首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a program, named Promega, to predict the Xaa-Pro peptide bond conformation on the basis of backbone chemical shifts and the amino acid sequence. Using a chemical shift database of proteins of known structure together with the PDB-extracted amino acid preference of cis Xaa-Pro peptide bonds, a cis/trans probability score is calculated from the backbone and 13Cβ chemical shifts of the proline and its neighboring residues. For an arbitrary number of input chemical shifts, which may include Pro-13Cγ, Promega calculates the statistical probability that a Xaa-Pro peptide bond is cis. Besides its potential as a validation tool, Promega is particularly useful for studies of larger proteins where Pro-13Cγ assignments can be challenging, and for on-going efforts to determine protein structures exclusively on the basis of backbone and 13Cβ chemical shifts.  相似文献   

2.
The chemical shift difference ([13C] – [13C]) is a reference-independent indicator of the Xaa-Pro peptide bond conformation. Based on a statistical analysis of the 13C chemical shifts of 1033 prolines from 304 proteins deposited in the BioMagRes database, a software tool was created to predict the probabilities for cis or trans conformations of Xaa-Pro peptide bonds. Using this approach, the conformation at a given Xaa-Pro bond can be identified in a simple NOE-independent way immediately after obtaining its NMR resonance assignments. This will allow subsequent structure calculations to be initiated using the correct polypeptide chain conformation.  相似文献   

3.
多肽和蛋白质中Xaa-Pro片段肽脯酰胺键顺反异构对其构象与功能有重要影响.设计合成了一系列模型多肽及其磷酸化多肽,并采用核磁共振实验和分子动力学模拟的方法,研究了所合成多肽中肽脯酰胺键的顺反异构化.结果表明,对脯氨酸之前的Xaa残基进行侧链O-磷酸化会极大地影响该顺反异构化过程,进而调节肽链构象.此外,磷酸化使得多肽顺式构象比例增加,且当磷酸基团不带负电荷时顺式构象所占比例最大.同时,分子动力学模拟所得结果与核磁共振实验相一致,包括最稳定构象和顺反构象统计分布.磷酸基团所带电荷及其空间位阻可能是影响这类磷酸化多肽构象变化的主要因素.  相似文献   

4.
To elucidate the decisive structural factors relevant for dipeptide-carrier interaction, the affinity of short amide and imide derivatives for the intestinal H+/peptide symporter (PEPT1) was investigated by measuring their ability to inhibit Gly-Sar transport in Caco-2 cells. Dipeptides with proline or alanine in the C-terminal position displayed affinity constants (Ki) of 0.15-1.2 mM and 0.08-9.5 mM, respectively. There was no clear relationship between hydrophobicity, size or ionization status of the N-terminal amino acid and the affinity of the dipeptides. However, analyzing the individual peptide bond conformations of Xaa-Pro dipeptides, a striking correlation between the cis/trans ratios (trans contents 24-70%) and the affinity constants was observed. After correcting the Ki values for the incompetent cis isomers, the Ki corr values of most dipeptides were in a small range of 0.1-0.16 mM. This result revealed the decisive role of peptide bond conformation even for a transport protein that is quite promiscuous in substrate translocation. When measuring affinity constants of Xaa-Pro and Xaa-Sar dipeptides, the cis/trans ratios cannot be ignored. Lower affinities of Lys-Pro, Arg-Pro and Pro-Pro indicate that additional molecular factors affect their binding at PEPT1. The Ki values obtained for the corresponding Xaa-Ala dipeptides support this conclusion. Potential substrates or inhibitors of peptide transport were found among Xaa-piperidides and Xaa-thiazolidides. Dipeptides with N-terminal proline displayed a very diverse affinity profile. However, in contrast to current knowledge, several Pro-Xaa dipeptides such as Pro-Leu, Pro-Tyr and Pro-Pro are recognized by PEPT1 with appreciable affinities. Binding seems mainly determined by the hydrophobicity of the C-terminal amino acid and the rigidity of the structure.  相似文献   

5.
The conformational study on 20 Ac-Xaa-Pro-NHMe dipeptides has been carried out using an empirical potential function ECEPP/3 in order to investigate the factors responsible for the preference of proline puckering of the peptides with the trans or cis imide bond preceding the proline. The general conformational preference for down- and up-puckered dipeptides is calculated as trans-down > trans-up > cis-down > cis-up, which is reasonably in accord with that estimated by analyzing X-ray structures of proteins and the result for the single proline residue. The overestimated occurrence of trans-down conformations of proline seems to be caused by excluding long-range interactions that short dipeptides cannot have. The average computed occurrence of dipeptides with cis imide bonds is about 3%, somewhat lower than the value calculated for Ac-Pro-NHMe, which is close to experimental estimates obtained from X-ray structures of proteins. In particular, the interaction of the aromatic side chain of Xaa residue with the proline ring appears not to be strong enough to stabilize the stacked conformations of small dipeptides with cis imide bonds. The propensity to adopt trans or cis imide bond and to form secondary structures of Xaa-Pro sequences is discussed and compared with results obtained from X-ray structures of proteins.  相似文献   

6.
Stress and strain in staphylococcal nuclease.   总被引:5,自引:5,他引:0       下载免费PDF全文
Protein molecules generally adopt a tertiary structure in which all backbone and side chain conformations are arranged in local energy minima; however, in several well-refined protein structures examples of locally strained geometries, such as cis peptide bonds, have been observed. Staphylococcal nuclease A contains a single cis peptide bond between residues Lys 116 and Pro 117 within a type VIa beta-turn. Alternative native folded forms of nuclease A have been detected by NMR spectroscopy and attributed to a mixture of cis and trans isomers at the Lys 116-Pro 117 peptide bond. Analyses of nuclease variants K116G and K116A by NMR spectroscopy and X-ray crystallography are reported herein. The structure of K116A is indistinguishable from that of nuclease A, including a cis 116-117 peptide bond (92% populated in solution). The overall fold of K116G is also indistinguishable from nuclease A except in the region of the substitution (residues 112-117), which contains a predominantly trans Gly 116-Pro 117 peptide bond (80% populated in solution). Both Lys and Ala would be prohibited from adopting the backbone conformation of Gly 116 due to steric clashes between the beta-carbon and the surrounding residues. One explanation for these results is that the position of the ends of the residue 112-117 loop only allow trans conformations where the local backbone interactions associated with the phi and psi torsion angles are strained. When the 116-117 peptide bond is cis, less strained backbone conformations are available. Thus the relaxation of the backbone strain intrinsic to the trans conformation compensates for the energetically unfavorable cis X-Pro peptide bond. With the removal of the side chain from residue 116 (K116G), the backbone strain of the trans conformation is reduced to the point that the conformation associated with the cis peptide bond is no longer favorable.  相似文献   

7.
Non-proline cis peptide bonds have been observed in numerous protein crystal structures even though the energetic barrier to this conformation is significant and no non-prolyl-cis/trans-isomerase has been identified to date. While some external factors, such as metal binding or co-factor interaction, have been identified that appear to induce cis/trans isomerization of non-proline peptide bonds, the intrinsic structural basis for their existence and the mechanism governing cis/trans isomerization in proteins remains poorly understood. Here, we report the crystal structure of a newly isolated neurotoxin, the scorpion alpha-like toxin Buthus martensii Karsch (BmK) M7, at 1.4A resolution. BmK M7 crystallizes as a dimer in which the identical non-proline peptide bond between residues 9 and 10 exists either in the cis conformation or as a mixture of cis and trans conformations in either monomer. We also determined the crystal structures of several mutants of BmK M1, a representative scorpion alpha-like toxin that contains an identical non-proline cis peptide bond as that observed in BmK M7, in which residues within or neighboring the cis peptide bond were altered. Substitution of an aspartic acid residue for lysine at residue 8 in the BmK M1 (K8D) mutant converted the cis form of the non-proline peptide bond 9-10 into the trans form, revealing an intramolecular switch for cis-to-trans isomerization. Cis/trans interconversion of the switch residue at position 8 appears to be sequence-dependent as the peptide bond between residues 9 and 10 retains its wild-type cis conformation in the BmK M1 (K8Q) mutant structure. The structural interconversion of the isomeric states of the BmK M1 non-proline cis peptide bond may relate to the conversion of the scorpion alpha-toxins subgroups.  相似文献   

8.
We report here the results on N-acetyl-L-proline-N'-methylamide (Ac-Pro-NHMe) calculated at the HF/6-31+G(d) level with the conductor-like polarizable continuum model (CPCM) of self-consistent reaction field methods to investigate the changes of backbone and prolyl ring along the cis-trans isomerization of the prolyl peptide bond. From the potential energy surface, the barrier to ring flip from the down-puckered conformation to the up-puckered one is estimated to be 2.5 and 3.2 kcal/mol for trans and cis conformers of Ac-Pro-NHMe, respectively. In particular, the ring flip seems to be inaccessible in the intermediate regions between trans and cis conformations, because of higher barriers (approximately 13-19 kcal/mol) to rotation of the prolyl peptide bond. The torsion angles for backbone and prolyl ring vary largely around the transition states at omega' approximately 120 degrees and -70 degrees for the prolyl peptide bond. Three kinds of puckering amplitudes show the same trend of puckering along the cis-trans isomerization although their absolute values are different. In particular, trans and cis conformations have the almost same degree of puckering. The cis populations and barriers to rotation of the prolyl peptide bond for Ac-Pro-NHMe are increased with the increase of solvent polarity, which is mainly ascribed to the decreases of relative free energies for cis conformations and the increase of relative free energies for transition states.  相似文献   

9.
The conformation of the cyclic peptide Ac-Cys-Leu-Gla-Gla-Pro-Cys-NHMe, representing the 18-23 disulfide loop of bovine prothrombin, was studied by energy minimization with the ECEPP (Empirical Conformational Energy Program for Peptides) algorithm. Parameters for charge and geometry for the gamma-carboxyglutamic acid (Gla) residue were obtained for inclusion in the ECEPP data set. Construction of the 18-23 cyclic peptide, for which no crystal structure is available, was carried out by using a scheme that took advantage of the constraints imposed by the requirement of disulfide ring closure and utilized known low-energy structures of single residues and dipeptides. Both cis and trans isomers about the Gla 21-Pro 22 peptide bond were considered. The lowest-energy conformation found for the isolated 18-23 cyclic peptide with arbitrary reduction of the charge on the Gla residues (to simulate hydration roughly) is a trans form, differing in energy by 11 kcal-mol-1 from the lowest-energy cis form. However, when the energy calculation includes one model Ca2+ ion, X2+, introduced at a fixed distance of 2.3 A from a single oxygen atom of either of the side-chain carboxyl groups of Gla with the C delta-O-X2+ bond angle fixed at one of three values, the lowest-energy cis conformation is about 1 kcal-mol-1 lower in energy than the lowest-energy trans conformation; i.e. the two structures have similar energies. In these structures, four oxygen atoms, two from each Gla side-chain, approach the model Ca2+ ion closely, in a manner similar to that seen in crystals of calcium alpha-ethylmalonate (Zell, A., Einspahr, H. & Bugg, C.E. (1985) Biochemistry 24, 533-537). It appears that the binding of Ca2+ to the 18-23 cyclic peptide may alter the equilibrium between cis and trans structures such that the fraction of cis isomers is greater in the presence of Ca2+.  相似文献   

10.
PBOND is a web server that predicts the conformation of the peptide bond between any two amino acids. PBOND classifies the peptide bonds into one out of four classes, namely cis imide (cis-Pro), cis amide (cis-nonPro), trans imide (trans-Pro) and trans amide (trans-nonPro). Moreover, for every prediction a reliability index is computed. The underlying structure of the server consists of three stages: (1) feature extraction, (2) feature selection and (3) peptide bond clas- sification. PBOND can handle both s...  相似文献   

11.
In proteins and peptides, the vast majority of peptide bonds occurs in trans conformation, but a considerable fraction (about 5%) of X-Pro bonds adopts the cis conformation. Here we study the conservation of cis prolyl residues in evolutionary related proteins. We find that overall, in contrast to local, protein sequence similarity is a clear indicator for the conformation of prolyl residues. We observe that cis prolyl residues are more often conserved than trans prolyl residues, and both are more conserved than the surrounding amino acids, which show the same extent of conservation as the whole protein. The pattern of amino acid exchanges differs between cis and trans prolyl residues. Also, the cis prolyl bond is maintained in proteins with sequence identity as low as 20%. This finding emphasizes the importance of cis peptide bonds in protein structure and function.  相似文献   

12.
A new thionin from barley, ω-hordothionin, has been shown to exist in aqueous solution as a mixture of two different isoforms in a 3:2 ratio, as revealed by a complete analysis of its two-dimensional 1H-nmr spectra. The conformational heterogeneity arises frtm cis–trans isomerism ahout the Phe 12–Pro 13 peptide bond, where the major, form corresponds to the cis conformation. The complete assignment of chemical shifts and nuclear Overhaiiser effects (NOES) of the two isoforms allow a detailed comparative analysis of their conformational properties, even though a complete calculation of their solution structures is not possible because of a somewhat limited number of NOE constraints. Structures for the two isomers could be modeled, however, on the basis of the high structural homology between ω-hordothionin and related γ-thionins, and under the conditions of satisfying all observed experimental data. The two isoforms adopt practically identical global folds and the structural changes imposed by cis–trans isomerization are confined to the region proximal to Pro 13. The cis–trans isomerism occurs in a conserved loop connecting the first β-strand of the triple-stranded antiparallel β-sheet and the α-helix. A comparative analysis of the sequences of this loop in the different thionins suggests that the cis–trans equilibrium about the X-Pro peptide bond depends on the size of the side chain of X (X = Gly in γ-thionins and Phe in ω-thionin). The structural homology of this new thionin with γ-thionins as well as with some scorpion toxins and insect defensins suggests that these proteins may share a common mode of functional activity. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Although the vast majority of peptide bonds in folded proteins are found in the trans conformation, a small percentage are found in the less energetically favorable cis conformation. Though the mechanism of cis peptide bond formation remains unknown, the role of local aromatics has been emphasized in the literature. This paper presents results from a comprehensive statistical analysis of both the local and nonlocal (i.e., tertiary) environment around cis peptides. In addition to an increased frequency of aromatic residues in the local environment around cis peptides, a number of nonlocal differences in protein secondary and tertiary structure between cis and trans peptides are found: (i) coil regions containing cis peptides are almost twice as long as those without cis peptides and include more Tyr and Pro residues; (ii) cis peptides occur with high frequencies in coil regions near large beta-structures; (iii) there is a nonlocal enrichment of Cys, His, Tyr, and Ser in the tertiary environment surrounding cis peptides when compared to trans peptides; and (iv) on average, cis peptides make fewer medium-range and more long-range contacts than trans peptides do. On the basis of these observations, it is concluded that nonlocal factors play a significant role in cis peptide formation, which has not been fully appreciated previously. An autocatalytic model for cis peptide formation is discussed as are consequences for protein folding.  相似文献   

14.
We examine the role of the conformational restriction imposed by constrained ends of a protein loop on the determination of a strained loop conformation. The Lys 116-Pro 117 peptide bond of staphylococcal nuclease A exists in equilibrium between the cis and trans isomers. The folded protein favors the strained cis isomer with an occupancy of 90%. This peptide bond is contained in a solvent-exposed, flexible loop of residues 112-117 whose ends are anchored by Val 111 and Asn 118. Asn 118 is constrained by 2 side-chain hydrogen bonds. We investigate the importance of this constraint by replacing Asn 118 with aspartate, alanine, and glycine. We found that removing 1 or more of the hydrogen bonds observed in Asn 118 stabilizes the trans configuration over the cis configuration. By protonating the Asp 118 side chain of N118D through decreased pH, the hydrogen bonding character of Asp 118 approached that of Asn 118 in nuclease A, and the cis configuration was stabilized relative to the trans configuration. These data suggest that the rigid anchoring of the loop end is important in establishing the strained cis conformation. The segment of residues 112-117 in nuclease A provides a promising model system for study of the basic principles that determine polypeptide conformations. Such studies could be useful in the rational design or redesign of protein molecules.  相似文献   

15.
Domain swapping, the process in which a structural unit is exchanged between monomers to create a dimer containing two subunits of the monomeric fold, is believed to be an important mechanism for oligomerization and the formation of amyloid fibrils. Structural studies have implicated proline as an important residue for domain swapping due to its increased frequency in hinge regions preceding swapped arms. We hypothesized that proline's unique ability to populate both cis and trans peptide bond conformations may allow proline to act as a conformational gatekeeper, regulating interconversion between monomer and domain-swapped dimer forms. The hinge region of RNase A contains a proline at residue 114 that adopts a cis conformation in the monomer and extends to a trans conformation in the C-terminal domain-swapped dimer. Substitution of P114 with residues that strongly prefer a trans peptide bond (Ala, Gly) results in significant population of the C-terminal domain-swapped dimer under near-physiological conditions (pH 8.0, 37 °C). This is in stark contrast to dimerization of wild-type RNase A, which requires incubation under extreme conditions such as lyophilization from acetic acid or elevated temperature. In addition, we observe similar results when cis-P114 is mutated to glycine in a homologous RNase, human pancreatic RNase 1. Our results suggest that isomerization at P114 may facilitate population of a partially unfolded intermediate or alternative structure competent for domain swapping and provide support for a more general role for proline isomerization as a conformational gatekeeper in domain swapping and oligomerization.  相似文献   

16.
The conformations of the dipeptide t-Boc-Pro-DAla-OH and the tripeptide t-Boc-Pro-DAla-Ala-OH have been determined in the crystalline state by X-ray diffraction and in solution by CD, n.m.r. and i.r. techniques. The unit cell of the dipeptide crystal contains two independent molecules connected by intermolecular hydrogen bonds. The urethane-proline peptide bond is in the cis orientation in both the molecular forms while the peptide bond between Pro and DAla is in the trans orientation. The single dipeptide molecule exhibits a "bent" structure which approximates to a partial beta-turn. The tripeptide adopts the 4----1 hydrogen-bonded type II beta-turn with all trans peptide bonds. In solution, the CD and i.r. data on the dipeptide indicate an ordered conformation with an intramolecular hydrogen bond. N.m.r. data indicate a significant proportion of the conformer with a trans orientation at the urethane-proline peptide bond. The temperature coefficient of the amide proton of this conformer in DMSO-d6 points to a 3----1 intramolecular hydrogen bond. Taken together, the data on the dipeptide in solution indicate the presence (in addition to the cis conformer) of a C7 conformation which is absent in the crystalline state. The spectral data on the tripeptide indicate the presence of the type II beta-turn in solution in addition to the nonhydrogen-bonded conformer with the cis peptide bond between the urethane and proline residues. The relevance of these data to studies on the substrate specificity of collagen prolylhydroxylase is pointed out.  相似文献   

17.
Staphylococcal nuclease is found in two folded conformations that differ in the isomerization of the Lys 116-Pro 117 peptide bond, resulting in two different conformations of the residue 112-117 loop. The cis form is favored over the trans with an occupancy of 90%. Previous mutagenesis studies have shown that when Lys 116 is replaced by glycine, a trans conformation is stabilized relative to the cis conformation by the release of steric strain in the trans form. However, when Lys 116 is replaced with alanine, the resulting variant protein is identical to the wild-type protein in its structure and in the dominance of the cis configuration. The results of these studies suggested that any nuclease variant with a non-glycine residue at position 116 should also favor the cis form because of steric requirements of the beta-carbon at this position. In this report, we present a structural analysis of four nuclease variants with substitutions at position 116. Two variants, K116E and K116M, follow the "beta-carbon" hypothesis by favoring the cis form. Furthermore, the crystal structure of K116E is nearly identical to that of the wild-type protein. Two additional variants, K116D and K116N, provide exceptions to this simple "beta-carbon" rule in that the trans conformation is stabilized relative to the cis configuration by these substitutions. Crystallographic data indicate that this stabilization is effected through the addition of tertiary interactions between the side chain of position 116 with the surrounding protein and water structure. The detailed trans conformation of the K116D variant appears to be similar to the trans conformation observed in the K116G variant, suggesting that these two mutations stabilize the same conformation but through different mechanisms.  相似文献   

18.
Cis proline mutants of ribonuclease A. I. Thermal stability.   总被引:8,自引:5,他引:3       下载免费PDF全文
A chemically synthesized gene for ribonuclease A has been expressed in Escherichia coli using a T7 expression system (Studier, F.W., Rosenberg, A.H., Dunn, J.J., & Dubendorff, J.W., 1990, Methods Enzymol. 185, 60-89). The expressed protein, which contains an additional N-terminal methionine residue, has physical and catalytic properties close to those of bovine ribonuclease A. The expressed protein accumulates in inclusion bodies and has scrambled disulfide bonds; the native disulfide bonds are regenerated during purification. Site-directed mutations have been made at each of the two cis proline residues, 93 and 114, and a double mutant has been made. In contrast to results reported for replacement of trans proline residues, replacement of either cis proline is strongly destabilizing. Thermal unfolding experiments on four single mutants give delta Tm approximately equal to 10 degrees C and delta delta G0 (apparent) = 2-3 kcal/mol. The reason is that either the substituted amino acid goes in cis, and cis<==>trans isomerization after unfolding pulls the unfolding equilibrium toward the unfolded state, or else there is a conformational change, which by itself is destabilizing relative to the wild-type conformation, that allows the substituted amino acid to form a trans peptide bond.  相似文献   

19.
The C-terminal β-hairpin of RNase A contains a turn with a cis Asn113-Pro114 peptide bond. Pioneering pulsed HX experiments have shown that the C-terminal β-hairpin forms early during refolding. This is puzzling since the Asn113-Pro114 bond is predominately trans at this stage and this conformation destabilizes the native monomer. RNase A, when refolded at high concentration, forms a series of 3D domain-swapped oligomers. In the oligomers formed by C-terminal β-strand swapping, Asn113-Pro114 is trans and permits the formation of a new intersubunit β-sheet. We hypothesize that oligomeric species with trans Asn113-Pro114 may form during refolding. Such species could account for the HX results while comfortably accommodating Asn113-Pro114 in the trans conformation. Here, we test this hypothesis by employing chromatographic methods to detect oligomers forming in refolding conditions and find significant amounts of dimer. We propose that a 3D domain-swapped dimeric intermediate provides a minor alternative pathway for RNase A refolding.  相似文献   

20.
In the present paper we investigate the influence of sample pH on the conformational and dynamical properties of the pseudotripeptide H-Tyr-TicΨ[CH2NH]Phe-OH(TIP[Ψ]:Tic: l, 2, 3, 4,-tetrahydroisoquinoline-3-carboxylic acid) using various one- and two-dimensional nmt techniques in conjunction with molecular modeling. Studies were conducted at three different pH levels-corresponding to the zwitterionic peptide containing a formal positive charge(pH 3. 1).the deprotonated molecule(pH 9. 1), and a situation at neutral pH(pH 7. 2) involving both protonated and deprotonated states of the reduced peptide bond. Analysis of the one-dimensional1H-nmr spectra reveals that in solution TIP[Ψ]is in slow dynamic exchange between conformations containing cis and trans configurations of the Tyr-Tic bond. An nmr pH dependence study of the cis:trans ratio indicated that the exchange process was governed by the protonation state of the reduced bond amine. From the nmr data, reduced peptide bond pKavalues of 6. 5 and 7. 5 were determined for the cis and trans conformers, respectively. It was concluded that conformations containing a trans Tyr-Tic bond are stabilized at law pH by an intramolecular hydrogen bond between the Tyr carbonyl and the reduced peptide bond protonated amine. This observation was corroborated by molecular mechanics investigations that revealed low energy trans structures compatible with nmr structural data, and furthermore, were consistently characterized by the existence of a strong N+ H?O? C interaction closing a seven-membered cycle. The dynamics of cis-trans isomerization about the Tyr-Tic peptide bond were probed by nmr exchange experiments. The selective presaturation of exchanging resonances carried out at several temperatures between 50 and 70°C allowed the determination of isomerization rate constants as well as thermodynamic activation parameters. ΔG values were in close agreement with the cis → trans energy barrier found in X-Pro peptide fragments (~83 kJ/mol).A large entropic barrier determined for the trans → cis conversion of TIP[Ψ](5. 7 JK?1 mol?1 at pH 3. 1; 6. 5 JK?1 mol?1 at pH 9. 1) is discussed in terms of decreased solvent molecular ordering around the conformers possessing a trans Tyr-Tic bond. Evidence that the neutral form of the reduced peptide bond gains rigidity upon protonation was obtained from relaxation measurements in the rotating frame. TJp measurements of several protons in the vicinity of the reduced peptide bond were made as a function of spin-lock field. Quantitative analysis of the relaxation data indicated that chemical shift fluctuations in the 10?4-10?5s range were more pronounced in the case of deprotonated TIP[Ψ]. Results of molecular dynamics simulations in addition to 3 J αβ coupling constant measurements support the experimentally observed greater flexibility in the C-terminal region of TIP[Ψ]. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号