首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The suspensor plays an active role during the early embryo development of flowering plants. In orchids, the suspensor cells are highly vacuolated without structural specializations, and the possible mechanism(s) that enable the suspensor to serve as the nutrient uptake site is virtually unknown. Here, we used the fluorescent tracer CFDA to characterize the pathway for symplastic transport in the suspensor cells of developing embryos and to provide direct visual evidence that the orchid suspensor has unique physiological properties. The embryo proper uptakes the fluorescent dye through the suspensor. CF could first be detected throughout the suspensor cell and then subsequently in the embryo proper. A plasmolysis experiment clearly indicates that suspensor cells have a more negative osmotic potential than the adjoining testa cells. It is proposed that the preferential entry of CFDA into the suspensor cell of the Nun orchid is aided by the more negative osmotic potential of the suspensor than neighboring cells, providing a driving force for the uptake of water from the apoplast into the symplast.  相似文献   

2.
Embryology of Cymbidium sinense: Embryo Development   总被引:2,自引:0,他引:2  
Embryo development inCymbidium sinense is characterized by twoconsecutive oblique divisions resulting in the formation ofa four-celled embryo. Three of the four cells towards the micropylebegin to vacuolate while the remaining cell located at the terminusremains cytoplasmic. The three cells towards the base becomesuspensor cells, and they continue to elongate and expand bythe process of vacuolation. The terminal cytoplasmic cell continuesto divide and give rise to the embryo proper and additionalsuspensor cells. Nile red staining indicates the absence ofcuticular material in the walls of the suspensor cells. A positivereaction towards nile red can be detected in the embryo properafter periclinal divisions have ceased in the surface layer.In the mature embryo, storage protein and lipid are presentin the cells of the embryo proper. Embryo; orchid; suspensor; cuticle; Cymbidium sinense (Andr.) Willd.  相似文献   

3.
某些兰科植物的种子成熟前,在无菌萌发过程中有较高的萌发率,而成熟后萌发率急剧下降。本研究针对这一现象,对三种兜兰属植物种子的发育过程进行了解剖学观察,并对授粉后不同时期的种子进行无菌播种,80d后统计其萌发率,以探究种子发育过程中的解剖学特征与萌发率之间的关系。研究结果表明种胚刚发育到椭球形胚的时候,胚柄尚存,种皮细胞尚未皱缩,此时三种兜兰的萌发率都能达到较高水平,表明这是适合兜兰属植物萌发的最佳时期;此后,种皮开始皱缩,木质素类物质积累导致种皮透水性下降,推测这可能是导致其后期萌发率下降的主要因素之一。  相似文献   

4.
Aided by the techniques of ultrathin section and electron microscopy, the changes of cell ultrastructure of seed germination of Bletilla striata was investigated. It was found that the seeds of B. striata were germinated easily among Orchidaceae, the large thin-wall cells of embryo contained a great amount of starch and lipid materials which were nutrients of seed germination. The differentiation and growth of the nutritive organ of B. striata would be accelerated after fungus infection. Fungus could penetrate seed coat in cell interstice, invaded, embryo through suspensor, and interspersed in several layers of embryonic ceils. Cytoplasm and organelles of embryo would disappear after the cells infected by fungus, and then endocytic plasmalemma produces some sacs enclosing and digesting hyphae. The hyphae with its tip inflation, relying on expansion-pressure of its cytoplasm, could penetrate cell wall of embryo. In addition, after invasion hyphae wall was significantly thickened by the deposition of the embryonic cytoplasm. In the end, the hyphae would be wholly collapsed and its degradated materials were used as nutrient for germination. The cells without penetration' by hyphae show vigrous metabolism activity in protocorms.  相似文献   

5.
Background and Aims Although abscisic acid (ABA) is commonly recognized as a primary cause of seed dormancy, there is a lack of information on the role of ABA during orchid seed development. In order to address this issue, the localization and quantification of ABA were determined in developing seeds of Cypripedium formosanum.Methods The endogenous ABA profile of seeds was measured by enzyme-linked immunosorbent assay (ELISA). Temporal and spatial distributions of ABA in developing seeds were visualized by immunohistochemical staining with monoclonal ABA antibodies. Fluoridone was applied to test the causal relationship between ABA content and seed germinability.Key Results ABA content was low at the proembryo stage, then increased rapidly from 120 to 150 days after pollination (DAP), accompanied by a progressive decrease in water content and seed germination. Immunofluorescence signals indicated an increase in fluorescence over time from the proembryo stage to seed maturation. From immunogold labelling, gold particles could be seen within the cytoplasm of embryo-proper cells during the early stages of seed development. As seeds approached maturity, increased localization of gold particles was observed in the periplasmic space, the plasmalemma between embryo-proper cells, the surface wall of the embryo proper, and the inner walls of inner seed-coat cells. At maturity, gold particles were found mainly in the apoplast, such as the surface wall of the embryo proper, and the shrivelled inner and outer seed coats. Injection of fluoridone into capsules resulted in enhanced germination of mature seeds.Conclusions The results indicate that ABA is the key inhibitor of germination in C. formosanum. The distinct accumulation pattern of ABA suggests that it is synthesized in the cytosol of embryo cells during the early stages of seed development, and then exported to the apoplastic region of the cells for subsequent regulatory processes as seeds approach maturity.  相似文献   

6.
Summary Fertilized ovules from sugar beet, Beta vulgaris L., of different intra- and interspecific crosses have been grown under in situ and in vitro conditions and investigated by light microscopy. Selected anatomical parameters were observed and entered in a computer program for statistical treatment. After a few days in culture the cells of the inner integument epidermis develop reticulate wall thickenings and their content of tannins decrease. Likewise, the starch content in the outer integument decreases and no real seed coat is formed. The funiculus tissue increases its metabolic activity, i.e., abundant accumulation of protein and starch. Callus or callus-like proliferations develop in the nucellus and the suspensor, but only rarely in the embryo or endosperm. However, the embryo may show an irregular morphology. Very rapid metabolism of starch in the suspensor may be related to the ability of the embryo to survive the first days in culture. Generally, the cellular responses, most significant in the maternal sporophytic tissue and the suspensor rather than in the embryo and endosperm, can be explained as structural adaptations to alternative pathways of nutrient supply.  相似文献   

7.
黄精种子萌发过程发育解剖学研究   总被引:2,自引:0,他引:2  
采用石蜡切片技术对成熟黄精种子形态及萌发过程中的形态学变化及解剖结构特征进行了研究,以阐明黄精种子繁殖的生物学机制。结果显示:(1)成熟的黄精种子由外而内依次为种皮、胚乳和胚等3部分组成。其中种皮由一层木质化的细胞组成;胚乳占据种子的大部分结构,胚乳细胞含有大量淀粉,细胞壁增厚;胚处于棒型胚阶段。(2)黄精种子在萌发过程中棒型胚靠近种脐端分化为吸器、子叶联结和子叶鞘,靠近种孔的部位分化出胚根、胚轴和胚芽。(3)黄精种子萌发首先由子叶联结伸长将胚芽和胚根原基推出种孔,紧接着下胚轴膨大形成初生小根茎,吸器留在种子中分解吸收胚乳中的营养物质。(4)通过子叶联结连通吸器和初生小根茎,将胚乳中的营养物质由吸器-子叶联结这个通路转移到初生小根茎中,为初生根茎上胚芽和胚根的进一步分化提供物质保障。(5)黄精种子自然条件下萌发率较低,而且当年不出土。研究表明,黄精种子的繁殖生物学特性是其生态适应的一种重要机制。  相似文献   

8.
Morphometric analysis of orchid seeds indicates that testa and embryo dimensions, color and morphology as well as the presence, absence or nature of reticulation on seed coat walls are of diagnostic value. These studies also point to structure and function correlations in orchid seeds.  相似文献   

9.
During early embryogeny, structural differentiation of the suspensor and endosperm can be observed with the formation of cells with wall ingrowths. In the early proembryo stage, wall ingrowths are seen only on the boundary walls of the embryo sac around the proembryo and at the chalazal end. Later, ingrowths appear in the outer walls of the basal suspensor cells and some wall ingrowths also begin to develop in the outer walls of cellular endospermic cells adjacent to the nucellar cap and the inner integumentary tissues. The suspensor appears to remain active throughout the differentiation stages. Two regions can be clearly distinguished in the suspensor: a basal region and a neck region. Wall ingrowths appear to form only in the cells of the basal region. During the development of the cellular endospermic sheath, its cell number and size both increase slightly. Later, these cells rapidly become separated from each other. Those endospermic cells that abut directly onto the integumentary tissues also develop wall ingrowths. In the region of the fluid endosperm, wall ingrowths are especially abundant in the boundary walls on the ventral side of the embryo sac. The possible pathway of nutrient flow to the developing embryo is discussed.  相似文献   

10.
为建立小叶兜兰的繁育技术体系,本研究通过无菌播种的方法,辅以TTc生活力测定等方法,比较了小叶兜兰种子在授粉后不同发育时期和培养条件下的萌发率,对小叶兜兰种胚的发育过程进行了显微观察,探讨种胚发育程度与萌发的关系。结果表明,小叶兜兰种胚的发育阶段对萌发的影响最大,授粉后255d的种子萌发率最高(90.71%),该阶段种子仍呈白色但微干燥,种胚刚发育至球形胚阶段,胚柄尚存。1/4MS和1/2MS为小叶兜兰适宜的基本培养基,添加100mg·L^-1的土豆汁对小叶兜兰的无菌萌发有良好的促进作用。  相似文献   

11.
The embryo envelope tissues in both mature dry seed and duringearly germination of Phacelia tanacetifolia were investigatedby bright-field and fluorescence light microscopy and scanningelectron microscopy. The ruminate seed had an irregularly reticulatesurface owing to the presence of polygonal areas, correspondingto the cells of the seed coat. The raised margins of these cellsjoined at the lobe tips, where radially arranged thickeningsoccurred. The unitegmic seed coat was made up of three distinctlayers: the frayed outer layer, the middle layer with portionsrising outwards to form the radial thickenings, and the innerlayer, the thickness of which was greatest in the micropylarzone. The endosperm tissue had two regions, the micropylar andthe lateral endosperm, which differed in polysaccharide composition,thickness and metachromasy intensity, and presence (in the lateralendosperm) or absence (in the micropylar endosperm) of birefringenceof the cell walls. Moreover, in the micropylar region, wherethe embryo suspensor remnant was found, Ca-oxalate crystalswere scarce or absent. The presence of a partially permeablecuticle covering the seed endosperm was observed. Incubationof seeds in Lucifer Yellow CH indicated that water was ableto penetrate quickly into the seed coat along the pathway formedby the radial thickenings, the raised margins of the polygonalcells and the middle layer. Afterwards, LY-CH readily infiltratedthe apical portions of the seed lobes and then the whole endosperm.Following imbibition, morphological changes were found in themicropylar endosperm, such as the initial digestion of proteinbodies. In addition, both in the seed coat and in the endosperm,a weaker fluorescence, probably due to leaching of polyphenolicsubstances, was observed. Once the seed coat was broken at themicropylar end of the seed, the endosperm cap surrounding theradicle tip had to be punctured by it so that complete germinationcould occur. Weakening and rupture of the micropylar endospermare briefly discussed. Copyright 2000 Annals of Botany Company Phacelia tanacetifolia, seed coat, micropylar endosperm, endosperm cap, early germination, structure, histochemistry  相似文献   

12.
The suspensor is a unique embryonic region that connects the embryo to the seed coat. In many angiosperms, the suspensor attains remarkably diverse morphological forms ranging from vesicular single-celled (Orchidaceae) to differentiated multicellular structures (Fabaceae). These variations may be specific to the genera and species of different families, and even members of a single family show a fair amount of diversity in suspensor morphology. Clear differences in the structure of plastids were observed due to type and phylogenetic relationship of angiosperm suspensors. In present study, diversity within suspensor plastids was evident in representatives of four Crassulaceae genera. In more closely related genera this difference was smaller, while in genera less related to each other, it was larger. In this family a decreasing gradation in the size and complexity of plastids from the basal cell to the chalazal suspensor cells and the embryo proper was found. In angiosperms, also a gradient in the size of nuclei and the degree of ploidy along the micropyle-chalaza axis embryo exists. Such a gradient can also be correlated with the gradient of plastids and the variation in plasmodesmata diameter along the micropyle-chalaza axis in the Crassulaceae embryo.  相似文献   

13.
In the literature there is disagreement about the existence of a coleorhiza in cycad embryos. In this paper the terminology of the cycad ovule, seed and embryo is revised. It was confirmed that the cycad ovule and seed are pachychalazal and that the seed coat is exclusively formed by the pachychalaza. The term ‘pleurotesta’ as a substitute for the so-called ‘endotesta’ is suggested to describe the inner, membranous part of the seed coat. The anatomy of the cycad embryo was studied in comparison with the grass embryo and it was found that a coleorhiza does exist in cycad embryos and derives from the distal part of the suspensor. It is postulated that the coleorhiza in grasses also derives from the distal part of the suspensor and that the two structures are therefore structurally homologous.  相似文献   

14.
The development of the suspensor in two species ?? Sempervivum arachnoideum and Jovibarba sobolifera ?? was investigated using cytochemical methods, light and electron microscopy. Cytological processes of differentiation in the embryo-suspensor were compared with the development of embryo-proper. The mature differentiated suspensor consists of a large basal cell and three to four chalazal cells. The basal cell produces haustorial branched invading ovular tissues. The walls of the haustorium and the micropylar part of the basal cell form the wall ingrowths typical for a transfer cells. The ingrowths also partially cover the lateral wall and the chalazal wall separating the basal cell from the other embryo cells. The dense cytoplasm filling the basal cell is rich in: numerous polysomes lying free or covering rough endoplasmic reticulum (RER), active dictyosomes, microtubules, bundles of microfilaments, microbodies, mitochondria, plastids and lipid droplets. Cytochemical tests (including proteins, insoluble polysaccharides and lipids are distributed in the suspensor during different stages of embryo development) showed the presence of high amounts of macromolecules in the suspensor cells, particularly during the globular and heart-shaped phases of embryo development. The protein bodies and lipid droplets are the main storage products in the cells of the embryo-proper. The results of Auramine 0 indicate that a cuticular material is present only on the surface walls of the embryo-proper, but is absent from the suspensor cell wall. The ultrastructural features and cytochemical tests indicate that in the two species ?? S. arachnoideum and J. sobolifera ?? the embryo-suspensor is mainly involved in the absorption and transport of metabolites from the ovular tissues to the developing embryo-proper.  相似文献   

15.
Summary The inner epidermis of the inner integument of cotton seed coats (fringe-layer) and the cuticles between this cell layer and the nucellus were examined in the light and electron microscope at different times of their development. The cells of the fringe-layer contain only small vacuoles and their cytoplasm is densely packed with organelles and free and membrane-bound polysomes. The lateral walls contain many plasmodesmata. At the time when the fruit capsules stop growing, the fringe-cells produce a cell wall labyrinth, resembling that of transfer cells. The cell wall labyrinth is restricted to the lateral walls. The differentiated state of the fringe-cells is short-lived. At about the time of elaboration of the cell wall labyrinth most of them become progressively vacuolated, lignify, and lose their cytoplasmic constituents. The development of the fringe-layer is well correlated with other developmental events in the inner integument, but not with the filling of embryo and endosperm with reserve substances.At anthesis, the fringe-layer and nucellus are covered by a thin cuticle proper of about 20 nm. After anthesis, the nucellar cells start to produce a cuticular layer of considerable, but variable, thickness (0.25–2.5 m), containing a polysaccharide network.In drying seeds the cells of the fringe-layer disrupt. The thin outer tangential wall remains attached to the seed coat. The rest of the cell, together with the cuticles and the collapsed cells of the nucellus, form a protective layer around embryo and endosperm, remaining attached to the seed coat at the chalazal end.  相似文献   

16.
不同培养基上白芨的种子萌发与幼苗形态发生   总被引:5,自引:0,他引:5  
对无菌条件下白芨种子在不同培养基上的萌发及其幼苗形态发生进行了研究.结果表明:在白芨种子萌发过程中,种胚先转绿,然后在种胚远离残余胚柄的一端突破种皮,形成原球茎.在原球茎顶端分化出叶原基,并逐渐发育成叶片.在原球茎下部表面存在透明的毛状物,推测这些毛状物与幼根根毛是同功的.白芨种子萌发最适培养基为1/2 g·L-1 +1.0 mMS NAA.添加低浓度的外源细胞分裂素(6-BA或KT)与NAA组合均严重抑制种子的萌发,种子萌发率较低,形成的圆球茎较小,原球茎分化出的小苗也较细弱.白芨生根壮苗最适培养基为1/2 g·L-1 NAA+2.0 g·L-1活性炭+1.0 mg·L-1 +1.0 mMS GA3.生根壮苗培养基中加入活性炭和GA3有利于根的生长和壮苗,且植株长势健壮.炼苗基质为腐殖土和蛭石(1∶1),成活率可达90%以上.  相似文献   

17.
This investigation begins with the late zygote and traces ultrastructural development to the late globular stage of the embryo. Two nucleoli and satellite nucleoli sometimes occur in the zygote nucleus. Mitochondria, dictyosomes, cytoplasmic ribosomes, rough ER, and lipid bodies are numerous in the zygote. Microbodies are occasionally seen. The cell wall becomes well developed before the first division. No plasmodesmata occur in the zygote wall. The basal cell of the proembryo and the suspensor cells of the later embryo have very dense cytoplasm with a high concentration of cytoplasmic ribosomes. The nuclei are very electron opaque. The terminal cell and the cells of the embryo proper have a fine structure similar to that of the zygote. Plastids increase in number, size, starch content, and amount of thylakoid lamellae as the embryo develops. Mitochondria are numerous and appear active at all stages. Dictyosome activity, ribosomal aggregation, and the amount of ER are highest during the late globular stage. Lipid bodies are present up to the early globular stage, then disappear. The inner cell walls of the embryo are thin and have many plasmodesmata. These walls begin to thicken at the late globular stage, and at this time the size of the embryo begins to show an increase over that of the zygote. The results show a corresponding increase in the amount and activity of the metabolic machinery as the development of the embryo progresses. Lipids are probably more important as a nutrient source in the zygote and early embryo; starch becomes more important in the late stages. Absorption of nutrient material into the embryo sac and developing embryo appears to be from the chalazal end.  相似文献   

18.
Fertilization of the female gametophyte in angiosperm plants initiates a process of coordinated development of embryo, endosperm, and seed coat that ensures the production of a viable seed. Mutant analysis has suggested that communication between the endosperm and the seed coat is an important determinant in this process. In addition, cell groups within the embryo, derived from the apical and from the basal cell, respectively, after zygote division, concertedly establish a functional root meristem, and cells in the apical region of the embryo are hypothesized to repress cell divisions in the basal cell-derived suspensor. The available evidence for these interregional communication events mostly relies on the analysis of mutant phenotypes in Arabidopsis. To provide independent and direct evidence for communication events, we used conditional domain-specific expression of the diphtheria toxin A chain (DTA) in developing Arabidopsis seeds. By using a collection of cell- or tissue-type-specific promoters, we show that the mGAL4:VP16/UAS two-component gene expression allows reliable spatiotemporal and conditional expression of the GFP:GUS reporter and the DTA gene in the developing embryo and endosperm. Expression of DTA in the protoderm of the embryo proper led to excessive proliferation of suspensor cells, sometimes resulting in the formation of secondary embryos. Endosperm-specific expression of DTA caused complete cessation of seed growth, followed by pattern defects in the embryo and embryo arrest. Taken together, the results presented here substantiate the evidence for and underline the importance of interregional communication in embryo and seed development and demonstrate the usefulness of conditional toxin expression as a method complementary to phenotypic analysis of developmental mutants.  相似文献   

19.
西瓜胚和胚乳的发育   总被引:1,自引:0,他引:1  
王秀玲  高新起  任秋萍 《广西植物》2002,22(5):437-T006
应用显微技术对西瓜胚和胚乳的发育过程进行了观察并分析了西瓜胚珠败育的原因。西瓜胚发育属紫菀型。合子第一次分裂为不均等分裂 ,形成的基细胞体积明显较顶细胞大 ,两细胞均含有多个液泡。原胚发育过程中没有明显的胚柄。最外层的原胚细胞 ,与胚乳细胞相邻的壁上被胼胝质物质包围 ,且无外连丝存在 ;与胚囊壁相接的壁上无壁内突结构。胚的子叶体积增长的同时 ,子叶细胞内积累蛋白质和脂类物质 ,多糖物质的含量下降。胚乳发育属核型 ,在球形胚期开始自珠孔端向合点端细胞化 ,胚子叶分化出后开始自珠孔端向合点端退化。胚乳合点端在球形胚早期形成发达的胚乳吸器 ,开始呈游离核状态 ,后细胞化 ,在心型胚期之后退化。  相似文献   

20.
Summary The inner epidermis of the bean seed coat shows remarkable structural changes during seed development. At the globular stage of development, a moderately electron-dense substance begins to accumulate in the outer tangential and radial walls of the cells. The staining and fluorescence characteristics, together with the localization of peroxidase in the wall, suggest that this electron-dense material is a phenolic substance. At the same stage of embryo development, structural specialization can be detected in the cytoplasm of the epidermal cells with an increase in the abundance of organelles, especially the endoplasmic reticulum, mitochondria, and dictyosomes. These structural features are similar to those in the underlying branched parenchyma cells. As the seed rapidly expands during the maturation stage of embryo development, the epidermal cells and the inner layers of the branched parenchyma cells begin to degenerate. Small ruptures can be detected in the epidermis, exposing the branched parenchyma cells. These structural changes are discussed in relation to their possible functions during embryo development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号