首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 989 毫秒
1.
Administration of chlorphentermine to rats leads to an increase in the phospholipid content of pulmonary surfactant materials and alveolar macrophages. It is known that this drug binds to pure phospholipids and prevents their degradation by phospholipases. Therefore, experiments were carried out to determine if chlorphentermine binds to surfactant phospholipids in vitro and to measure the in vivo association of drug with phospholipids in alveolar lavage materials from rats injected with [14C]chlorphentermine. The presence of chlorphentermine in alveolar macrophages, type II cells and other small pneumocytes (a population of lung cells which does not include alveolar macrophages or type II cells) from treated animals was also assessed. Binding of the drug to surfactant phospholipids, as measured with the fluorescent probe, 1-anilino-8-naphthalene sulfonate, occurs in vitro and does not differ in various subfractions of alveolar lavage materials isolated by differential centrifugation. Following daily administration of chlorphentermine to rats for 3 days, the drug appears to be associated with surfactant phospholipids such that the molar ratio is 1:100 (chlorphentermine/phospholipid). Chlorphentermine is also associated with alveolar macrophages (molar ratio, 1:18) and type II cells (molar ratio, 1:33). Not much drug is associated with the population of other lung cells (molar ratio, 1:333). In alveolar macrophages, approx. 70% of the drug seems to be bound to phospholipid and/or sequestered in subcellular organelles. However, only 20% of the chlorphentermine is bound and/or sequestered in type II cells. The results of these experiments suggest that following chlorphentermine administration, the drug is associated with phospholipids in acellular pulmonary lavage materials, alveolar macrophages and type II cells. This drug-phospholipid interaction may impair phospholipid degradation and lead to a phospholipidosis in surfactant materials and alveolar macrophages.  相似文献   

2.
We report that the isolectin Griffonia simplicifolia I-B4 isolated from G. simplicifolia seeds binds to rat alveolar macrophages present in frozen sections of lung tissue or bronchoalveolar lavage fluid. G. simplicifolia I-B4 does not bind to alveolar epithelial cells. We established that G. simplicifolia I-B4 binds to the macrophages via interaction with terminal alpha-D-galactopyranosyl residues present on these cells. This was substantiated by demonstrating that binding is inhibited either by the haptenic sugar alpha-D-galactopyranoside or by treating the cells with coffee bean alpha-galactosidase. Because murine laminin is known to contain terminal alpha-D-galactopyranosyl end-groups, and because we found that an anti-laminin antiserum binds to rat alveolar macrophages, we suspect that G. simplicifolia I-B4 may be binding to laminin present on the macrophages. To isolate alveolar type II epithelial cells from rat lungs, we developed a method that utilizes the lectin G. simplicifolia I. When proteinase-derived suspensions of pulmonary cells are incubated with G. simplicifolia I, the macrophages agglutinate and can be removed by filtration through nylon mesh. After incubating the resulting cellular suspension in tissue culture, the adherent cells are 94 +/- 2% (S.D.) type II cells. When compared to cells isolated by repeated differential adherence, the lectin-prepared type II cells have similar morphology and staining characteristics, form domes in monolayers and incorporate similar amounts of palmitate into disaturated phosphatidylcholine. We believe that the procedure outlined in this report provides a simple and effective method to isolate type II alveolar epithelial cells from rat lungs.  相似文献   

3.
Pulmonary ischemia-reperfusion (IR) injury entails acute activation of alveolar macrophages followed by neutrophil sequestration. Although proinflammatory cytokines and chemokines such as TNF-alpha and monocyte chemoattractant protein-1 (MCP-1) from macrophages are known to modulate acute IR injury, the contribution of alveolar epithelial cells to IR injury and their intercellular interactions with other cell types such as alveolar macrophages and neutrophils remain unclear. In this study, we tested the hypothesis that following IR, alveolar macrophage-produced TNF-alpha further induces alveolar epithelial cells to produce key chemokines that could then contribute to subsequent lung injury through the recruitment of neutrophils. Cultured RAW264.7 macrophages and MLE-12 alveolar epithelial cells were subjected to acute hypoxia-reoxygenation (H/R) as an in vitro model of pulmonary IR. H/R (3 h/1 h) significantly induced KC, MCP-1, macrophage inflammatory protein-2 (MIP-2), RANTES, and IL-6 (but not TNF-alpha) by MLE-12 cells, whereas H/R induced TNF-alpha, MCP-1, RANTES, MIP-1alpha, and MIP-2 (but not KC) by RAW264.7 cells. These results were confirmed using primary murine alveolar macrophages and primary alveolar type II cells. Importantly, using macrophage and epithelial coculture methods, the specific production of TNF-alpha by H/R-exposed RAW264.7 cells significantly induced proinflammatory cytokine/chemokine expression (KC, MCP-1, MIP-2, RANTES, and IL-6) by MLE-12 cells. Collectively, these results demonstrate that alveolar type II cells, in conjunction with alveolar macrophage-produced TNF-alpha, contribute to the initiation of acute pulmonary IR injury via a proinflammatory cascade. The release of key chemokines, such as KC and MIP-2, by activated type II cells may thus significantly contribute to neutrophil sequestration during IR injury.  相似文献   

4.
ICAM-1 is an intercellular adhesion molecule of the immunoglobulin supergene family involved in adherence of leukocytes to the endothelium and in leukocytic accumulation in pulmonary injury. In the current study, the antigen retrieval technique was used to detect ICAM-1 immunohistochemically in paraffin sections of lungs from human, mouse and rat as well as in bleomycin- or radiation-induced fibrotic lungs from rat and human. In normal lung tissue, the expression of ICAM-1 on alveolar type I epithelial cells is stronger than on alveolar macrophages and on endothelial cells. Preembedding immuno-electron microscopy of normal rat, mouse and human lung samples revealed sclective ICAM-1 expression on the surface of type I alveolar epithelial cells and, to a lesser extent, on the pulmonary capillary endothelium and on alveolar macrophages. In fibrotic specimens, both focal lack and strengthening of immunostaining on the surface of type I cells was found. Alveolar macrophages were found focally lacking ICAM-1 immunoreactivity. In some cases, rat type II pneumocytes exhibited positive immunoreactions for ICAM-1. Immunoelectron microscopy with preembedded rat lungs (bleomycin-exposed cases) confirmed the altered ICAM-1 distribution at the alveolar epithelial surface. In the alveolar fluid of fibrotic rat lungs, in contrast to that from untreated controls, soluble ICAM-1 was detected by western blot analysis.  相似文献   

5.
Most patients with acute lung injury (ALI) have reduced alveolar fluid clearance that has been associated with higher mortality. Several mechanisms may contribute to the decrease in alveolar fluid clearance. In this study, we tested the hypothesis that pulmonary edema fluid from patients with ALI might reduce the expression of ion transport genes responsible for vectorial fluid transport in primary cultures of human alveolar epithelial type II cells. Following exposure to ALI pulmonary edema fluid, the gene copy number for the major sodium and chloride transport genes decreased. By Western blot analyses, protein levels of alphaENaC, alpha1Na,K-ATPase, and cystic fibrosis transmembrane conductance regulator decreased as well. In contrast, the gene copy number for several inflammatory cytokines increased markedly. Functional studies demonstrated that net vectorial fluid transport was reduced for human alveolar type II cells exposed to ALI pulmonary edema fluid compared with plasma (0.02 +/- 0.05 versus 1.31 +/- 0.56 microl/cm2/h, p < 0.02). An inhibitor of p38 MAPK phosphorylation (SB202190) partially reversed the effects of the edema fluid on net fluid transport as well as gene and protein expression of the main ion transporters. In summary, alveolar edema fluid from patients with ALI induced a significant reduction in sodium and chloride transport genes and proteins in human alveolar epithelial type II cells, effects that were associated with a decrease in net vectorial fluid transport across human alveolar type II cell monolayers.  相似文献   

6.
Alveolar type II cells secrete, internalize, and recycle pulmonary surfactant, a lipid and protein complex that increases alveolar compliance and participates in pulmonary host defense. Surfactant protein (SP) D, a collagenous C-type lectin, has recently been described as a modulator of surfactant homeostasis. Mice lacking SP-D accumulate surfactant in their alveoli and type II cell lamellar bodies, organelles adapted for recycling and secretion of surfactant. The goal of current study was to characterize the interaction of SP-D with rat type II cells. Type II cells bound SP-D in a concentration-, time-, temperature-, and calcium-dependent manner. However, SP-D binding did not alter type II cell surfactant lipid uptake. Type II cells internalized SP-D into lamellar bodies and degraded a fraction of the SP-D pool. Our results also indicated that SP-D binding sites on type II cells may differ from those on alveolar macrophages. We conclude that, in vitro, type II cells bind and recycle SP-D to lamellar bodies, but SP-D may not directly modulate surfactant uptake by type II cells.  相似文献   

7.
8.
The alveolar surface of the lung is lined by two classes of epithelial cells, type I and type II cells. Type I cells cover more than 97% of the alveolar surface. Although this cell type is felt to be essential for normal gas exchange, neither unique identifying characteristics nor functions have been described for the type I cell. We have produced monoclonal antibodies to (a) component(s) of molecular weight 40,000 and 42,000 of the apical surface of rat alveolar type I cells. The antibodies are specific to the lung in Western blots of organ homogenates. In immunocytochemical studies of frozen lung at the level of both light and electron microscopy, the monoclonal antibodies appear to react specifically with the apical plasma membrane of type I cells. Airway, vascular, interstitial cells, type II cells and macrophages are not immunoreactive. Western blots of isolated type I cells (approx. 70% pure) also demonstrate immunoreactivity at molecular weights of 40,000 and 42,000. When the lung is injured, type I cells may be damaged and sloughed from the alveolar surface. Alveolar repair occurs when the second type of alveolar cell, the type II cell, divides. Cell progeny may retain type II cell morphology or may differentiate into type I cells. Western blots of freshly isolated type II cells (approx. 85% pure) do not display immunoreactivity with our monoclonal antibodies. However, type II cells maintained in culture acquire immunoreactivity to monoclonal antibodies, demonstrating that type II cells in vitro have the capacity to develop a characteristic associated with type I cells in situ. The availability of markers for a specific membrane component of type I cells should facilitate the study of many questions on alveolar functions, development and response to injury.  相似文献   

9.

Background

Prophylactic exogenous surfactant therapy is a promising way to attenuate the ischemia and reperfusion (I/R) injury associated with lung transplantation and thereby to decrease the clinical occurrence of acute lung injury and acute respiratory distress syndrome. However, there is little information on the mode by which exogenous surfactant attenuates I/R injury of the lung. We hypothesized that exogenous surfactant may act by limiting pulmonary edema formation and by enhancing alveolar type II cell and lamellar body preservation. Therefore, we investigated the effect of exogenous surfactant therapy on the formation of pulmonary edema in different lung compartments and on the ultrastructure of the surfactant producing alveolar epithelial type II cells.

Methods

Rats were randomly assigned to a control, Celsior (CE) or Celsior + surfactant (CE+S) group (n = 5 each). In both Celsior groups, the lungs were flush-perfused with Celsior and subsequently exposed to 4 h of extracorporeal ischemia at 4°C and 50 min of reperfusion at 37°C. The CE+S group received an intratracheal bolus of a modified natural bovine surfactant at a dosage of 50 mg/kg body weight before flush perfusion. After reperfusion (Celsior groups) or immediately after sacrifice (Control), the lungs were fixed by vascular perfusion and processed for light and electron microscopy. Stereology was used to quantify edematous changes as well as alterations of the alveolar epithelial type II cells.

Results

Surfactant treatment decreased the intraalveolar edema formation (mean (coefficient of variation): CE: 160 mm3 (0.61) vs. CE+S: 4 mm3 (0.75); p < 0.05) and the development of atelectases (CE: 342 mm3 (0.90) vs. CE+S: 0 mm3; p < 0.05) but led to a higher degree of peribronchovascular edema (CE: 89 mm3 (0.39) vs. CE+S: 268 mm3 (0.43); p < 0.05). Alveolar type II cells were similarly swollen in CE (423 μm3(0.10)) and CE+S (481 μm3(0.10)) compared with controls (323 μm3(0.07); p < 0.05 vs. CE and CE+S). The number of lamellar bodies was increased and the mean lamellar body volume was decreased in both CE groups compared with the control group (p < 0.05).

Conclusion

Intratracheal surfactant application before I/R significantly reduces the intraalveolar edema formation and development of atelectases but leads to an increased development of peribronchovascular edema. Morphological changes of alveolar type II cells due to I/R are not affected by surfactant treatment. The beneficial effects of exogenous surfactant therapy are related to the intraalveolar activity of the exogenous surfactant.  相似文献   

10.
Three cytoplasmic enzyme patterns were studied in pulmonary alveolar type II cells isolated from normal adult hamster lung: lactate dehydrogenase (total and isoenzymes), peroxidase, and beta-N-acetylglucosaminidase. Enzyme patterns of freshly-isolated type II cells were found to be different from those of freshly-isolated pulmonary hamster fibroblasts. After both types of cells had been cultured for seven days, no difference in cytoplasmic enzyme patterns remained. Lactate dehydrogenase isoenzyme patterns for type II cells were different from those obtained from polymorphonuclear leukocytes and alveolar macrophages. These data may be useful in detecting sources of lung injury by assessment of enzyme patterns in bronchoalveolar lavage fluid.  相似文献   

11.
Pulmonary surfactant isolated from bronchoalveolar lavage fluid of rat lung contained a high content of surfactant protein A (SP-A) in starved for 2 days compared to fed controls, but this phenomena returned to baseline following more than 4 days starvation. As determined by immunoperoxidase staining of lung sections using SP-A antibody, SP-A could be consistently observed in nonciliated bronchiolar (Clara) cells, alveolar type II cells and some alveolar macrophages (AM). Fc receptor-mediated phagocytosis of AM was enhanced by SP-A, which was dependent on the dosis and reached a maximum at 10 micrograms of SP-A/ml. Antibody to SP-A completely inhibited the enhanced response of phagocytosis. When exposed AM subpopulations, separated into four fractions (I, II, III and IV) by discontinuous Percoll gradient, to SP-A or pulmonary surfactant prepared from rats fed and starved for 2 days enhanced their phagocytic activity in high dense cells (III and IV), particularly to SP-A and pulmonary surfactant from rats starved for 2 days. Whereas little change in lower dense fractions (I and II) were seen in all exposures except for SP-A that enhanced the cells of fraction II. These results supported the concept that pulmonary surfactant and its apoprotein, SP-A, are a factor to regulate lung defense system including activation of AM that undergo different processes following starvation.  相似文献   

12.
The uptake of fluorescent-labeled liposomes (with a surfactant-like composition) by alveolar macrophages and alveolar type II cells was studied using flow cytometry, in vivo by instillation of the labeled liposomes in the trachea of ventilated rats followed by isolation of the alveolar cells and determination of the cell-associated fluorescence, and in vitro by incubation of isolated alveolar cells with the fluorescent liposomes. The results show that the uptake of liposomes by the alveolar cells is time and concentration dependent. In vivo alveolar macrophages internalize more than three times as many liposomes as alveolar type II cells, whereas in vitro, the amount of internalized liposomes by these cells is approximately the same. In vitro, practically all the cells (70-75%) internalize liposomes, whereas in vivo only 30% of the alveolar type II cells ingest liposomes vs. 70% of the alveolar macrophages. These results indicate that in vivo, only a small subpopulation of alveolar type II cells is able to internalize surfactant liposomes.  相似文献   

13.
Light and electron microscopic analysis of murine lungs or isolated pulmonary cells was performed three days after intranasal administration of the bacterial immunostimulant, Propionibacterium acnes (P. acnes). Our observations indicated that pulmonary alveolar and airway macrophages (PAMs) were the only cells with P. acnes bacilli in their cytoplasm. Bacilli were not observed in pulmonary interstitial macrophages, granulocytes, lymphocytes or pulmonary parenchymal cells such as type I and type II pneumocytes. Because of the morphological heterogeneity of PAMs observed in control and experimental animals, it was not possible from these studies to be certain about the relative abundance or complexity of lysosomes, endoplasmic reticulum, Golgi and other organelles in the two groups. However, we noted that it was not uncommon to observe in the same PAM, profiles of P. acnes and a well developed Golgi complex and endoplasmic reticulum. These P. acnes--associated morphological alterations occurred at a time when functional activities (e.g., phagocytosis, cytostasis) of PAMs were enhanced.  相似文献   

14.
The biochemical characteristics of type II alveolar epithelial cells dissociated from adult rabbit lung by instillation of low concentrations of an elastase trypsin mixture are reported. Cells studied immediately (within 4 h) after isolation were found to incorporate the radioactively labelled precursors [U-14C]glucose, [methyl-3H]choline and [3H]palmitate into cellular phosphatidylcholine at rates 2–10-fold higher than previously reported for cells not subject to short-term cell culture. Secretion of phosphatidylcholine was stimulated by beta-adrenergic agonists. Measurement of specific activities of enzymes of phospholipid biosynthesis in subcellular fractions of isolated lung cells showed a significant enrichment of acyl coenzyme A-lysophosphatidylcholine acyltransferase, an enzyme believed to be involved in pulmonary surfactant phosphatidylcholine remodeling, in the endoplasmic reticulum of type II cells. These observations support the utility of freshly isolated type II cells as a model system for the study of the functions of the alveolar epithelium.  相似文献   

15.
Almost all alveolar macrophages in the mouse lung were strongly immunoreactive for epidermal-type fatty acid binding protein. At the electron microscope level, the immunoreactive material was localized diffusely in the cytoplasm but not within the nucleus. A certain number of alveolar type II epithelial cells were also immunoreactive for the protein with variable immuno-intensity, while a substantial number of the type II cells were immunonegative. No immunoreactive interstitial fibroblasts were encountered. Based on the present findings, possible roles of epidermal-type fatty acid binding protein in the host-defence mechanism played by alveolar macrophages are suggested.  相似文献   

16.
The adsorptive properties of phospholipids of pulmonary surfactant are markedly influenced by the presence of three related proteins (26-38 KD, reduced) found in purified surfactant. Whether these proteins are pre-assembled with lipids before secretion is uncertain but would be expected for a lipoprotein secretion. We performed indirect immunocytochemistry on frozen thin sections of rat lung to identify cells and intracellular organelles that contain these proteins. The three proteins, purified from lavaged surfactant, were used to generate antisera in rabbits. Immunoblotting of rat surfactant showed that the IgG reacted with the three proteins and a 55-60 KD band which may be a polymer of the lower MW species. Specific gold labeling occurred over alveolar type II cells, bronchiolar Clara cells, alveolar macrophages, and tubular myelin. In type II cells labeling occurred in synthetic organelles and lamellar bodies, which contain surfactant lipids. Lamellar body labeling was increased fivefold by pre-treating tissue sections with a detergent. Multivesicular bodies and some small apical vesicles in type II cells were also labeled. Secondary lysosomes of alveolar macrophages were immunoreactive. Labeling in Clara cells exceeded that of type II cells, with prominent labeling in secretory granules, Golgi apparatus, and endoplasmic reticulum. These observations clarify the organelles and pathways utilized in the elaboration of surfactant. After synthesis, the proteins move, probably via multivesicular bodies, to lamellar bodies. Both lipids and proteins are present in tubular myelin. Immunologically identical or closely similar proteins are synthesized by Clara cells and secreted from granules which appear not to contain lipid. The role of these proteins in bronchiolar function is unknown.  相似文献   

17.
Taurine uptake by isolated alveolar macrophages and type II cells   总被引:1,自引:0,他引:1  
Evidence suggests that taurine may protect cellular membranes against oxidants (Gordon et al., Am. J. Pathol. 125: 585-600, 1986). The present study was conducted to determine if alveolar macrophages and type II cells (which are relatively resistant to oxidant injury) possess a specialized transport system for the accumulation of taurine. The results indicate that both cell types contain more taurine than plasma or whole lung. Taurine influx exhibited both carrier-mediated and simple diffusion components. Carrier-mediated uptake displayed saturation kinetics (Km = 26.3 and 22.5 microM, while Vmax = 33.2 and 4.9 pmol.10(6) cells-1.min-1 for macrophages and type II cells, respectively). Taurine uptake was dependent on extracellular sodium and inhibited by metabolic inhibitors or ouabain. Total taurine uptake by type II cells was lower than that of alveolar macrophages. However, type II cells exhibited a higher intercellular concentration of taurine (14 vs. 4 mM) because of a higher ratio of carrier-mediated uptake to leakage than with alveolar macrophages. It is possible that this specialized transport system for taurine uptake may lend these cells resistant to oxidant injury.  相似文献   

18.
The pulmonary alveolar epithelium consists of alveolar type I (AT1) and alveolar type II (AT2) cells. Interactions between these two cell types are necessary for alveolar homeostasis and remodeling. These interactions have been difficult to study in vitro because current cell culture models of the alveolar epithelium do not provide a heterocellular population of AT1 and AT2 cells for an extended period of time in culture. In this study, a new method for obtaining heterocellular cultures of AT1- and AT2-like alveolar epithelial cells maintained for 7 d on a rat tail collagen-fibronectin matrix supplemented with laminin-5 is described. These cultures contain cells that appear by their morphology to be either AT1 cells (larger flattened cells without lamellar bodies) or AT2 cells (smaller cuboidal cells with lamellar bodies). AT1-like cells stain for the type I cell marker aquaporin-5, whereas AT2-like cells stain for the type II cell markers surfactant protein C or prosurfactant protein C. AT1/AT2 cell ratios, cell morphology, and cell phenotype-specific staining patterns seen in 7-d-old heterocellular cultures are similar to those seen in alveoli in situ. This culture system, in which a mixed population of phenotypically distinct alveolar epithelial cells are maintained, may facilitate in vitro studies that are more representative of AT1-AT2 cell interactions that occur in vivo.  相似文献   

19.
Leukotriene A4 (LTA4) hydrolase catalyzes the final step in leukotriene B4 (LTB4) synthesis. In addition to its role in LTB4 synthesis, the enzyme possesses aminopeptidase activity. In this study, we sought to define the subcellular distribution of LTA4 hydrolase in alveolar epithelial cells, which lack 5-lipoxygenase and do not synthesize LTA4. Immunohistochemical staining localized LTA4 hydrolase in the nucleus of type II but not type I alveolar epithelial cells of normal mouse, human, and rat lungs. Nuclear localization of LTA4 hydrolase was also demonstrated in proliferating type II-like A549 cells. The apparent redistribution of LTA4 hydrolase from the nucleus to the cytoplasm during type II-to-type I cell differentiation in vivo was recapitulated in vitro. Surprisingly, this change in localization of LTA4 hydrolase did not affect the capacity of isolated cells to convert LTA4 to LTB4. However, proliferation of A549 cells was inhibited by the aminopeptidase inhibitor bestatin. Nuclear accumulation of LTA4 hydrolase was also conspicuous in epithelial cells during alveolar repair following bleomycin-induced acute lung injury in mice, as well as in hyperplastic type II cells associated with fibrotic lung tissues from patients with idiopathic pulmonary fibrosis. These results show for the first time that LTA4 hydrolase can be accumulated in the nucleus of type II alveolar epithelial cells and that redistribution of the enzyme to the cytoplasm occurs with differentiation to the type I phenotype. Furthermore, the aminopeptidase activity of LTA4 hydrolase within the nucleus may play a role in promoting epithelial cell growth.  相似文献   

20.
Lung injury induced by acute endotoxemia is associated with increased generation of inflammatory mediators such as nitric oxide and eicosanoids, which have been implicated in the pathophysiological process. Although production of these mediators by alveolar macrophages (AM) has been characterized, the response of type II cells is unknown and was assessed in the present studies. Acute endotoxemia caused a rapid (within 1 h) and prolonged (up to 48 h) induction of nitric oxide synthase-2 (NOS-2) in type II cells but a delayed response in AM (12-24 h). In both cell types, this was associated with increased nitric oxide production. Although type II cells, and to a lesser extent AM, constitutively expressed cyclooxygenase-2, acute endotoxemia did not alter this activity. Endotoxin administration had no effect on mitogen-activated protein kinase or protein kinase B-alpha (PKB-alpha) expression. However, increases in phosphoinositide 3-kinase and phospho-PKB-alpha were observed in type II cells. The finding that this was delayed for 12-24 h suggests that these proteins do not play a significant role in the regulation of NOS-2 in this model. After endotoxin administration to rats, a rapid (within 1-2 h) activation of nuclear factor-kappaB was observed. This response was transient in type II cells but was sustained in AM. Interferon regulatory factor-1 (IRF-1) was also activated rapidly in type II cells. In contrast, IRF-1 activation was delayed in AM. These data demonstrate that type II cells, like AM, are highly responsive during acute endotoxemia and may contribute to pulmonary inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号