首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coenzyme F420 is a deazaflavin hydride carrier with a lower reduction potential than most flavins. In Mycobacterium tuberculosis (Mtb), F420 plays an important role in activating PA-824, an antituberculosis drug currently used in clinical trials. Although F420 is important to Mtb redox metabolism, little is known about the enzymes that bind F420 and the reactions that they catalyze. We have identified a novel F420-binding protein, Rv1155, which is annotated in the Mtb genome sequence as a putative flavin mononucleotide (FMN)-binding protein. Using biophysical techniques, we have demonstrated that instead of binding FMN or other flavins, Rv1155 binds coenzyme F420. The crystal structure of the complex of Rv1155 and F420 reveals one F420 molecule bound to each monomer of the Rv1155 dimer. Structural, biophysical, and bioinformatic analyses of the Rv1155–F420 complex provide clues about its role in the bacterium.  相似文献   

2.
Studies on the biosynthesis of coenzyme F420 in methanogenic bacteria   总被引:4,自引:0,他引:4  
Coenzyme F420 is a 8-hydroxy-5-deazaflavin present in methanogenic bacteria. We have investigated whether the pyrimidine ring of the deazaflavin originates from guanine as in flavin biosynthesis, in which the pyrimidine ring of guanine is conserved. For this purpose the incorporation of [2-14C]guanine and of [8-14C]guanine into F420 by growing cultures of Methanobacterium thermoautotrophicum was studied. Only in the case of [2-14C]guanine did F420 become labeled. The specific radioactivity of the deazaflavin and of guanine isolated from nucleic acids of [2-14C]guanine grown cells were identical. This finding suggests that the pyrimidine ring of the deazaflavin and of flavins are synthesized by the same pathway.F420 did not become labeled when M. thermoautotrophicum was grown in the presence of methyl-[14C] methionine, [U-14C]phenylalanine or [U-14C]tyrosine. This excludes that C-5 of the deazaflavin is derived from the methyl group of methionine and that the benzene ring comes from phenylalanine or tyrosine.  相似文献   

3.
Li H  Graupner M  Xu H  White RH 《Biochemistry》2003,42(32):9771-9778
The protein product of the Methanococcus jannaschii MJ0768 gene has been expressed in Escherichia coli, purified to homogeneity, and shown to catalyze the GTP-dependent addition of two l-glutamates to the l-lactyl phosphodiester of 7,8-didemethyl-8-hydroxy-5-deazariboflavin (F(420)-0) to form F(420)-0-glutamyl-glutamate (F(420)-2). Since the reaction is the fifth step in the biosynthesis of coenzyme F(420), the enzyme has been designated as CofE, the product of the cofE gene. Gel filtration chromatography indicates CofE is a dimer. The enzyme has no recognized sequence similarity to any previously characterized proteins. The enzyme has an absolute requirement for a divalent metal ion and a monovalent cation. Among the metal ions tested, a mixture of Mn(2+), Mg(2+), and K(+) is the most effective. CofE catalyzes amide bond formation with the cleavage of GTP to GDP and inorganic phosphate, likely involving the activation of the free carboxylate group of F(420)-0 to give an acyl phosphate intermediate. Evidence for the occurrence of this intermediate is presented. A reaction mechanism for the enzyme is proposed and compared with other members of the ADP-forming amide bond ligase family.  相似文献   

4.
Grochowski LL  Xu H  White RH 《Biochemistry》2008,47(9):3033-3037
Coenzyme F 420 is a hydride carrier cofactor functioning in methanogenesis. One step in the biosynthesis of coenzyme F 420 involves the coupling of 2-phospho- l-lactate (LP) to 7,8-didemethyl-8-hydroxy-5-deazaflavin, the F 420 chromophore. This condensation requires an initial activation of 2-phospho- l-lactate through a pyrophosphate linkage to GMP. Bioinformatic analysis identified an uncharacterized archaeal protein in the Methanocaldococcus jannaschii genome, MJ0887, which could be involved in this transformation. The predicted MJ0887-derived protein has domain similarity with other known nucleotidyl transferases. The MJ0887 gene was cloned and overexpressed, and the purified protein was found to catalyze the formation of lactyl-2-diphospho-5'-guanosine from LP and GTP. Kinetic constants were determined for the MJ0887-derived protein with both LP and GTP substrates and are as follows: V max = 3 micromol min (-1) mg (-1), GTP K M (app) = 56 microM, and k cat/ K M (app) = 2 x 10 (4) M (-1) s (-1) and LP K M (app) = 36 microM, and k cat/ K M (app) = 4 x 10 (4) M (-1) s (-1). The MJ0887 gene product has been designated CofC to indicate its involvement in the third step of coenzyme F 420 biosynthesis.  相似文献   

5.
The ultrastructural locations of the coenzyme F420-reducing formate dehydrogenase and coenzyme F420-reducing hydrogenase of Methanobacterium formicicum were determined using immunogold labeling of thin-sectioned, Lowicryl-embedded cells. Both enzymes were located predominantly at the cell membrane. Whole cells displayed minimal F420-dependent formate dehydrogenase activity or F420-dependent hydrogenase activity, and little activity was released upon osmotic shock treatment, suggesting that these enzymes are not soluble periplasmic proteins. Analysis of the deduced amino acid sequences of the formate dehydrogenase subunits revealed no hydrophobic regions that could qualify as putative membrane-spanning domains.Abbreviation PBST Phosphate-buffered saline containing 0.1% (v/v) Triton X-100  相似文献   

6.
Graupner M  Xu H  White RH 《Biochemistry》2002,41(11):3754-3761
The protein product of the Methanococcus jannaschii MJ1256 gene has been expressed in Escherichia coli, purified to homogeneity, and shown to be involved in coenzyme F(420) biosynthesis. The protein catalyzes the transfer of the 2-phospholactate moiety from lactyl (2) diphospho-(5')guanosine (LPPG) to 7,8-didemethyl-8-hydroxy-5-deazariboflavin (Fo) with the formation of the L-lactyl phosphodiester of 7,8-didemethyl-8-hydroxy-5-deazariboflavin (F(420)-0) and GMP. On the basis of the reaction catalyzed, the enzyme is named LPPG:Fo 2-phospho-L-lactate transferase. Since the reaction is the fourth step in the biosynthesis of coenzyme F(420), the enzyme has been designated as CofD, the product of the cofD gene. The transferase requires Mg(2+) for activity, and the catalysis does not appear to proceed via a covalent intermediate. To a lesser extent CofD also catalyzes a number of additional reactions that include the formation of Fo-P, when the enzyme is incubated with Fo and GDP, GTP, pyrophosphate, or tripolyphosphate, and the hydrolysis of F(420)-0 to Fo. All of these side reactions can be rationalized as occurring by a common mechanism. CofD has no recognized sequence similarity to any previously characterized enzyme.  相似文献   

7.
Summary The relationship between the coenzyme F420 content and the activity of methanogenic microorganisms was investigated under different cultivation conditions in anaerobic reactors. The coenzyme F420 concentration depends on the substrate used and the cultivation conditions. Coenzyme F420 appears not to be a measure of the total methanogenic activity but rather a measure of the amount of methanogenic microorganisms in mixed anaerobic cultures.  相似文献   

8.
The structure of coenzyme F(420) in Mycobacterium smegmatis was examined using proton NMR, amino acid analysis, and HPLC. The two major F(420) structures were shown to be composed of a chromophore identical to that of F(420) from Methanobacterium thermoautotrophicum, with a side chain of a ribityl residue, a lactyl residue and five or six glutamate groups (F(420)-5 and F(420)-6). Peptidase treatment studies suggested that L-glutamate groups are linked by gamma-glutamyl bonds in the side chain. HPLC analysis indicated that Mycobacterium tuberculosis, Mycobacterium bovis BCG, and Mycobacterium fortuitum have F(420)-5 and F(420)-6 as the predominant structures, whereas Mycobacterium avium contains F(420)-5, F(420)-6 and F(420)-7 in significant amounts. 7,8-Didemethyl 8-hydroxy 5-deazariboflavin (FO), an intermediate in F(420) biosynthesis, accounted for about 1-7% of the total deazaflavin in cells. Peptidase treatment of F(420) created F(420) derivatives that may be useful for the assay of enzymes involved in F(420) biosynthesis.  相似文献   

9.
Summary An improved method for separating analogues of coenzyme F420 by isocratic reversed-phase high performance liquid chromatography is described. The method offers improved resolution, shorter chromatography runs and requires less complex apparatus.  相似文献   

10.
Growing cultures of Methanobacterium thermoautotrophicum were supplemented with [U-14C]adenosine or [1-14C]adenosine. 7,8-Didemethyl-8-hydroxy-5-deazariboflavin (factor F0) and 7-methylpterin were isolated from the culture medium. Hydrolysis of cellular RNA yielded purine and pyrimidine nucleotides. The ribose side chain of proffered adenosine is efficiently incorporated into cellular adenosine and guanosine nucleotide pools but not into pyrimidine nucleotides. Thus, M. thermoautotrophicum can utilize exogenous adenosine by direct phosphorylation without hydrolysis of the glycosidic bond, and AMP can be efficiently converted to GMP. Factor F0 and 7-methylpterin had approximately the same specific activities as the purine nucleotides. It follows that the ribityl side chain of factor F0 is derived from the ribose side chain of a nucleotide precursor by reduction. The pyrazine ring of methanopterin is formed by ring expansion involving the ribose side chain of the precursor, GTP.Abbreviations Factor F0 8-hydroxy-6,7-didemethyl-5-deazariboflavin - APRT adenine phosphoribosyltransferase - GPRT guanine phosphoribosyltransferase - PRPP phosphoribosylpyrophosphate - HPLC high performance liquid chromatography  相似文献   

11.
Reduced coenzyme F420 (F420H2) is an essential intermediate in methanogenesis from CO2. During methanogenesis from H2 and CO2, F420H2 is provided by the action of F420-reducing hydrogenases. However, an alternative pathway has been proposed, where H2-dependent methylenetetrahydromethanopterin dehydrogenase (Hmd) and F420H2-dependent methylenetetrahydromethanopterin dehydrogenase (Mtd) together reduce F420 with H2. Here we report the construction of mutants of Methanococcus maripaludis that are defective in each putative pathway. Their analysis demonstrates that either pathway supports growth on H2 and CO2. Furthermore, we show that during growth on formate instead of H2, where F420H2 is a direct product of formate oxidation, H2 production occurs. H2 presumably arises from the oxidation of F420H2, and the analysis of the mutants during growth on formate suggests that this too can occur by either pathway. We designate the alternative pathway for the interconversion of H2 and F420H2 the Hmd-Mtd cycle.  相似文献   

12.
  1. Download : Download high-res image (133KB)
  2. Download : Download full-size image
  相似文献   

13.
Using the nitroimidazopyran-based antituberculosis drug PA-824 as a selective agent, transposon-generated Mycobacterium bovis strain BCG (M. bovis) mutants that could not make coenzyme F(420) were identified. Four independent mutants that could not make F(420) or the biosynthesis intermediate FO were examined more closely. These mutants contained transposons inserted in the M. bovis homologue of the Mycobacterium tuberculosis gene Rv1173, which we have named fbiC. Complementation of an M. bovis FbiC(-) mutant with fbiC restored the F(420) phenotype. These data demonstrate that fbiC is essential for F(420) production and that FbiC participates in a portion of the F(420) biosynthetic pathway between pyrimidinedione and FO. Homologues of fbiC were found in all 11 microorganisms that have been fully sequenced and that are known to make F(420). Four of these homologues (all from members of the aerobic actinomycetes) coded for proteins homologous over the entire length of the M. bovis FbiC, but in seven microorganisms two separate genes were found to code for proteins homologous with either the N-terminal or C-terminal portions of the M. bovis FbiC. Histidine-tagged FbiC overexpressed in Escherichia coli produced a fusion protein of the molecular mass predicted from the M. bovis BCG sequence (approximately 95,000 Da), as well as three other histidine-tagged proteins of significantly smaller size, which are thought to be proteolysis products of the FbiC fusion protein.  相似文献   

14.
Mechanistic studies have been undertaken on the coenzyme F420 dependent formate dehydrogenase from Methanobacterium formicicum. The enzyme was specific for the si face hydride transfer to C5 of F420 and joins three other F420-recognizing methanogen enzymes in this stereospecificity, consistent perhaps with a common type of binding site for this 8-hydroxy-5-deazariboflavin. While catalysis probably occurs by hydride transfer from formate to the enzyme to generate an EH2 species and then by hydride transfer back out to F420, the formate-derived hydrogen exchanged with solvent protons before transfer back out to F420. The kinetics of hydride transfer from formate revealed that this step is not rate determining, which suggests that the rate-determining step is an internal electron transfer. The deflavo formate dehydrogenase was amenable to reconstitution with flavin analogues. The enzyme was sensitive to alterations in FAD structure in the 6-, 7-, and 8-loci of the benzenoid moiety in the isoalloxazine ring.  相似文献   

15.
The coenzyme F420-dependent formate dehydrogenase from Methanobacterium formicicum was purified to electrophoretic homogeneity by anoxic procedures which included the addition of azide, flavin adenine dinucleotide (FAD), glycerol, and 2-mercaptoethanol to all buffer solutions to stabilize activity. The enzyme contains, in approximate molar ratios, 1 FAD molecule and 1 molybdenum, 2 zinc, 21 to 24 iron, and 25 to 29 inorganic sulfur atoms. Denaturation of the enzyme released a molybdopterin cofactor. The enzyme has a molecular weight of 177,000 and consists of one each of two different subunits, giving the composition alpha 1 beta 1. The molecular weight of the alpha-subunit is 85,000, and that of the beta-subunit is 53,000. The UV-visible spectrum is typical of nonheme iron-sulfur flavoprotein. Reduction of the enzyme facilitated dissociation of FAD, and the FAD-depleted enzyme was unable to reduce coenzyme F420. Preincubation of the FAD-depleted enzyme with FAD restored coenzyme F420-dependent activity.  相似文献   

16.
Analyses of the F(420)s present in Methanococcus jannaschii have shown that these cells contain a series of gamma-glutamyl-linked F(420)s capped with a single, terminal alpha-linked L-glutamate. The predominant form of F(420) was designated as alpha-F(420)-3 and represented 86% of the F(420)s in these cells. Analyses of Methanosarcina thermophila, Methanosarcina barkeri, Methanobacterium thermoautotrophicum, Archaeoglobus fulgidus, and Mycobacterium smegmatis showed that they contained only gamma-glutamyl-linked F(420)s.  相似文献   

17.
The ability of hydrolytic products of coenzyme F420 to substitute for F420 in the hydrogenase and nicotinamide adenine dinucleotide phosphate-liniked hydrogenase systems of Methanobacterium strain M.o.H. was kinetically determined. The nicotinamide adenine dinucleotide phosphate-linked hydrogenase system was employed to quantitate the levels of F420 in a number of methanogenic bacteria as well as in some nonmethanogens. Methanobacterium ruminantium and Methanosarcina barkeri contained low levels of F420, whereas other methanogens tested contained high levels (100 to 400 mg/kg of cells). F420 from six of the seven methanogens was tested by thin-layer electrophoresis and was found to be electrophoretically identical to that purified from Methanobacterium strain M.o.H. The only exception was M. barkeri, which contained a more electronegative derivative of F420. Acetobacterium woodii, Escherichia coli, and yeast extract contained no compounds able to substitute for F420 in the nicotinamide adenine dinucleotide phosphate-linked hydrogenase system.  相似文献   

18.
Graupner M  White RH 《Biochemistry》2001,40(36):10859-10872
The biochemical route for the formation of the phosphodiester bond in coenzyme F(420), one of the methanogenic coenzymes, has been established in the methanoarchaea Methanosarcina thermophila and Methanococcus jannaschii. The first step in the formation of this portion of the F(420) structure is the GTP-dependent phosphorylation of L-lactate to 2-phospho-L-lactate and GDP. The 2-phospho-L-lactate represents a new natural product that was chemically identified in Methanobacterium thermoautotrophicum, M. thermophila, and Mc. jannaschii. Incubation of cell extracts of both M. thermophila and Mc. jannaschii with [hydroxy-(18)O, carboxyl-(18)O(2)]lactate and GTP produced 2-phospho-L-lactate with the same (18)O distribution as found in both the starting lactate and the lactate recovered from the incubation. These results indicate that the carboxyl oxygens are not involved in the phosphorylation reaction. Incubation of Sephadex G-25 purified cell extracts of M. thermophila or Mc. jannaschii with 7,8-didemethyl-8-hydroxy-5-deazariboflavin (Fo), 2-phospho-L-lactate, and GTP or ATP lead to the formation of F(420)-0 (F(420) with no glutamic acids). This transformation was shown to involve two steps: (i) the GTP- or ATP-dependent activation of 2-phospho-L-lactate to either lactyl(2)diphospho-(5')guanosine (LPPG) or lactyl(2)diphospho-(5')adenosine (LPPA) and (ii) the reaction of the resulting LPPG or LPPA with Fo to form F(420)-0 with release of GMP or AMP. Attempts to identify LPPG or LPPA intermediates by incubation of cell extracts with L-[U-(14)C]lactate, [U-(14)C]2-phospho-L-lactate, or [8-(3)H]GTP were not successful owing to the instability of these compounds toward hydrolysis. Synthetically prepared LPPG and LPPA had half-lives of 10 min at 50 degrees C (at pH 7.0) and decomposed into GMP or AMP and 2-phospho-L-lactate via cyclic 2-phospho-L-lactate. No evidence for the functioning of the cyclic 2-phospho-L-lactate in the in vitro biosynthesis could be demonstrated. Incubation of cell extracts of M. thermophila or Mc. jannaschii with either LPPG or LPPA and Fo generated F(420)-0. In summary, this study demonstrates that the formation of the phosphodiester bond in coenzyme F(420) follows a reaction scheme like that found in one of the steps of the DNA ligase reaction and in the biosynthesis of coenzyme B(12) and phospholipids.  相似文献   

19.
20.
Production of coenzyme F420 and its biosynthetic precursor FO was examined with a variety of aerobic actinomycetes to identify an improved source for these materials. Based on fermentation costs, safety, and ease of growth, Mycobacterium smegmatis was the best source for F420-5,6. M. smegmatis produced 1 to 3 micromol of intracellular F420 per liter of culture, which was more than the 0.85 to 1.0 micromol of F420-2 per liter usually obtained with Methanobacterium thermoautotrophicum and approximately 10-fold higher than what was previously reported for the best aerobic actinomycetes. An improved chromatography system using rapidly flowing quaternary aminoethyl ion-exchange material and Florisil was used to more quickly and easily purify F420 than with previous methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号