protein Vip3AcAa, consisting of the N-terminal region of Vip3Ac1 and the C-terminal region of Vip3Aa1, became insecticidal to the European corn borer. In addition, the chimeric Vip3AcAa had increased toxicity to the fall armyworm. Furthermore, both Vip3Ac1 and Vip3AcAa are highly insecticidal to a strain of cabbage looper (Trichoplusia ni) that is highly resistant to the B. thuringiensis endotoxin Cry1Ac, thus experimentally showing for the first time the lack of cross-resistance between B. thuringiensis Cry1A proteins and Vip3A toxins. The results in this study demonstrated that vip3Ac1 and its chimeric vip3 genes can be excellent candidates for engineering a new generation of transgenic plants for insect pest control.  相似文献   

9.
Bacillus thuringiensis is an important source of insect resistance traits in commercial crops. In an effort to prolong B. thuringiensis trait durability, insect resistance management programs often include combinations of insecticidal proteins that are not cross resistant or have demonstrable differences in their site of action as a means to mitigate the development of resistant insect populations. In this report, we describe the activity spectrum of a novel B. thuringiensis Cry protein, Cry1Bh1, against several lepidopteran pests, including laboratory-selected B. thuringiensis-resistant strains of Ostrinia nubilalis and Heliothis virescens and progeny of field-evolved B. thuringiensis-resistant strains of Plutella xylostella and Spodoptera frugiperda. Cry1Bh1 is active against susceptible and B. thuringiensis-resistant colonies of O. nubilalis, P. xylostella, and H. virescens in laboratory diet-based assays, implying a lack of cross-resistance in these insects. However, Cry1Bh1 is not active against susceptible or Cry1F-resistant S. frugiperda. Further, Cry1Bh1 does not compete with Cry1Fa or Cry1Ab for O. nubilalis midgut brush border membrane binding sites. Cry1Bh1-expressing corn, while not completely resistant to insect damage, provided significantly better leaf protection against Cry1Fa-resistant O. nubilalis than did Cry1Fa-expressing hybrid corn. The lack of cross-resistance with Cry1Ab and Cry1Fa along with independent membrane binding sites in O. nubilalis makes Cry1Bh1 a candidate to further optimize for in-plant resistance to this pest.  相似文献   

10.
The sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae), is a dominant maize borer pest and a major target of Bacillus thuringiensis (Bt)‐maize in Louisiana and the Gulf Coast area of Texas (USA). Growth and development of D. saccharalis on non‐toxic diet, diet treated with three low concentrations (0.01, 0.05, and 0.1 μg g?1) of Cry1Ab toxin, and on non‐Bt maize plants were compared for five insect genotypes: a Bt‐susceptible strain (BT‐SS), a Cry1Ab‐resistant strain (BT‐RR), a back‐crossed and re‐selected resistant strain (BT‐R’R’), and two F1 progeny of the BT‐SS and BT‐R’R’ strains. Fitness of the five genotypes was examined by infesting neonates on diet with/without Cry1Ab toxin in the laboratory and on intact non‐Bt maize plants in the greenhouse. Biological parameters measured were neonate‐to‐pupa development time and pupation rate, larval survival, larval and pupal weight, and sex ratio. Larvae of BT‐SS and BT‐R’R’ on non‐toxic diet and non‐Bt maize plants grew normally and there were no significant differences between the two strains in all measured parameters, suggesting a lack‐of‐fitness cost of the Cry1Ab resistance in D. saccharalis. Except for the development time on non‐Bt diet, all other parameters on both non‐Bt diet and non‐Bt maize plants were similar among the five genotypes. Larval development of BT‐SS was significantly affected on diet treated with Cry1Ab toxin at 0.05 and 0.1 μg g?1, whereas the effect to BT‐RR and BT‐R’R’ was not significant. Pupal weight and sex ratio reared on Cry1Ab‐diet were similar and there were no significant differences among the five genotypes. Neonate‐to‐pupation rate decreased as Cry1Ab concentrations increased but the decrease was more significant for BT‐SS than for the other four genotypes. The lack‐of‐fitness costs of Bt resistance in D. saccharalis imply a greater challenge in managing Bt resistance for this maize borer species.  相似文献   

11.
To counter the threat of insect resistance, Bacillus thuringiensis (Bt) maize growers in the U.S. are required to plant structured non-Bt maize refuges. Concerns with refuge compliance led to the introduction of seed mixtures, also called RIB (refuge-in-the-bag), as an alternative approach for implementing refuge for Bt maize products in the U.S. Maize Belt. A major concern in RIB is cross-pollination of maize hybrids that can cause Bt proteins to be present in refuge maize kernels and negatively affect refuge insects. Here we show that a mixed planting of 5% nonBt and 95% Bt maize containing the SmartStax traits expressing Cry1A.105, Cry2Ab2 and Cry1F did not provide an effective refuge for an important above-ground ear-feeding pest, the corn earworm, Helicoverpa zea (Boddie). Cross-pollination in RIB caused a majority (>90%) of refuge kernels to express ≥ one Bt protein. The contamination of Bt proteins in the refuge ears reduced neonate-to-adult survivorship of H. zea to only 4.6%, a reduction of 88.1% relative to larvae feeding on ears of pure non-Bt maize plantings. In addition, the limited survivors on refuge ears had lower pupal mass and took longer to develop to adults.  相似文献   

12.
Laboratory-selected Bacillus thuringiensis-resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea, a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance selection and monitoring. The resistance ratio (RR) for AR exceeded 100-fold after 11 generations and has been maintained at this level for nine generations. This is the first report of stable Cry1Ac resistance in H. zea. MR crashed after 11 generations, reaching only an RR of 12. AR was only partially cross-resistant to MVP II, suggesting that MVP II does not have the same Cry1Ac selection pressure as Cry1Ac toxin against H. zea and that proteases may be involved with resistance. AR was highly cross-resistant to Cry1Ab toxin but only slightly cross-resistant to Cry1Ab expressing corn leaf powder. AR was not cross-resistant to Cry2Aa2, Cry2Ab2-expressing corn leaf powder, Vip3A, and cypermethrin. Toxin-binding assays showed no significant differences, indicating that resistance was not linked to a reduction in binding. These results aid in understanding why this pest has not evolved B. thuringiensis resistance, and highlight the need to choose carefully the form of B. thuringiensis protein used in experiments.  相似文献   

13.
The sugarcane borer, Diatraea saccharalis (F.), is a major maize borer pest and a target of transgenic maize expressing Bacillus thuringiensis (Bt) proteins in South America and the mid‐southern region of the United States. Evolution of resistance in target pest populations is a great threat to the long‐term efficacy of Bt crops. In this study, we compared the genetic basis of resistance to Cry1Ab protein in 3 resistant colonies of sugarcane borer established from field populations in Louisiana, USA. Responses of larvae to the Cry1Ab protein for the parental and 10 other cross colonies were assayed in a diet‐incorporated bioassay. All 3 resistant colonies were highly resistant to the Cry1Ab protein with a resistance ratio of >555.6 fold. No maternal effect or sex linkage was evident for the resistance in the 3 colonies; and the resistance was functionally nonrecessive at the Cry1Ab concentrations of ≤ 3.16 μg/g, but it became recessive at ≥10 μg/g. In an interstrain complementation test for allelism, the F1 progeny from crosses between any 2 of the 3 resistant colonies exhibited the similar resistance levels as their parental colonies, indicating that the 3 colonies most likely shared a locus of Cry1Ab resistance. Results generated from this study should provide useful information in developing effective strategies for managing Bt resistance in the insect.  相似文献   

14.
The spotted stem borer, Chilo partellus (Swinhoe, 1885) (Lepidoptera: Crambidae), an invasive pest of wild and cultivated grasses in Asia and Africa, was found for the first time during periodic surveys of maize fields in the East Mediterranean region of Turkey in September and October 2014. The pest was recorded in maize fields of three of four provinces surveyed (Adana, Hatay and Osmaniye; it was not detected in Icel province). The Mediterranean corn stalk borer, Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae), is the dominant maize pest in the East Mediterranean region of Turkey, followed by the European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae). The new invasive species comprised 4.9% of the total number of collected lepidopteran pests collected from maize stems and cobs in locations infested by C. partellus. No natural enemies of the new pest were recorded during our surveys. We discuss possible interactions among these three lepidopteran pests sharing the same habitat, prospects for control of C. partellus by the control methods currently used against S. nonagrioides and O. nubilalis, and also speculate on the path of invasion taken by C. partellus into Turkey.  相似文献   

15.
Maize stem borer (Chilo partellus) is a major insect pest of maize and sorghum in Asia and Africa. Bacillus thuringiensis (Bt) δ-endotoxins have been found effective against C. partellus, both in diet-overlay assay and in transgenic plants. Gene stacking as one of the resistance management strategies in Bt maize requires an understanding of receptor sharing and binding affinity of δ-endotoxins. In the present study, binding affinity of three fluorescein isothiocyanate labeled Cry1A toxins showed high correlation with the toxicity of respective δ-endotoxins. Competitive binding studies showed that Cry1Ab toxins share some of the binding sites with Cry1Aa and Cry1Ac with low affinity and that Cry1Ab may have additional binding sites that are unavailable to the other two toxins tested.  相似文献   

16.
Busseola fusca (Fuller), Sesamia calamistis Hampson, Chilo partellus (Swinhoe) and Chilo orichalcociliellus (Strand) are important stem borer pests of maize and sorghum in East Africa. Persistence of these pests in crop fields is blamed on the influx of diaspore populations from the neighbouring natural habitats. In addition to pest species, natural habitats support numerous non-economic stem borer species, some not known to science. However, due to growing human populations and accompanying global change, some of the natural habitats are undergoing rapid changes, a process that may result in the evolution of “new” pest species. In this study, we investigated stem borer species diversity in four different vegetation mosaics in Kenya, with an aim of establishing the differences in species composition and distributions in both wild and cultivated habitats. We identified 33 stem borer species belonging to 14 different genera in the four families; Noctuidae, Crambidae, Pyralidae and Tortricidae from 37 plant species. In addition to the above stem borer pest species, we found three more species, Busseola segeta Bowden, Pirateolea piscator Fletcher and Eldana saccharina Walker, in the cultivated fields. Together, stem borer pests varied in distribution among vegetation mosaics, suggesting differences in ecological requirement. Despite the variations in distribution patterns, stem borer pests co-existed with non-economic species in the natural habitats, communities that are facing threats due to ongoing habitat changes. This paper discusses the likely impacts of habitat changes on both pest and non-economic species.  相似文献   

17.
《Journal of Asia》1999,2(1):61-67
A large number of Bacillus thuringiensis (Bt) isolates separated from different ecological regions of Pakistan were characterized for crystal protein gene composition and pesticidal activity against two lepidopteran rice insect pests, the yellow stem borer (Scirpophaga incertulas) and the rice leaf folders (Cnaphalocrocis medinalis). A representative seventeen isolates were selected on the basis of initial screening and further characterization of pesticidal activity was performed according to following criteria; colony and parasporal inclusion morphology, SDS-PAGE, western blot analysis and comparative biotoxicity assays to determine LC50 values. All isolates produced parasporal inclusion bodies and spores in their cells. Immunoblotting results showed that Pakistanian isolates synthesized entomocidal proteins belonging to Cry1A and Cry2A toxin groups. The biological activity of local isolates demonstarted a wide range of LC50 values against both target insects pests. The most potent isolates, INS 1.13, INS 2.25 and NW 4.1 against S. incertulas showed LC50 values of 29.83, 30.37 and 24.77 ng/ml of toxin, respectively. The LC50 values of 57.37 and 73.09 ng/ml of toxin were exhibited by local isolates, INS 2.25 and RL 4.8 against C. medinalis, respectively.  相似文献   

18.
Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) provide an effective management tool for many key insect pests. However, pest species have repeatedly demonstrated their ability to adapt to management practices. Results from laboratory selection experiments illustrate the capacity of pest species to evolve Bt resistance. Furthermore, resistance has been documented to Bt sprays in the field and greenhouse, and more recently, by some pests to Bt crops in the field. In 2009, fields were discovered in Iowa (USA) with populations of western corn rootworm, Diabrotica virgifera virgifera LeConte, that had evolved resistance to maize that produces the Bt toxin Cry3Bb1. Fields with resistant insects in 2009 had been planted to Cry3Bb1 maize for at least three consecutive years and as many as 6years. Computer simulation models predicted that the western corn rootworm might evolve resistance to Bt maize in as few as 3years. Laboratory and field data for interactions between western corn rootworm and Bt maize indicate that currently commercialized products are not high-dose events, which increases the risk of resistance evolution because non-recessive resistance traits may enhance survival on Bt maize. Furthermore, genetic analysis of laboratory strains of western corn rootworm has found non-recessive inheritance of resistance. Field studies conducted in two fields identified as harboring Cry3Bb1-resistant western corn rootworm found that survival of western corn rootworm did not differ between Cry3Bb1 maize and non-Bt maize and that root injury to Cry3Bb1 maize was higher than injury to other types of Bt maize or to maize roots protected with a soil insecticide. These first cases of field-evolved resistance to Bt maize by western corn rootworm provide an early warning and point to the need to apply better integrated pest management practices when using Bt maize to manage western corn rootworm.  相似文献   

19.
Transgenic crops producing Bacillus thuringiensis (Bt) toxins for insect control have been successful, but their efficacy is reduced when pests evolve resistance. To delay pest resistance to Bt crops, the U.S. Environmental Protection Agency (EPA) has required refuges of host plants that do not produce Bt toxins to promote survival of susceptible pests. Such refuges are expected to be most effective if the Bt plants deliver a dose of toxin high enough to kill nearly all hybrid progeny produced by matings between resistant and susceptible pests. In 2003, the EPA first registered corn, Zea mays L., producing a Bt toxin (Cry3Bb1) that kills western corn rootworm, Diabrotica virgifera virgifera LeConte, one of the most economically important crop pests in the United States. The EPA requires minimum refuges of 20% for Cry3Bb1 corn and 5% for corn producing two Bt toxins active against corn rootworms. We conclude that the current refuge requirements are not adequate, because Bt corn hybrids active against corn rootworms do not meet the high-dose standard, and western corn rootworm has rapidly evolved resistance to Cry3Bb1 corn in the laboratory, greenhouse, and field. Accordingly, we recommend increasing the minimum refuge for Bt corn targeting corn rootworms to 50% for plants producing one toxin active against these pests and to 20% for plants producing two toxins active against these pests. Increasing the minimum refuge percentage can help to delay pest resistance, encourage integrated pest management, and promote more sustainable crop protection.  相似文献   

20.
European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), has historically been a significant economically important insect pest of corn (Zea mays L.) in the United States and Canada. The development in the 1990s of genetically modified corn expressing genes derived from Bacillus thuringiensis (Bt) that encodes insecticidal crystalline (Cry) proteins has proven to be effective in controlling this insect as well as other corn pests. The purpose of this study was to assess the movement and dispersal behavior of neonate European corn borer on Bt corn. We examined differences in neonate European corn borer dispersal behavior for the first 4 h after eclosion in the field among a stacked pyramid (Cry1F X Cry1Ab X Cry34/35Ab1) Bt corn, a Cry1F Bt corn, and a non-Bt sweet corn; and in the laboratory among a Bt corn hybrid containing Cry1F, a hybrid containing Cry1Ab, a pyramid combining these two hybrids (Cry1F X Cry1Ab), and a non-Bt near isoline corn. In field experiments, we found that dispersal was significantly higher on Bt corn compared with sweet corn. In laboratory experiments, dispersal was significantly higher on Cry1Ab Bt corn and Cry1F X Cry1Ab Bt corn than on non-Bt near isoline corn. Results indicated that neonate dispersal may be significantly greater in Bt cornfields compared with non-Bt cornfields. The findings on dispersal behavior in this study will be useful in evaluating the efficacy of a blended seed refuge system for managing European corn borer resistance in Bt corn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号