首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
《Biophysical journal》2022,121(22):4271-4279
To design drug-delivery agents for therapeutic and diagnostic applications, understanding the mechanisms by which covalently functionalized carbon nanotubes penetrate and interact with cell membranes is of great importance. Here, we report all-atom molecular dynamics results from polystyrene and carboxyl-terminated polystyrene-modified carbon nanotubes and show their translocation behavior across a model lipid bilayer together with their potential to deliver a molecule of the drug ibuprofen into the cell. Our results indicate that functionalized carbon nanotubes are internalized by the membrane in hundreds of nanoseconds and that drug loading increases the internalization speed further. Both loaded and unloaded tubes cross the closest leaflet of the bilayer by nonendocytic pathways, and for the times studied, the drug molecule remains trapped inside the pristine tube while remaining attached at the end of polystyrene-modified tube. On the other hand, carboxyl-terminated polystyrene functionalization allows the drug to be completely released into the lower leaflet of the bilayer without imposing damage to the membrane. This study shows that polystyrene functionalization is a promising alternative and facilitates drug delivery as a benchmark case.  相似文献   

2.

Background

Carbon nanotubes (CNTs) have found wide success in circuitry, photovoltaics, and other applications. In contrast, several hurdles exist in using CNTs towards applications in drug delivery. Raw, non-modified CNTs are widely known for their toxicity. As such, many have attempted to reduce CNT toxicity for intravenous drug delivery purposes by post-process surface modification. Alternatively, a novel sphere-like carbon nanocapsule (CNC) developed by the arc-discharge method holds similar electric and thermal conductivities, as well as high strength. This study investigated the systemic toxicity and biocompatibility of different non-surface modified carbon nanomaterials in mice, including multi-walled carbon nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs), carbon nanocapsules (CNCs), and C60 fullerene (C60). The retention of the nanomaterials and systemic effects after intravenous injections were studied.

Methodology and Principal Findings

MWCNTs, SWCNTs, CNCs, and C60 were injected intravenously into FVB mice and then sacrificed for tissue section examination. Inflammatory cytokine levels were evaluated with ELISA. Mice receiving injection of MWCNTs or SWCNTs at 50 µg/g b.w. died while C60 injected group survived at a 50% rate. Surprisingly, mortality rate of mice injected with CNCs was only at 10%. Tissue sections revealed that most carbon nanomaterials retained in the lung. Furthermore, serum and lung-tissue cytokine levels did not reveal any inflammatory response compared to those in mice receiving normal saline injection.

Conclusion

Carbon nanocapsules are more biocompatible than other carbon nanomaterials and are more suitable for intravenous drug delivery. These results indicate potential biomedical use of non-surface modified carbon allotrope. Additionally, functionalization of the carbon nanocapsules could further enhance dispersion and biocompatibility for intravenous injection.  相似文献   

3.
Carbon nanotubes have many unique properties such as high surface area, hollow cavities, and excellent mechanical and electrical properties. Interfacing carbon nanotubes with biological systems could lead to significant applications in various disease diagnoses. Significant progress in interfacing carbon nanotubes with biological materials has been made in key areas such as aqueous solubility, chemical and biological functionalization for biocompatibility and specificity, and electronic sensing of proteins. In addition, the bioconjugated nanotubes combined with the sensitive nanotube-based electronic devices would enable sensitive biosensors toward medical diagnostics. Furthermore, recent findings of improved cell membrane permeability for carbon nanotubes would also expand medical applications to therapeutics using carbon nanotubes as carriers in gene delivery systems. This article reviews the current trends in biological functionalization of carbon nanotubes and their potential applications for breast cancer diagnostics. The article also reports the applications of confocal microscopy for use in understanding the interactions of biological materials such as antibodies on carbon nanotubes that are specific to surface receptors in breast cancer cells. Furthermore, a nanotube-field-effect transistor is demonstrated for electronic sensing of antibodies that are specific to surface receptors in cancer cells.  相似文献   

4.
5.
近年来,微针作为一种新兴的经皮给药技术,具有微创、无痛、使用方便和高效的特点,逐渐成为一种极具研究价值和应用潜力的给药策略。微针技术在过去20年中得到迅速发展并呈现出多样化的趋势,已可根据不同需求来定制微针的形状、组成、机械性能和其他特殊功能等。由于微针能以微创方式穿越各种生物屏障,因此许多研究人员探索了微针在除皮肤外各类组织和器官中的药物递送应用。本文综述了微针技术及其近年来在眼睛、血管、心脏等组织和器官的药物递送中的应用研究,以期推动微针技术的应用发展。  相似文献   

6.
7.
Functionalized carbon nanotubes (f-CNT) are emerging as a new family of nanovectors for the delivery of different types of therapeutic molecules. The application of CNT in the field of carrier-mediated delivery has become possible after the recent discovery of their capacity to penetrate into the cells. CNT can be loaded with active molecules by forming stable covalent bonds or supramolecular assemblies based on noncovalent interactions. Once the cargos are carried into various cells, tissues and organs they are able to express their biological function. In this review, we will describe the potential of f-CNT to deliver different types of therapeutic molecules.  相似文献   

8.
Functionalized carbon nanotubes (f-CNT) are emerging as a new family of nanovectors for the delivery of different types of therapeutic molecules. The application of CNT in the field of carrier-mediated delivery has become possible after the recent discovery of their capacity to penetrate into the cells. CNT can be loaded with active molecules by forming stable covalent bonds or supramolecular assemblies based on noncovalent interactions. Once the cargos are carried into various cells, tissues and organs they are able to express their biological function. In this review, we will describe the potential of f-CNT to deliver different types of therapeutic molecules.  相似文献   

9.
Abstract

In this study, the adsorption of Hydroxyurea (HU) onto the inner and outer surfaces of boron nitride and carbon nanotubes (CNTs) was investigated using the density functional theory calculations and molecular dynamics (MDs) simulations in aqueous solution. The values of the adsorption energy show that HU molecule is preferentially adsorbed inside of boron nitride and CNTs with the molecular axis parallel to the tubes axis, which means that the cavity of nanotubes is favorable for encapsulation of this drug. Also, it was found that the HU/boron nitride nanotube (BNNT) system is more stable than the HU/CNT system. The stability of the complexes of HU/ BNNT attributed to the formation of the intermolecular hydrogen bonds between the H atoms of HU molecule and the N atoms of BNNT, which is confirmed by Bader’s quantum theory of atoms in molecules. The natural bond orbital analysis shows the charge transfers occur from HU molecule to nanotubes in all complexes. Moreover, the adsorption of HU molecule on the surfaces of the nanotubes was investigated by explicit water models. Also, the adsorption behavior of HU on the functionalized boron nitride and CNTs is investigated to design and develop new nanocarriers for biomedical applications. Furthermore, MDs simulations are examined in the presence of one and two drug molecules. The obtained results illustrate that the lowest value of Lennard–Jones (L–J) energy between drug and nanotubes exist in the simulation system with two drug molecules.  相似文献   

10.
随着人们对RNA干扰分子机理的研究愈加深入,siRNA作为一种新的基因治疗药物极有可能为人类攻克癌症等难以治愈的疾病带来希望。然而,目前在RNA干扰应用中遇到的最大挑战就是如何有效地将siRNA导入靶细胞且不致引起严重的细胞毒性。碳纳米管在药物传递和基因传递等生物医学领域的潜在应用受到广泛关注;但要实现碳纳米管在基因治疗领域的应用,碳纳米管的功能化是关键,也是近几年来研究的重点。综述近年来碳纳米管作为siRNA转运载体在基因治疗领域的研究进展。  相似文献   

11.
12.
Liu M  Chen B  Xue Y  Huang J  Zhang L  Huang S  Li Q  Zhang Z 《Bioconjugate chemistry》2011,22(11):2237-2243
Functionalized multiwalled carbon nanotubes (f-MWNTs) are of great interest and designed as a novel gene delivery system. In this paper, we presented synthesis of polyamidoamine-functionalized multiwalled carbon nanotubes (PAA-g-MWNTs) and their application as a novel gene delivery system. The PAA-g-MWNTs, obtained from amide formation between PAA and chemically oxidized MWNTs, were stable in aqueous solution and much less toxic to cells than PAA and PEI 25KDa. More importantly, PAA-g-MWNTs showed comparable or even higher transfection efficiency than PAA and PEI at optimal w/w ratio. Intracellular trafficking of Cy3-labeled pGL-3 indicated that a large number of Cy3-labeled pGL-3 were attached to nucleus membrane, the majority of which was localized in nucleus after incubation with cells for 24 h. We have demonstrated that PAA modification of MWNTs facilitate higher DNA uptake and gene expression in vitro. All these facts suggest potential application of PAA-g-MWNTs as a novel gene vector with high transfection efficiency and low cytotoxicity.  相似文献   

13.
Polymers in drug delivery   总被引:2,自引:0,他引:2  
Advances in polymer science have led to the development of several novel drug-delivery systems. A proper consideration of surface and bulk properties can aid in the designing of polymers for various drug-delivery applications. Biodegradable polymers find widespread use in drug delivery as they can be degraded to non-toxic monomers inside the body. Novel supramolecular structures based on polyethylene oxide copolymers and dendrimers are being intensively researched for delivery of genes and macromolecules. Hydrogels that can respond to a variety of physical, chemical and biological stimuli hold enormous potential for design of closed-loop drug-delivery systems. Design and synthesis of novel combinations of polymers will expand the scope of new drug-delivery systems in the future.  相似文献   

14.
G. Krueger 《CMAJ》1997,156(8):1110
  相似文献   

15.
16.
Transdermal drug delivery   总被引:2,自引:0,他引:2  
Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, noncavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin's barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase its impact on medicine.  相似文献   

17.
For years, the field of drug delivery has focused on (1) controlling the release of a therapeutic and (2) targeting the therapeutic to a specific cell type. These research endeavors have concentrated mainly on the development of new degradable polymers and molecule-labeled drug delivery vehicles. Recent interest in biomaterials that respond to their environment have opened new methods to trigger the release of drugs and localize the therapeutic within a particular site. These novel biomaterials, usually termed "smart" or "intelligent", are able to deliver a therapeutic agent based on either environmental cues or a remote stimulus. Stimuli-responsive materials could potentially elicit a therapeutically effective dose without adverse side effects. Polymers responding to different stimuli, such as pH, light, temperature, ultrasound, magnetism, or biomolecules have been investigated as potential drug delivery vehicles. This review describes the most recent advances in "smart" drug delivery systems that respond to one or multiple stimuli.  相似文献   

18.
This review highlights the properties of nanoparticles used in targeted drug delivery, including delivery to cells as well as organelle targets, some of the known pharmacokinetic properties of nanoparticles, and their typical modifications to allow for therapeutic delivery. Nanoparticles exploit biological pathways to achieve payload delivery to cellular and intracellular targets, including transport past the blood-brain barrier. As illustrative examples of their utility, the evaluation of targeted nanoparticles in the treatment of cancers and diseases of the central nervous system, such as glioblastoma multiforme, neurovascular disorders, and neurodegenerative diseases, is discussed.  相似文献   

19.
Mitochondria are considered one of the most important subcellular organelles for targeting and delivering drugs because mitochondria are the main location for various cellular functions and energy (i.e., ATP) production, and mitochondrial dysfunctions and malfunctions cause diverse diseases such as neurodegenerative disorders, cardiovascular disorders, metabolic disorders, and cancers. In particular, unique mitochondrial characteristics (e.g., negatively polarized membrane potential, alkaline pH, high reactive oxygen species level, high glutathione level, high temperature, and paradoxical mitochondrial dynamics) in pathological cancers have been used as targets, signals, triggers, or driving forces for specific sensing/diagnosing/imaging of characteristic changes in mitochondria, targeted drug delivery on mitochondria, targeted drug delivery/accumulation into mitochondria, or stimuli-triggered drug release in mitochondria. In this review, we describe the distinctive structures, functions, and physiological properties of cancer mitochondria and discuss recent technologies of mitochondria-specific “key characteristic” sensing systems, mitochondria-targeted “drug delivery” systems, and mitochondrial stimuli-specific “drug release” systems as well as their strengths and weaknesses.  相似文献   

20.
Enzymes immobilized on carbon nanotubes   总被引:1,自引:0,他引:1  
Enzyme immobilizations on carbon nanotubes for fabrication of biosensors and biofuel cells and for preparation of biocatalysts are rapidly emerging as new research areas. Various immobilization methods have been developed, and in particular, specific attachment of enzymes on carbon nanotubes has been an important focus of attention. The method of immobilization has an effect on the preservation of the enzyme structure and retention of the native biological function of the enzyme. In this review, we focus on recent advances in methodology for enzyme immobilization on carbon nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号