共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Sierra C. Noël L. Dufour H. Ozier-Lafontaine C. Welcker L. Desfontaines 《Plant and Soil》2003,252(2):215-226
Soil constraints linked to low pH reduce grain yield in about 10% of the maize growing area in tropical developing countries. The aim of this research was to elucidate the reasons for this maize yield reduction on an oxisol of Guadeloupe. The field experiment had two treatments: the native non-limed soil (NLI, pH 4.5, 2.1 cmol Al kg–1, corresponding to 20% Al saturation), and the same soil limed 6 years prior to the experiment (LI, pH 5.3, 0 cmol Al kg–1). The soils were fertilized with P and N. The above-ground biomass, root biomass at flowering, grain yield and yield components, leaf area index (LAI), light interception, radiation-use-efficiency (RUE), P and N uptake, soil water storage, and soil mineral N were measured during the maize cycle. The allometric relationships between shoot N concentration, LAI and above-ground biomass in LI were similar to those reported for maize cropped in temperate regions, indicating that these relationships are also useful to describe maize growth on tropical soils without Al toxicity. In NLI, soil acidity severely affected leaf appearance, leaf size and consequently the LAI, which was reduced by 60% at flowering, although the RUE was not affected. Therefore, the reduction in the above-ground biomass (30% at flowering) and grain yield (47%) were due to the lower LAI and light interception. At flowering, the root/shoot ratio was 0.25 in NLI and 0.17 in LI, and the root biomass in NLI was reduced by 64% compared to LI. Nitrogen uptake was also reduced in NLI in spite of high soil N availability. Nevertheless, shoot N concentration vs aboveground biomass showed a typical decline in both treatments. In NLI, the shoot P concentration vs above-ground biomass relationship showed an increase in the early stages, indicating that P uptake and root-shoot competition for the absorbed P in the early plant stages controlled the establishment and the development of the leaf area. 相似文献
2.
Root distribution and morphology of maize seedlings as affected by tillage and fertilizer placement 总被引:5,自引:0,他引:5
Suboptimal soil conditions are known to result in poor early growth of maize (Zea mays L.) in no-tillage (NT) systems in contrast with conventional tillage (CT) systems. However, most studies have generally focused on maize roots at later growth stages and/or do not give details on root morphology. In a 2-year field study at two locations (silt loam and loam soils) in the Swiss midlands, we investigated the impacts of tillage intensity, NT vs. CT, and NP-fertilizer sidebanding on the morphology, vertical and horizontal distribution, and nutrient uptake of maize roots at the V6 growth stage. The length density (RLD) and the length per diameter-class distribution (LDD) of the roots were determined from soil cores taken to a depth of 0.5 m and at distances of 0.05 and 0.15 m from both sides of the maize row. The temperature of the topsoil was lower, and the bulk density and penetration resistance were greater in the topsoil of NT compared with CT. The growth and the development of the shoot were slower in NT. RLD was greater and the mean root diameter smaller in CT than in NT, while the vertical and horizontal distribution of roots did not differ between CT and NT. RLD increased in the zone enriched by the sidebanded fertilizer, independent of the tillage system, but LDD did not change. The poorer growth of the roots and shoots of maize seedlings was presumably caused by the lower topsoil temperature in NT rather than by mechanical impedance. The placement of a starter fertilizer at planting under NT is emphasized. 相似文献
3.
Effect of liming on mineralization of soil nitrogen as measured by plant uptake and nitrogen released during incubation 总被引:1,自引:0,他引:1
I. Lyngstad 《Plant and Soil》1992,144(2):247-253
The effect of lime rates on oat yield and N uptake was measured in a 6-years pot experiment, using 12 acid surface soils (pH 4.7 to 6.0). Mineralization of nitrogen was measured by incubation of soil samples taken after harvest each year from the different lime treatments.Nitrogen uptake was significantly correlated with total N in the soils. Averaged over all 12 soils liming only to pH 7 or above, increased the oat yield significantly. Liming increased the N concentration of grain and the N uptake significantly during a 4-years period, indicating the effect of lime on N mineralization.The mineralization of organic N measured by incubation in the non-limed samples was highly correlated with the total N concentration, but it was not significantly related to the original pH of the soils. The amounts of N released as well as the duration of the lime effect on mineralization varied among soils. When pH was raised to 7 or above, considerable increases in N mineralization occurred in some soils. Based on average values, liming increased N mineralization significantly during a 3-years period. After 3 years, the lime treatments differed only slightly from the non-limed treatments. 相似文献
4.
为提高宁南旱区坡耕地土壤保水能力、减少水土流失,于2007-2010年在10°~15°坡耕地上,以传统无条带种植模式为对照,研究条带隔年休闲轮种模式对农田土壤水分动态、水土流失特征和水分利用效率的影响.结果表明:经过4年休闲轮种,条带处理比传统无条带种植处理显著增加0 ~200 cm土层土壤含水量4.9%~7.0%;条带轮种比无条带模式有效保蓄雨季休闲期降水,明显改善了作物生育前期的土壤水分状况,条带处理0~200 cm土层土壤含水量比对照显著增加5.4%~8.5%.与对照相比,条带休闲轮种处理地表径流减少0.7 ~3.2 m3·hm-2,泥沙量减少0.2~1.9 t·hm-2,土壤全N损失量减少42.1% ~73.3%,作物水分利用效率提高6.1% ~24.9%,降水利用效率提高6.3% ~15.3%. 相似文献
5.
在华北平原黑龙港流域对冬小麦实行3种灌溉模式,研究了不同灌溉模式对冬小麦-夏玉米产量、耗水特性和水分利用效率的影响.结果表明:浇底墒水+拔节水处理(W2,75 mm+90 mm)和浇底墒水+拔节水+灌浆水处理(W3,75 mm+90 mm+60 mm)周年总产量均显著高于只浇底墒水处理(W1,75 mm),增幅分别为8.7%和12.5%.冬小麦全生育期对土壤水的消耗随灌溉量的增加而减少,夏玉米季总耗水量随冬小麦季灌溉量的增加而增加.W2处理冬小麦水分利用效率(WUE)比W3处理高11.1%,而其夏玉米水分利用效率(WUE)与W3处理差异不显著.W2和W1处理的周年水分利用效率(WUET)分别为21.28和21.60 kg.mm-1.hm-2,比W3处理分别高7.8%和9.4%.综合周年产量、耗水量和水分利用效率,W2是较好的节水丰产灌溉模式. 相似文献
6.
长期施肥对水稻光合特性及水分利用效率的影响 总被引:5,自引:0,他引:5
《生态学杂志》2009,28(11)
在实施了27年的长期田间定位试验区,研究了长期不同施肥对红壤区水稻光合特性及水分利用效率的影响.结果表明:在不施肥(CK)、无机肥(N、NP、NPK)、有机肥(猪粪+紫云英绿肥,M)和无机肥与有机肥配施(NPKM)处理中,长期施用肥料,特别是有机肥与无机肥配施提高水稻各生育期剑叶叶绿素含量、净光合作用速率、气孔导度、蒸腾速率、水分利用效率和水稻产量,降低水稻剑叶胞间CO_2浓度;水稻剑叶叶绿素含量、净光合作用速率、气孔导度、蒸腾速率随发育阶段演进而减小,孕穗期>齐穗期>乳熟期,而胞间CO_2浓度相反;水分利用效率以齐穗期为最大;水稻发育阶段叶绿素含量、净光合速率和水稻产量之间均呈显著正相关;长期施用肥料,特别是有机肥与无机肥配施更有利于红壤区水稻的生长发育、产量和水分利用效率的提高.Abstract: A field experiment has being conducted for 27 years in Jinxian County, Institute of Red Soil in Jiangxi Province (116°20'24" E, 28°15'30" N) to study the effects of fertilization on the rice photosynthetic traits and water use efficiency. Four treatments were installed,i. e., no fertilization (CK), chemical fertilization (N, NP, NPK), organic fertilization (M), and chemi-cal and organic fertilization (NPKM). Long-term fertilization, especially treatment NPKM, in- creased the flag leaf chlorophyll content, net photosynthetic rate, stomatal conductance, transpi-ration rate, and water use efficiency of rice at its all growth stages and the rice yield, and de-creased the flag leaf intercellular CO_2 concentration. With the growth of rice, the chlorophyll content, net photosynthetic rate, stomatal conductance, and transpiration rate decreased, but the intercellular CO_2 concentration increased. The water use efficiency was the greatest at full-head-ing stage. There were significant positive correlations between the chlorophyll content and net photosynthetic rate at various growth stages and the rice yield, Long-term fertilization, especially the combined chemical and organic fertilization, was favorable to the rice growth and develop-ment, water use efficiency, and yield production in red soil region. 相似文献
7.
Two succulents with similar growth forms but different types of photosynthesis, Cotyledon orbiculata (crassulacean acid metabolism, CAM) and Othonna opima (C3 pathway), were investigated with respect to the modulation of water use efficiency (WUE) during the transition from the rainy season to subsequent drought. Environmental conditions were simulated in a controlled-environment experiment on the basis of data collected in the habitat of the two species in the southern Namib desert. Experiments included one or more periods of hot bergwind, which frequently occurs in this region. When water was readily available, daily net CO2 fixation was similar in the two species. This result confirms that the daily CO2 fixation of CAM plants is as high as that of morphologically similar C3 plants adapted to the same habitat. As expected, both species reduced CO2 fixation and water loss through transpiration during simulated hot bergwind periods and their WUE values increased. However, after the second hot bergwind period, nearly identical WUEs were recorded: 41.0 and 40.0 mmol mol?1 for C. orbiculata and O. opima, respectively. Therefore the statement that a CAM plant is a better ‘water saver’ than a C3 plant does not necessarily hold for CAM and C3 plants with similar growth forms growing under the same environmental conditions. 相似文献
8.
Phosphorus use efficiency and nitrogen balance of cowpea breeding lines in a low P soil of the derived savanna zone in West Africa 总被引:6,自引:0,他引:6
Differences in growth, nodulation and arbuscular mycorrhizal fungi (AMF) root infection among recent cowpea breeding lines
from IITA were examined at low and high P levels in pot (94 lines) and field experiments (43 lines) at Fashola in the derived
savanna zone of Nigeria. Based on their growth performance, these lines were subdivided into 5 groups: (i) poor performance
under low and high P conditions; (ii) good performance under low P and poor performance under high P; (iii) intermediate performance
under high and low P; (iv) good performance under high and low P conditions; and (v) good performance under high P and poor
performance under low P. About 42% of the breeding lines (18 out of 43 lines tested) had the same grouping for the field and
pot experiments. Eight cowpea lines (4 P-responders and 4 non-P-responders) were selected from the first experiment for subsequent
studies on the effect of P supply (0, 20, 40 and 60 kg P ha-1) on P uptake, P use efficiency, dry matter production, N-fixation, AMF infection and N balance. Dry matter production, shoot/root
ratio, total shoot N, and total N-fixed of the non-P-responder line, IT81D-715, were strongly related to P uptake efficiency.
The P-responder IT81D-849 had a significant (95%) correlation between AMF and P-use efficiency. The cowpea lines fixed on
average 22 kg N ha-1, which was 70% of the plant total N. The N balance based on the difference between the amount of N2 fixed and N exported through the harvest, ranged between −10.6 kg N ha-1 and +7.7 kg N ha-1. Based on its adaptability to grow in low P soils and overall positive N balance, the cowpea line IT81D-715 should be recommended
for cultivation when P is the limiting factor.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
9.
Genotypic and environmental (soil water regime and N level) variation in carbon isotope discrimination (CID) in relation to
the gas exchange, transpiration efficiency (A/T), and biomass production were investigated in field experiments using eleven rice (Oryza sativa L.) genotypes. The results showed that genotype was more dominant for variation in CID than in total biomass. Genotypic ranking
in CID was consistent across environments because of small genotype × environment interactions. Japonica genotypes tended
to have lower CID than indica genotypes. Higher soil water and lower N rate significantly increased CID. Variation in CID
was slightly smaller for water regime than for genotype. There was a negative correlation between CID andA/T among genotypes within water regimes. Genotypic variation in CID was associated mainly with variation in stomatal conductance
under all soil water regimes and with photosynthetic capacity in late growth stages under aerobic soil conditions. The decrease
in CID at higher N was probably due to lower stomatal conductance under aerobic soil conditions and to higher photosynthetic
rates under submerged soil conditions. The correlation between biomass and CID was not clear in aerobic soil, whereas it was
positive in submerged soil, which indicated that the significance of lower or higher CID for improving biomass productivity
may differ under different soil water regimes. Overall, the results implied a possible use of CID as a selection criterion
for genotypic improvement inA/T and productivity in rice. 相似文献
10.
González-Prieto S.J. Jocteur-Monrozier L. Hétier J.M. Carballas T. 《Plant and Soil》1997,195(1):151-160
Qualitative and quantitative changes in soil and fertilizer-derived organic N fractions were assessed during a cropping season in an intertropical Alfisol, under maize and pasture, fertilized with15 N-urea. Before the sowing, after fertilizing and after the harvest, the organic N of top soil samples was fractionated by a two-step acid hydrolysis under reflux (H1 = 1 M HCl for 3 h; H2 = 3 M HCl for 3 h). The total hydrolysable N (HN) from H1 decreased significantly during the cropping season in both maize and pasture soils. Contrastingly, the content of HN from H2 and that of non-hydrolysable N did not vary significantly during the cropping season. The easily hydrolysable fractions, especially amino acid N, amino sugar N and amide N, were the most active N pools and the major source of N potentially available for plants. The urea-derived N that remained in the soil was mainly in organic forms at both 7 and 108 d after fertilizing (70–82% and 93–98%, respectively), higher figures being found in pasture than in maize soil. The total amount of urea-derived HN decreased significantly during the crop period in both maize and pasture soils. This decrease was largely due to the decline in HN from H1. The amount of non-hydrolysable urea-derived N was significantly higher in pasture than in maize soil and it decreases in the former and increases in the latter, during the cropping season. During the crop period, the decrease of urea-derived organic N was 4.6 to 9.1 times higher than that of native organic N. Shortly after fertilizing, the proportion of urea-derived N in the easily hydrolysable (H1) organic fractions was higher than that of soil N, whereas the reverse was true for the slowly hydrolysable (H2) or insoluble fractions. These differences were less marked, but still significant, at the end of cropping. The easily hydrolysable organic N fractions were more sensitive than total N to the impact of land use intensification and are, therefore, a more useful index for early detection of soil biological degradation. 相似文献
11.
Understanding the variability of plant WUE and its control mechanism can promote the comprehension to the coupling relationship of water and carbon cycle in terrestrial ecosystem, which is the foundation for developing water-carbon coupling cycle model. In this paper, we made clear the differences of net assimilation rate, transpiration rate, and WUE between the two species by comparing the experiment data of soybean (Glycine max Merr.) and maize (Zea mays L.) plants under water and soil nutrient stresses. WUE of maize was about two and a half times more than that of soybean in the same weather conditions. Enhancement of water stresses led to the marked decrease of Am and Em of two species, but water stresses of some degree could improve WUE, and this effect was more obvious for soybean. WUE of the two species changed with psiL in a second-order curve relation, and the WUE at high fertilization was higher than that at low fertilization, this effect was especially obvious for maize. Moreover, according to the synthetic model of photosynthesis-transpiration based on stomatal behavior (SMPTSB) presented by Yu et al. (2001), the WUE model and its applicability were discussed with the data measured in this experiment. The WUE estimated by means of the model accorded well with the measured values. However, this model underestimated the WUE for maize slightly, thus further improvement on the original model was made in this study. Finally, by discussing some physiological factors controlling Am and WUE, we made clear the physiological explanation for differences of the relative contributions of stomata- and mesophyll processes to control of Am and WUE, and the applicability of WUE model between the two species. Because the requirement to stomatal conductance by unit change of net assimilation rate is different, the responses of opening-closing activity of stomata to environmental stresses are different between the two species. To obtain the same level of net assimilation rate, soybean has to open its stomata more widely to keep small stomatal resistance, as compared with maize. 相似文献
12.
Several transects of topsoil samples were taken immediately after land clearing and one year later from a savannah soil in the semiarid NE of Brazil. Natural spatial variability of key fertility indicators (C, N, P) was large with coefficients of variation >50%. This variability was related to heterogeneity of the soil parent material, and to relative slope position which affected deposition and removal of erodible materials. The distribution of gravel and different particle size fractions was an indicator of the variability as related to soil formation and erosional resorting. One year after the site was cleared and planted to trees, the decrease in C, N and resin-extractable P was in the same range as the initial spatial variability. Treatment effects were therefore difficult to observe but became more obvious when regression analysis on soil textural components was used to reduce data variability. 相似文献
13.
In this study it was determined how different species ofAlnus (A. cordata, A. incana and A. glutinosa) responded tocolonisation by arbuscular mycorrhizal (AM) fungi (Glomusmosseae or Glomus intraradices) with regard togrowth and their ability to acquire and utilise nitrogen and phosphorus.Non-mycorrhizal plants but with phosphorus added, were used as control. InA. glutinosa the application of 75 ppm P hadsimilar effect on growth and P acquisition as did AM. Nevertheless,A.cordata and A. incana grew poorly when suppliedwith 75 ppm of P and required AM symbiosis for optimum growth andNand P uptake. The percentage increases in shoot dry biomass in AM colonised ascompared with P-fertilised plants were 441 (A. cordata)and644 (A. incana) whilst AM-colonised A.glutinosa matched P-fertilised plants. Plant shoot N/P ratioincreased in response to AM-colonisation indicating that mycorrhizal effects onN uptake are greater than on P uptake. Information concerning the directinfluence of AM on N acquisition and nutrient use efficiency byAlnus species is important. AM-colonisation provides anexcellent biological mechanism by which Alnus plantsbecamemore efficient P-users. That Alnus sp. are highlymycorrhizal-dependent plants was apparent because AM-colonisation was criticalfor growth of A. incana and A.cordata. In this respect, for maximizing the efficient uptake anduseof N and P, under the growth conditions provided, Alnusplants need to be mycorrhizal. AM symbiosis seems decisive for the successfulestablishment of Alnus sp. in revegetation strategies. Thelow N and P availability in soils where Alnus species areuseful candidates in any recolonisation and reclamation process emphasises theneed to investigate systems by which N and P uptake byAlnus plants can be enhanced. 相似文献
14.
为了解生物炭及调亏灌溉对大豆的影响,以大豆"开育12号"为试验材料,采用随机区组试验设计,利用盆栽栽培条件,研究不同生物炭添加量B0(0 t·hm-2)、B1(6t·hm-2)、B2(12 t·hm-2)和不同程度调亏灌溉W1(充分灌溉,70%田间持水量)、W2(轻度调亏,55%~60%田间持水量)、W3(重度调亏,45%~50%田间持水量)对大豆生长、产量及水分利用的影响。结果表明:轻度调亏灌溉不会影响大豆叶面积指数及地下部分干物质累积量,而大豆叶面积指数和地下部分干物质累积量随着生物炭使用量的增加而增加;地上部分干物质累积量随着调亏程度的加重而降低,而生物炭施用量为12 t·hm-2时,才会提高地上部分干物质累积量。调亏灌溉和生物炭均能影响大豆的耗水量,其中耗水量随着调亏程度的加剧而减少,而添加6 t·hm-2生物炭耗水量最高,但有利于产量的形成。与充分灌溉不施用生... 相似文献
15.
W. Claussen 《Plant and Soil》2002,247(2):199-209
Tomato plants (Lycopersicon esculentum Mill. cv. Counter) were grown in 12-L polyethylene containers in aerated and CaCO3-buffered nutrient solutions containing different concentrations of complete stock solutions with either nitrate (stock solution N) or ammonium (stock solution A) as the only nitrogen source (X1 = standard concentration with 5 mM NO3–-N or NH4+-N, and X3, X5.5, X8 and X11 = 3, 5.5, 8, 11 times the standard concentration), or a mixture of both stock solutions (N:A ratio = 100:0, 75:25, 50:50, 25:75, 0:100) at moderate nutrient concentration (X3). Total dry matter production and fruit dry weight were only slightly affected by increasing nutrient concentration if nitrate was supplied as the sole nitrogen source. Compared to nitrate, ammonium nitrogen caused a decrease in total dry weight (32–86% between X1 and X11), but led to an increase in both total dry weight and fruit dry weight (11% and 30%) at low concentration if supplied in addition to nitrate nitrogen (N:A ratio = 75:25). Dry matter partitioning in plants was affected by the strength of the nutrient solution, but even more by ammonium nitrogen. Fruits accumulated relatively less dry matter than did the vegetative parts of tomato plants when supplied with nutrient solutions containing ammonium as the only nitrogen source (fruit dry weight to total dry weight ratio 0.37 and 0.15 at low and high nutrient concentration), while nitrate nitrogen rather supported an increase in dry matter accumulation in the reproductive organs (fruit dry weight to total dry weight ratio 0.39–0.46). The water use efficiency (WUE) was only slightly affected by the strength of the nutrient solutions containing nitrate nitrogen (2.9–3.4 g DW (kg H2O)–1), while ammonium nitrogen led to a decrease in WUE from 2.4 to 1.3 g DW (kg H2O)–1at low (X1) and high (X11) nutrient concentration, respectively. The proline content of leaves fluctuated (0.1–5.0 mol (g fresh weight)–1) according to nutrient concentration and global radiation, and reflected enhanced sensitivity of plants to these potential stress factors if ammonium was the predominant N source supplied. It was concluded, that proline is a reliable indicator of the environmental stress imposed on hydroponically grown tomato plants. 相似文献
16.
Vineyard soils have been contaminated by long-term applications of copper salts as fungicides against mildew, raising the question of the bioavailability (and toxicity) of such accumulated Cu to cultivated plants which can replace vines. The aim of this study was to assess, in an acidic and a calcareous Cu-contaminated soil, how the extractability and bioavailability of soil Cu was affected by pH changes in the rhizosphere of two plant species (oilseed rape and tomato), in response to various forms of nitrogen supply (nitrate only or both nitrate and ammonium). Besides shoot analysis, the experimental approach used in the present work provided an easy access to both roots and rhizosphere soil. Roots of tomato and rape induced a systematic acidification in the calcareous soil while root-induced alkalinization occurred in the acidic soil. Whilst few differences were found between treatments in the calcareous soil, oilseed rape took up more Cu and also alkalinized its rhizosphere more strongly than tomato in the acidic soil. The growth of tomato roots was restricted in the acidic soil, while that of oilseed rape was not, suggesting that tomato was either more sensitive to soil acidity and/or Cu toxicity. A major finding was that, in the acidic soil, Cu bioavailability increased with increasing rhizosphere pH. This was largely due to the enhanced accumulation of Cu in the root compartment of both species with increasing rhizosphere pH. The hypothetical explanation proposed here is that Cu binding to root cell walls played a major role in the accumulation of Cu into the plant. Apoplasmic Cu (Cu bound to cell walls) would indeed be expected to increase with increasing pH as a consequence of the pH-dependency of the charges of cell wall constituents. 相似文献
17.
Prietzel Jörg Weick Corry Korintenberg Julia Seybold Gabriele Thumerer Thomas Treml Bernd 《Plant and Soil》2001,230(2):287-305
The effect of repeated (NH4)2SO4 applications (3 × 700 kg ha–1 in 1988, 1991, and 1994, respectively) on S pools in soil, soil microbial biomass, and ground vegetation was studied at two Norway spruce (Picea abies L. [Karst.]) sites in the Black Forest/Germany. In both eco-systems, most of the total S pool was located in the soil. The soil also was the predominant compartment for retention of applied SO4
2--S. The fractions of organic and inorganic S forms in the initial soil S content, and the retention of experimentally applied S was different for both sites. In the podzol Schluchsee, organic S accounted for 92% of total S. In the cambisol Villingen, the S pool consisted of 33% organic S and 67% inorganic S. The retention of applied S in various compartments of both ecosystems reflected these proportions. Only minor amounts of fertilized S (<1%) was retained in the spruce trees, ground vegetation, and soil microbial biomass. However, between 51% (Villingen) and 72% (Schluchsee) of the applied S was retained in the soil. In the Schluchsee podzol, 75% of retained fertilizer S was accumulated as ester sulfate, whereas SO4
2-adsorption and precipitation of Al hydroxy sulfates were restricted by dissolved organic matter in the soil solution. In the Villingen cambisol, SO4
2- adsorption was the dominant process of S retention, although 20% of the fertilized S again was retained as ester sulfate. The significant relevance of organic S forms in the retention of fertilizer S in both soils emphasizes the need for models which include the formation and re-mineralization of organic S compounds, especially of ester sulfates, for correctly simulating and predicting the retention and remobilization of S in acid forest soils subject to changing atmospheric N and S deposition. 相似文献
18.
Forage barley dry matter yield and quality, as well as soil pH, Al, and Mn were monitored in response to P, K, and lime application
on a newly cleared Typic Cryorthod (Orthid Podzol). The overall yearly yield level was affected by precipitation. Without
liming soil acidification occurred after three years of production. The liming rate of 2.2 Mg.ha−1 was found optimal for maintaining initial pH levels (5.66) and increasing forage barley yields. It was also found optimum
for K and P utilization for these first years of production. Soil pH dropped an average of 0.33 units over the three years
on unlimed P plots and 0.46 units over 4 years on K plots. Phosphorus and K fertilization increased N utilization and resulted
in decreased soil acidification.
Phosphorus availability was greater in the first year of cropping than in subsequent years, this was likely due to the effects
of higher available moisture, liming release of native P, and effects of initial fertilization. There was a 148% increase
in total dry matter yield and an 85% increase in protein yield of forage barley with P application. Liming increased total
forage barley yields an average of 69% and total protein yields 48%. Reduced barley yields in unlimed plots were due to low
soil pH. After two years of cultivation, unlimed plots contained exchangeable Al and soluble Mn levels reported toxic for
other soils. The higher liming rates of 4.4 and 6.6 Mg.ha−1 reduced soluble Mn to near critically low levels. soil Al and Mn were highly correlated to pH. Soil exchangeable Al, Mn,
and soluble Mn along with tissue Al were inversely correlated to percentage yield.
The average yield respone to three levels of applied K, increased from zero initially to 67% by the fourth year. Total dry-matter
production increased 32% and total protein yield increased an average of 32% and total protein yield increased an average
of 15% with K fertilization over four years. About 60% of the yield response occurred between the 0 and 22kg K.ha−1 rates. Initial soil exchangeable K levels were not maintained even at the highest 66kg K.ha−1 treatment. Soil exchangeable Al and soluble Mn were elevated with dropping pH. Soil K reserves and resupply of exchangeable
K in these soils over the long term will be an important factor in crop production. 相似文献
19.
渭北旱塬保护性耕作对冬小麦-春玉米轮作田蓄水保墒效果和产量的影响 总被引:11,自引:0,他引:11
通过2007—2010年田间定位试验,研究了平衡施肥、常规施肥和无肥(或低肥)条件下,免耕、深松和翻耕处理对渭北旱塬冬小麦-春玉米轮作田土壤贮水量、作物产量、水分利用效率(WUE)和纯收益的影响.结果表明:休闲期免耕处理蓄水保墒效果最好,深松次之,翻耕最差;轮作田生育期内免耕和深松处理0~200 cm平均土壤贮水量分别较翻耕提高6.7%和1.9%;各施肥条件下作物产量、WUE和纯收益均以深松处理最高,且以平衡施肥深松处理表现最好,2007—2008年冬小麦、2009年春玉米、2009—2010年冬小麦产量分别为6909、9689、5589 kg.hm-2,WUE分别为18.5、25.2、23.0 kg.hm-2.mm-1,纯收益分别为5034、5045、7098元.hm-2.因此,平衡施肥与深松组合处理的蓄水保墒和增产增收效果最好,是渭北旱塬冬小麦-春玉米轮作田较适合的施肥耕作模式. 相似文献
20.
Alternate partial root-zone irrigation (APRI) is a new water-saving technique and may improve crop water use efficiency without
much yield reduction. We investigated if the benefits of APRI on biomass accumulation, water and nitrogen use efficiencies
could be modified by different soil fertilization and watering levels in pot-grown maize (Zea mays L. cv. super-sweet No 28,
a local variety). Three irrigation methods, i.e. conventional irrigation (CI), alternate partial root-zone irrigation (APRI,
alternate watering on both sides of the pot) and fixed partial root-zone irrigation (FPRI, fixed watering on one side of the
pot), two watering levels, i.e. water deficit (W1, 45–55% of field capacity) and well-watered (W2, 70–80% of field capacity), and two N fertilization levels, i.e. no fertilization and fertilization, were designed. Results
showed that APRI and FPRI methods led to more reduction in transpiration than in photosynthesis, and thus increased leaf water
use efficiency (leaf WUE, i.e. the ratio of leaf net photosynthetic rate to transpiration rate). Compared to the CI treatment,
APRI and FPRI increased leaf WUE by 7.7% and 8.1% before the jointing stage and 3.6% and 4.2% during the jointing stage, respectively.
Under the fertilization and well-watered conditions, APRI treatment saved irrigation water by 38.4% and reduced shoot and
total dry masses by 5.9% and 6.7%, respectively if compared to the CI treatment. APRI also enhanced canopy WUE (defined as
the amount of total biomass per unit water used) and nitrogen (N) apparent recovery fraction (Nr, defined as the ratio of
the increased N uptake to N applied) by 24.3% and 16.4%, respectively, indicating that effect of APRI can be better materialized
under appropriate fertilization and water supply.
Responsible Editor: Rana E. Munns 相似文献