首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee J  Sugden B 《Journal of virology》2007,81(17):9121-9130
Latent membrane protein 1 (LMP1) of Epstein Barr virus (EBV) is important for maintaining proliferation of EBV-infected B cells. LMP1, unlike its cellular counterpart, CD40, signals without a ligand and is largely internal to the plasma membrane. In order to understand how LMP1 initiates its ligand-independent signaling, we focused on a leucine heptad in LMP1's first membrane-spanning domain that was shown to be necessary for LMP1's signaling through NF-kappaB. LZ1EBV, a recombinant EBV genetically altered to express LZ1, a derivative of LMP1 in which a leucine heptad was replaced with alanines, transformed B cells with 56% of wild-type (wt) EBV's efficiency, demonstrating the importance of this heptad. To elucidate the mechanism by which this domain contributes to the functions of LMP1, the properties of the wt and LZ1 were compared in transfected cells. LZ1 failed to home to lipid rafts as efficiently as did wt LMP1. The distribution of tagged derivatives of LZ1 also differed from that of wt LMP1 in transfected cells. LZ1's defect in homing to lipid rafts and altered trafficking likely underlie the defect in transformation of LZ1EBV. While the third and fourth membrane-spanning domains of LMP1 foster its trafficking to the Golgi, the leucine heptad within the first membrane-spanning domain contributes to its trafficking, particularly to internal rafts. B cells that are successfully transformed by LZ1EBV have the same average number of viral genomes and the same fraction of cells with capped LZ1 at the cell surface but express 50% more of the LZ1 allele than wt infected cells.  相似文献   

2.
3.
Liu HP  Wu CC  Chang YS 《The EMBO journal》2006,25(17):4120-4130
Latent membrane protein 1 (LMP1), which is an Epstein-Barr virus (EBV)-encoded oncoprotein, induces nuclear factor-kappa B (NF-kappaB) signaling by mimicking the tumor necrosis factor receptor (TNFR). LMP1 signals primarily from intracellular compartments in a ligand-independent manner. Here, we identify a new LMP1-interacting molecule, prenylated Rab acceptor 1 (PRA1), which interacts with LMP1 for the first time through LMP1's transmembrane domain, and show that PRA1 is involved in intracellular LMP1 trafficking and LMP1-induced NF-kappaB activity. Immunofluorescence and biochemical analyses revealed that LMP1 physically interacted with PRA1 at the Golgi apparatus, and the colocalization of LMP1 and PRA1 to the Golgi was sensitive to nocodazole and brefeldin A. Coexpression of a PRA1 export mutant or knockdown of PRA1 led to redistribution of LMP1 and its associated signaling molecules to the endoplasmic reticulum and subsequent impairment of LMP1-induced NF-kappaB activation, but had no effect on CD40- and TNFR1-mediated signaling or the functional integrity of the Golgi apparatus. These novel findings provide important new insights into LMP1, and identify an unexpected new role for PRA1 in cellular signaling.  相似文献   

4.
Latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) is an integral membrane protein which has transforming potential and is necessary but not sufficient for B-cell immortalization by EBV. LMP1 molecules aggregate in the plasma membrane and recruit tumour necrosis factor receptor (TNF-R) -associated factors (TRAFs) which are presumably involved in the signalling cascade leading to NF-kappaB activation by LMP1. Comparable activities are mediated by CD40 and other members of the TNF-R family, which implies that LMP1 could function as a receptor. LMP1 lacks extended extracellular domains similar to beta-adrenergic receptors but, in contrast, it also lacks any motifs involved in ligand binding. By using LMP1 mutants which can be oligomerized at will, we show that the function of LMP1 in 293 cells and B cells is solely dependent on oligomerization of its carboxy-terminus. Biochemically, oligomerization is an intrinsic property of the transmembrane domain of wild-type LMP1 and causes a constitutive phenotype which can be conferred to the signalling domains of CD40 or the TNF-2 receptor. In EBV, immortalized B cells cross-linking in conjunction with membrane targeting of the carboxy-terminal signalling domain of LMP1 is sufficient for its biological activities. Thus, LMP1 acts like a constitutively activated receptor whose biological activities are ligand-independent.  相似文献   

5.
6.
The TNFR, TNF-R1, is localized to lipid raft and nonraft regions of the plasma membrane. Ligand binding sets in motion signaling cascades that promote the activation of p42(mapk/erk2) and NF-kappaB. However, the role of receptor localization in the activation of downstream signaling events is poorly understood. In this study, we investigated the dynamics of TNF-R1 localization to lipid rafts and the consequences of raft localization on the activation of p42(mapk/erk2) and NF-kappaB in primary cultures of mouse macrophages. Using sucrose density gradient ultracentrifugation and a sensitive ELISA to detect TNF-R1, we show that TNF-R1 is rapidly and transiently recruited to lipid rafts in response to TNF-alpha. Disruption of lipid rafts by cholesterol depletion prevented the TNF-alpha-dependent recruitment of TNF-R1 to lipid rafts and inhibited the activation of p42(mapk/erk2), while the activation of NF-kappaB was unaffected. In addition, phosphorylated p42(mapk/erk2), but not receptor interacting protein, I-kappaB kinase-gamma, or I-kappaBalpha was detected in raft-containing fractions following TNF-alpha stimulation. These findings suggest that TNF-R1 is localized to both lipid raft and nonraft regions of the plasma membrane and that each compartment is capable of initiating different signaling responses. We propose that segregation of TNF-R1 to raft and nonraft regions of the plasma membrane contributes to the diversity of signaling responses initiated by TNF-R1.  相似文献   

7.
Receptors belonging to the tumor necrosis factor receptor (TNF-R) family utilize cytoplasmic adapter proteins called TNF-R-associated factors (TRAFs) as key elements in their signaling pathways. However, it is not yet clear how individual TRAFs regulate signaling by this large and growing receptor family. Signaling via the TNF-R family member CD40 has recently been shown to result in recruitment of TRAF2 to plasma membrane detergent-resistant microdomains (lipid rafts) as well as to subsequently initiate TRAF2 degradation. As TRAF2 associates with most members of the TNF-R family, we wished to determine how this degradation occurs. We show here that CD40-mediated TRAF2 degradation requires the zinc-binding RING domain of TRAF2 and is preceded by TRAF2 ubiquitination, suggesting that the TRAF2 RING may promote ubiquitination although the RING itself is not a target of ubiquitination. Several approaches show that ubiquitination and proteasomal activity are integral to TRAF2 degradation, and inhibition of this process potentiates CD40 signaling.  相似文献   

8.
The latent membrane protein 1 (LMP-1) oncoprotein of Epstein-Barr virus (EBV) is a constitutively active, CD40-like cell surface signaling protein essential for EBV-mediated human B-cell immortalization. Like ligand-activated CD40, LMP-1 activates NF-kappaB and Jun kinase signaling pathways via binding, as a constitutive oligomer, to tumor necrosis factor receptor-associated factors (TRAFs). LMP-1's lipid raft association and oligomerization have been linked to its activation of cell signaling pathways. Both oligomerization and lipid raft association require the function of LMP-1's polytopic multispanning transmembrane domain, a domain that is indispensable for LMP-1's growth-regulatory signaling activities. We have begun to address the sequence requirements of the polytopic hydrophobic transmembrane domain for LMP-1's signaling and biochemical activities. Here we report that transmembrane domains 1 and 2 are sufficient for LMP-1's lipid raft association and cytostatic activity. Transmembrane domains 1 and 2 support NF-kappaB activation, albeit less potently than does the entire polytopic transmembrane domain. Interestingly, LMP-1's first two transmembrane domains are not sufficient for oligomerization or TRAF binding. These results suggest that lipid raft association and oligomerization are mediated by distinct and separable activities of LMP-1's polytopic transmembrane domain. Additionally, lipid raft association, mediated by transmembrane domains 1 and 2, plays a significant role in LMP-1 activation, and LMP-1 can activate NF-kappaB via an oligomerization/TRAF binding-independent mechanism. To our knowledge, this is the first demonstration of an activity's being linked to individual membrane-spanning domains within LMP-1's polytopic transmembrane domain.  相似文献   

9.
Insulin stimulates the fusion of intracellular vesicles containing the glucose transporter Glut4 with the plasma membrane in adipocytes and muscle cells. Glut4 vesicle fusion is thought to be catalyzed by the interaction of the vesicle soluble N-ethyl-maleimide-sensitive fusion protein attachment protein receptor VAMP2 with the target soluble N-ethyl-maleimide-sensitive fusion protein attachment protein receptors SNAP-23 and syntaxin 4. Here, we use combined membrane fractionation, detergent solubility, and sucrose gradient flotation to demonstrate that the large majority (>70%) of SNAP-23 and a significant proportion of syntaxin 4 ( approximately 35%) are associated with plasma membrane lipid rafts in 3T3-L1 adipocytes. Furthermore, VAMP2 is shown to be concentrated in lipid rafts isolated from intracellular membranes. Insulin stimulation had no effect on the plasma membrane raft association of SNAP-23 or syntaxin 4 but promoted VAMP2 insertion into plasma membrane rafts. Immunofluorescence analysis revealed that SNAP-23 was clustered at the plasma membrane and almost completely segregated from the transferrin receptor. SNAP-23 distribution seemed to be distinct from caveolin-1, and clusters of SNAP-23 were dispersed after cholesterol extraction with methyl-beta-cyclodextrin, suggesting that the majority of SNAP-23 is associated with non-caveolar, cholesterol-rich lipid rafts. The results described implicate lipid rafts as important platforms for Glut4 vesicle fusion and suggest the hypothesis that such rafts may represent a spatial integration point of insulin signaling and membrane traffic.  相似文献   

10.
TNFR-associated factor (TRAF)3, an adaptor protein that binds the cytoplasmic domains of both CD40 and the EBV-encoded oncoprotein latent membrane protein (LMP)1, is required for positive signaling by LMP1 but not CD40 in B lymphocytes. The present study further investigated how TRAF3 participates in LMP1 signaling. We found that TRAF3 mediates signaling both through direct interactions with the C-terminal activating region (CTAR)1 of LMP1 and through indirect interactions with the CTAR2 region of LMP1 in mouse B cells. Notably, our results demonstrated that the CTAR2 region appears to inhibit the recruitment of TRAF1 and TRAF2 to membrane rafts by the CTAR1 region. Additionally, the absence of TRAF2 in B cells resulted in only a modest reduction in CTAR1-mediated signals and no detectable effect on CTAR2-mediated signals. CTAR1 and CTAR2 cooperated to achieve the robust signaling activity of LMP1 when recruited to the same membrane microdomains in B cells. Interestingly, TRAF3 deficiency completely abrogated the cooperation between CTAR1 and CTAR2, supporting the hypothesis that TRAF3 participates in the physical interaction between CTAR1 and CTAR2 of LMP1. Together, our findings highlight the central importance of TRAF3 in LMP1-mediated signaling, which is critical for EBV persistent infection and EBV-associated pathogenesis.  相似文献   

11.
Despite CD40's role in stimulating dendritic cells (DCs) for efficient specific T-cell stimulation, its signal transduction components in DCs are still poorly documented. We show that CD40 receptors on human monocyte-derived DCs associate with sphingolipid- and cholesterol-rich plasma membrane microdomains, termed membrane rafts. Following engagement, CD40 utilizes membrane raft-associated Lyn Src family kinase, and possibly other raft-associated Src family kinases, to initiate tyrosine phosphorylation of intracellular substrates. CD40 engagement also leads to a membrane raft-restricted recruitment of tumor necrosis factor (TNF) receptor-associated factor (TRAF) 3 and, to a lesser extent, TRAF2, to CD40's cytoplasmic tail. Thus, the membrane raft structure plays an integral role in proximal events of CD40 signaling in DCs. We demonstrate that stimulation of Src family kinase within membrane rafts initiates a pathway implicating ERK activation, which leads to interleukin (IL)-1alpha/beta and IL-1Ra mRNA production and contributes to p38-dependent IL-12 mRNA production. These results provide the first evidence that membrane rafts play a critical role in initiation of CD40 signaling in DCs, and delineate the outcome of CD40-mediated pathways on cytokine production.  相似文献   

12.
The Ag-specific B cell receptor (BCR) expressed by B lymphocytes has two distinct functions upon interaction with cognate Ag: signal transduction (generation of intracellular second messenger molecules) and Ag internalization for subsequent processing and presentation. While it is known that plasma membrane domains, termed lipid rafts, are involved in BCR-mediated signal transduction, the precise role of plasma membrane lipid rafts in BCR-mediated Ag internalization and intracellular trafficking is presently unclear. Using a highly characterized model system, it was determined that while plasma membrane lipid rafts can be internalized by B lymphocytes, lipid rafts do not represent a major pathway for the rapid and efficient internalization of cell surface Ag-BCR complexes. Moreover, internalized plasma membrane lipid rafts are delivered to intracellular compartments distinct from those to which the bulk of internalized Ag-BCR complexes are delivered. These results demonstrate that B lymphocytes, like other cell types, possess at least two distinct endocytic pathways (i.e., clathrin-coated pits and plasma membrane lipid rafts) that deliver internalized ligands to distinct intracellular compartments. Furthermore, Ag-BCR complexes differentially access these two distinct internalization pathways.  相似文献   

13.
Bock J  Gulbins E 《FEBS letters》2003,534(1-3):169-174
Stimulation of CD40 has been previously shown to result in a release of ceramide in small sphingolipid-enriched rafts in the cell membrane [Grassmé et al., J. Immunol. 168 (2002) 298-307]. Those rafts fused to larger signaling platforms that served to cluster CD40. Here, we defined molecular mechanisms of CD40 clustering in membrane platforms. To this end, we replaced the transmembranous domain of CD40 with that of CD45, a molecule known to be excluded from lipid rafts. Murine T cells were stably transfected with wild-type CD40 or chimeric CD40/CD45. Flow cytometry confirmed normal binding properties of the mutant to CD40 ligand. Stimulation with CD40 ligand resulted in clustering of wild-type CD40, while the chimeric CD40/45 receptor failed to cluster. This correlated with a deficiency of the chimeric receptor to activate JNK, p38 MAP kinase and SAPK, known signaling molecules of the intracellular pathway initiated by CD40. Forced crosslinking of the CD40/45 chimeric receptor restored, at least partially, these signaling events. The results suggest that the transmembranous domain of CD40 is central for the recruitment to and clustering of CD40 in membrane platforms.  相似文献   

14.
Cholesterol enriched lipid rafts are considered to function as platforms involved in the regulation of membrane receptor signaling complex through the clustering of signaling molecules. In this study, we tested whether these specialized membrane microdomains affect CD40 localization in vitro and in vivo. Here, we provide evidence that upon CD40 ligand stimulation, endogenous and exogenous CD40 receptor is rapidly mobilized into lipid rafts compared with unstimulated HAECs. Efficient binding between CD40L and CD40 receptor also increases amounts of CD40 protein levels in lipid rafts. Deficiency of intracellular conserved C terminus of the CD40 cytoplasmic tail impairs CD40 partitioning in raft. Raft disorganization after methyl-beta-cyclodextrin treatment diminishes CD40 localization into rafts. In vivo studies show that elevation of circulating cholesterol in high-cholesterol fed rabbits increases the cholesterol content and CD40 receptor localization in lipid rafts. These findings identify a physiological role for membrane lipid rafts as a critical regulator of CD40-mediated signal transduction and raise the possibility that certain pathologic conditions may be treated by altering CD40 signaling with drugs affecting its raft localization.  相似文献   

15.
TNFR-associated factor 1 (TRAF1) is unique among the TRAF family, lacking most zinc-binding features, and showing marked up-regulation following activation signals. However, the biological roles that TRAF1 plays in immune cell signaling have been elusive, with many reports assigning contradictory roles to TRAF1. The overlapping binding site for TRAFs 1, 2, and 3 on many TNFR superfamily molecules, together with the early lethality of mice deficient in TRAFs 2 and 3, has complicated the quest for a clear understanding of the functions of TRAF1. Using a new method for gene targeting by homologous recombination in somatic cells, we produced and studied signaling by CD40 and its viral oncogenic mimic, latent membrane protein 1 (LMP1) in mouse B cell lines lacking TRAF1, TRAF2, or both TRAFs. Results indicate that TRAFs 1 and 2 cooperate in CD40-mediated activation of the B cell lines, with a dual deficiency leading to a markedly greater loss of function than that of either TRAF alone. In the absence of TRAF1, an increased amount of TRAF2 was recruited to lipid rafts, and subsequently, more robust degradation of TRAF2 and TRAF3 was induced in response to CD40 signaling. In contrast, LMP1 did not require either TRAFs 1 or 2 to induce activation. Taken together, our findings indicate that TRAF1 and TRAF2 cooperate in CD40 but not LMP1 signaling and suggest that cellular levels of TRAF1 may play an important role in modulating the degradation of TRAF2 and TRAF3 in response to signals from the TNFR superfamily.  相似文献   

16.
Epstein-Barr virus is a human herpesvirus that causes infectious mononucleosis and lymphoproliferative malignancies. LMP1 (latent membrane protein-1), which is encoded by this virus and which is essential for transformation of B lymphocytes, acts as a constitutively active mimic of the tumor necrosis factor receptor (TNFR) CD40. LMP1 is an integral membrane protein containing six transmembrane segments and a cytoplasmic domain at the C terminus that binds to intracellular TNFR-associated factors (TRAFs). TRAFs are intracellular co-inducers of downstream signaling from CD40 and other TNFRs, and TRAF3 is required for activation of B lymphocytes by LMP1. Cytoplasmic C-terminal activation region 1 of LMP1 bears a motif (PQQAT) that conforms to the TRAF recognition motif PVQET in CD40. In this study, we report the crystal structure of this portion of LMP1 C-terminal activation region-1 (204PQQATDD210) bound in complex with TRAF3. The PQQAT motif is bound in the same binding crevice on TRAF3 where CD40 is bound, providing a molecular mechanism for LMP1 to act as a CD40 decoy for TRAF3. The LMP1 motif is presented in the TRAF3 crevice as a close structural mimic of the PVQET motif in CD40, and the intermolecular contacts are similar. However, the viral protein makes a unique contact: a hydrogen bond network formed between Asp210 in LMP1 and Tyr395 and Arg393 in TRAF3. This intermolecular contact is not made in the CD40-TRAF3 complex. The additional hydrogen bonds may stabilize the complex and strengthen the binding to permit LMP1 to compete with CD40 for binding to the TRAF3 crevice, influencing downstream signaling to B lymphocytes and contributing to dysregulated signaling by LMP1.  相似文献   

17.
Latent membrane protein 1 (LMP1) of Epstein-Barr virus induces constitutive signaling in infected cells. LMP1 signaling requires oligomerization of LMP1 via its transmembrane domain, localization to lipid rafts in the membrane, and association of the LMP1 cytoplasmic domain to adaptor proteins, such as the tumor necrosis factor receptor-associated factors (TRAFs). Protein complementation is a novel technique to examine protein-protein interaction through the assembly of functional fluorescent proteins or enzymes from inactive fragments. A previous study in our lab demonstrated the use of bimolecular fluorescence complementation (BiFC) to study the assembly of the LMP1 signaling complexes within the plasma membrane of mammalian cells. In the present study, LMP1 was used as bait in a genome-wide BiFC screen with an enhanced retroviral mutagen to identify new LMP1-binding proteins. Our screen identified a novel LMP1-binding protein, transmembrane protein 134 (Tmem134). Tmem134 is a candidate oncogene that is amplified in breast cancer cell lines. Binding, colocalization, and cofractionation between LMP1 and Tmem134 were confirmed. Finally, Tmem134 affected LMP1-induced NF-κB induction. Together, these data suggest that BiFC is a unique and novel platform to identify proteins recruited to the LMP1-signaling complex.  相似文献   

18.
CARMA1 (also known as CARD11) is a scaffold molecule and contains a caspase-recruitment domain (CARD) and a membrane-associated guanylate kinase-like (MAGUK) domain. It plays an essential role in mediating CD3/CD28 costimulation-induced NF-kappaB activation. However, the molecular mechanism by which CARMA1 mediates costimulatory signals remains to be determined. Here, we show that CARMA1 is constitutively associated with the cytoplasmic membrane. This membrane association is essential for the function of CARMA1, since a mutant of CARMA1, CARMA1(L808P), that is defective in the membrane association cannot rescue CD3/CD28 costimulation-induced NF-kappaB activation in JPM50.6 CARMA1-deficient T cells. Although CD3/CD28 costimulation effectively induces the formation of the immunological synapse in CARMA1-deficient T cells, the recruitment of protein kinase C-theta (PKC-theta), Bcl10, and IkappaB kinase beta (IKKbeta) into lipid rafts of the immunological synapse is defective. Moreover, expression of wild-type CARMA1, but not CARMA1(L808P), restores the recruitment of PKC-theta, Bcl10, and IKKbeta into lipid rafts in CARMA1-deficient T cells. Consistently, expression of a mutant CARMA1, CARMA1(DeltaCD), that cannot associate with Bcl10 failed to restore CD3/CD28 costimulation-induced NF-kappaB activation in JPM50.6 cells, whereas expression of Bcl10-CARMA(DeltaCD) fusion protein effectively restored this NF-kappaB activation. Together, these results indicate that CARMA1 mediates CD3/CD28 costimulation-induced NF-kappaB activation by recruiting downstream signaling components into the immunological synapse.  相似文献   

19.
In this study, we have showed that aortic endothelial cells (GM7372A cell line) express CD44v10 [a hyaluronan (HA) receptor], which is significantly enriched in cholesterol-containing lipid rafts (characterized as caveolin-rich plasma membrane microdomains). HA binding to CD44v10 promotes recruitment of the cytoskeletal protein, ankyrin and inositol 1,4,5-triphosphate (IP3) receptor into cholesterol-containing lipid rafts. The ankyrin repeat domain (ARD) of ankyrin is responsible for binding IP3 receptor to CD44v10 at lipid rafts and subsequently triggering HA/CD44v10-mediated intracellular calcium (Ca2+) mobilization leading to a variety of endothelial cell functions such as nitric oxide (NO) production, cell adhesion and proliferation. Further analyses indicate (i) disruption of lipid rafts by depleting cholesterol from the membranes of GM7372A cells (using methyl-beta-cyclodextrin treatment) or (ii) interference of endogenous ankyrin binding to CD44 and IP3 receptor using overexpression of ARD fragments (by transfecting cells with ARDcDNA) not only abolishes ankyrin/IP3 receptor accumulation into CD44v10/cholesterol-containing lipid rafts, but also blocks HA-mediated Ca2+ signaling and endothelial cell functions. Taken together, our findings suggest that CD44v10 interaction with ankyrin and IP3 receptor in cholesterol-containing lipid rafts plays an important role in regulating HA-mediated Ca2+ signaling and endothelial cell functions such as NO production, cell adhesion and proliferation.  相似文献   

20.
The Epstein-Barr virus (EBV)-encoded protein latent membrane protein 1 (LMP1) is essential for EBV-mediated B cell transformation and plays a critical role in the development of post-transplant B cell lymphomas. LMP1 also contributes to the exacerbation of autoimmune diseases such as systemic lupus erythematosus (SLE). LMP1 is a functional mimic of the tumor necrosis factor receptor (TNFR) superfamily member CD40, and relies on TNFR-associated factor (TRAF) adaptor proteins to mediate signaling. However, LMP1 activation signals to the B cell are amplified and sustained compared to CD40 signals. We previously demonstrated that LMP1 and CD40 use TRAF molecules differently. Although associating with CD40 and LMP1 via separate mechanisms, TRAF6 plays a significant role in signal transduction by both. It is unknown whether TRAF6 mediates CD40 versus LMP1 functions via distinct or shared pathways. In this study, we tested the hypothesis that TRAF6 uses the kinase TAK1 to trigger important signaling pathways following both CD40 and LMP1 stimulation. We determined that TAK1 was required for JNK activation and interleukin-6 (IL-6) production mediated by CD40 and LMP1, in both mouse and human B cells. Additionally, TRAF3 negatively regulated TRAF6-dependent, CD40-mediated TAK1 activation by limiting TRAF6 recruitment. This mode of regulation was not observed for LMP1 and may contribute to the dysregulation of LMP1 compared to CD40 signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号