首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oscillating growth patterns of multicellular tumour spheroids   总被引:1,自引:0,他引:1  
The growth kinetics of 9L (rat glioblastoma cell line) and U118 (human glioblastoma cell line) multicellular tumour spheroids (MTS) have been investigated by non-linear least square fitting of individual growth curves with the Gompertz growth equation and power spectrum analysis of residuals. Residuals were not randomly distributed around calculated growth trajectories. At least one main frequency was found for all analysed MTS growth curves, demonstrating the existence of time-dependent periodic fluctuations of MTS volume dimensions. Similar periodic oscillations of MTS volume dimensions were also observed for MTS generated using cloned 9L cells. However, we found significant differences in the growth kinetics of MTS obtained with cloned cells if compared to the growth kinetics of MTS obtained with polyclonal cells. Our findings demonstrate that the growth patterns of three-dimensional tumour cell cultures are more complex than has been previously predicted using traditional continuous growth models.  相似文献   

2.
3.
Objectives: Multicellular tumour spheroids (MTS) provide an important tool for study of the microscopic properties of solid tumours and their responses to therapy. Thus, observation of large‐scale volume oscillations in MTS, reported several years ago by two independent groups ( 1 , 2 ), in our opinion represent a remarkable discovery, particularly if this could promote careful investigation of the possible occurrence of volume oscillations of tumours ‘in vivo’. Materials and methods: Because of high background noise, quantitative analysis of properties of observed oscillations has not been possible in previous studies. Such an analysis can be now performed, thanks to a recently proposed approach, based on formalism of phenomenological universalities (PUN). Results: Results have provided unambiguous confirmation of the existence of MTS volume oscillations, and quantitative evaluation of their properties, for two tumour cell lines. Proof is based not only on quality of fitting of the experimental datasets, but also on determination of well‐defined values of frequency and amplitude of the oscillations for each line investigated, which would not be consistent with random fluctuation. Conclusions: Biological mechanisms, which can be directly responsible for observed oscillations, are proposed, which relates also to recent work on related topics. Further investigations, both at experimental and at modelling levels, are also suggested. Finally, from a methodological point of view, results obtained represent further confirmation of applicability and usefulness of the PUN approach.  相似文献   

4.
The effects of cell cycle inhibition on the expression of the multidrug resistance transporter P-glycoprotein (P-gp) as well as of the cyclin-dependent kinase (CDK) inhibitors p27(Kip1) and p21(WAF-1) were investigated in DU-145 prostate tumor spheroids. With increasing spheroid size the number of cells in the G0/G1 phase augmented, whereas the number of cells in the G2/M phase and the S phase of the cell cycle declined. The number of G0/G1 cells was elevated after incubation with either mimosine, staurosporine or serum-free medium. Mitomycin C and roscovitine increased the number of S phase cells. Roscovitine additionally increased cells in the G2/M phase. Incubation in serum-free medium upregulated p21(WAF-1), p27(Kip1) and P-gp. Mimosine treatment resulted in upregulation of p27(Kip1) and P-gp, whereas p21(WAF-1) remained unchanged. Upon roscovitine treatment p27(Kip1) and p21(WAF-1) were downregulated, whereas P-gp was unaltered. Mitomycin C treatment resulted in downregulation of p27(Kip1) and p21(WAF-1); no significant change in P-gp levels was observed. Staurosporine induced upregulation of p21(WAF-1) whereas p27(Kip1) remained unaltered. P-gp was downregulated upon staurosporine treatment, which was owing to an elevation of intracellular reactive oxygen species by this compound. It is concluded that upregulation of P-gp in G0/G1 phase cells requires coexpression of the CDK inhibitor p27(Kip1) but not the CDK inhibitor p21(WAF-1).  相似文献   

5.
In order to determine the role of micromilieu in tumour spheroid growth, a mathematical model was developed to predict EMT6/Ro spheroid growth and microenvironment based upon numerical solution of the diffusion/reaction equation for oxygen, glucose, lactate ion, carbon dioxide, bicarbonate ion, chlorine ion and hydrogen ion along with the equation of electroneutrality. This model takes into account the effects of oxygen concentration, glucose concentration and extracellular pH on cell growth and metabolism. Since independent measurements of EMT6/Ro single cell growth and metabolic rates, spheroid diffusion constants, and spinner flask mass transfer coefficients are available, model predictions using these parameters were compared with published data on EMT6/Ro spheroid growth and micro-environment. The model predictions of reduced spheroid growth due to reduced cell growth rates and cell shedding fit experimental spheroid growth data below 700 microns, but overestimated the spheroid growth rate at larger diameters. Predicted viable rim thicknesses based on predicted near zero glucose concentrations fit published viable rim thickness data for 1000 microns spheroids grown at medium glucose concentrations of 5.5 mM or less. However, the model did not accurately predict the onset of necrosis. Moreover, the model could not predict the observed decreases in oxygen and glucose metabolism seen in spheroids with time, nor could it predict the observed growth plateau. This suggests that other unknown factors, such as inhibitors or cell-cell contact effects, must also be important in affecting spheroid growth and cellular metabolism.  相似文献   

6.
Intrinsic expression of the multidrug resistance (MDR) transporter P-glycoprotein (Pgp) may be regulated by reactive oxygen species (ROS). A transient expression of Pgp was observed during the growth of multicellular tumor spheroids. Maximum Pgp expression occurred in tumor spheroids with a high percentage of quiescent, Ki-67-negative cells, elevated glutathione levels, increased expression of the cyclin-dependent kinase inhibitors p27Kip1 and p21WAF-1 as well as reduced ROS levels and minor activity of the mitogen-activated kinase (MAPK) members c-Jun amino-terminal kinase (JNK), extracellular signal-regulated kinase ERK1,2, and p38 MAPK. Raising intracellular ROS by depletion of glutathione with buthionine sulfoximine (BSO) or glutamine starvation resulted in down-regulation of Pgp and p27Kip1, whereas ERK1,2 and JNK were activated. Down-regulation of Pgp was furthermore observed with low concentrations of hydrogen peroxide and epidermal growth factor, indicating that ROS may regulate Pgp expression. The down-regulation of Pgp following BSO treatment was abolished by agents interfering with receptor tyrosine kinase signaling pathways, i.e. the protein kinase C inhibitors bisindolylmaleimide I (BIM-1) and Ro-31-8220, the p21ras farnesyl protein transferase inhibitor III, the c-Raf inhibitor ZM 336372 and PD98059, which inhibits ERK1,2 activation. ROS involved as second messengers in receptor tyrosine kinase signaling pathways may act as negative regulators of Pgp expression.  相似文献   

7.
Abstract. Based on biological observations and the basic physical properties of tri-dimensional structures, a mathematical expression is derived to relate the growth rate of multicellular spheroids to some easily measurable parameters. This model involves properties both of the individual cells and of the spheroid structure, such as the cell doubling time in monolayer, the rate of cell shedding from the spheroid and the depth of the external rim of cycling cells. The derived growth equation predicts a linear expansion of the spheroid diameter with time. The calculated growth rate for a number of spheroid cell types is in good agreement with experimental data. The model provides a simple and practical view of growth control in spheroids, and is further adapted to include parameters presumably responsible for the growth saturation in large spheroids.  相似文献   

8.
The IGROVCDDP cisplatin-resistant ovarian cancer cell line is also resistant to paclitaxel and models the resistance phenotype of relapsed ovarian cancer patients after first-line platinum/taxane chemotherapy. A TaqMan low-density array (TLDA) was used to characterise the expression of 380 genes associated with chemotherapy resistance in IGROVCDDP cells. Paclitaxel resistance in IGROVCDDP is mediated by gene and protein overexpression of P-glycoprotein and the protein is functionally active. Cisplatin resistance was not reversed by elacridar, confirming that cisplatin is not a P-glycoprotein substrate. Cisplatin resistance in IGROVCDDP is multifactorial and is mediated in part by the glutathione pathway and decreased accumulation of drug. Total cellular glutathione was not increased. However, the enzyme activity of GSR and GGT1 were up-regulated. The cellular localisation of copper transporter CTR1 changed from membrane associated in IGROV-1 to cytoplasmic in IGROVCDDP. This may mediate the previously reported accumulation defect. There was decreased expression of the sodium potassium pump (ATP1A), MRP1 and FBP which all have been previously associated with platinum accumulation defects in platinum-resistant cell lines. Cellular localisation of MRP1 was also altered in IGROVCDDP shifting basolaterally, compared to IGROV-1. BRCA1 was also up-regulated at the gene and protein level. The overexpression of P-glycoprotein in a resistant model developed with cisplatin is unusual. This demonstrates that P-glycoprotein can be up-regulated as a generalised stress response rather than as a specific response to a substrate. Mechanisms characterised in IGROVCDDP cells may be applicable to relapsed ovarian cancer patients treated with frontline platinum/taxane chemotherapy.  相似文献   

9.
Multicellular tumour spheroid (MCTS) cultures are excellent model systems for simulating the development and microenvironmental conditions of in vivo tumour growth. Many documented cell lines can generate differentiated MCTS when cultured in suspension or in a non-adhesive environment. While physiological and biochemical properties of MCTS have been extensively characterized, insight into the events and conditions responsible for initiation of these structures is lacking. MCTS are formed by only a small subpopulation of cells during surface-associated growth but the processes responsible for this differentiation are poorly understood and have not been previously studied experimentally. Analysis of gene expression within spheroids has provided clues but to date it is not known if the observed differences are a cause or consequence of MCTS growth. One mechanism linked to tumourigenesis in a number of cancers is genetic instability arising from impaired DNA mismatch repair (MMR). This study aimed to determine the role of MMR in MCTS initiation and development. Using surface-associated N2a and CHLA-02-ATRT culture systems we have investigated the impact of impaired MMR on MCTS growth. Analysis of the DNA MMR genes MLH1 and PMS2 revealed both to be significantly down-regulated at the mRNA level compared with non-spheroid-forming cells. By using small interfering RNA (siRNA) against these genes we show that silencing of MLH1 and PMS2 enhances both MCTS initiation and subsequent expansion. This effect was prolonged over several passages following siRNA transfection. Down-regulation of DNA MMR can contribute to tumour initiation and progression in N2a and CHLA-02-ATRT MCTS models. Studies of surface-associated MCTS differentiation may have broader applications in studying events in the initiation of cancer foci.  相似文献   

10.
The radiation sensitivity of two small-cell lung carcinoma cell lines growing as multicellular spheroids in static culture was determined using clonogenic cell survival and growth delay as endpoints. Growth delay determination suggested that clonogenic cell kill was less than was obtained by direct assay of cell survival. Recovery from potentially lethal damage was assayed in one line (HC12) but was not demonstrable, and clonogenic cell survival decreased with time in treated spheroids with diameters greater than 300 microns which contained a hypoxic cell population. Microscopic examination of the treated spheroids showed the emergence of an abnormal giant-cell population, and the progressive clonogenic cell loss that occurred after treatment was thought to be due to oxygen and nutrient deprivation of the remaining viable cells by this doomed cell population. Correction of the growth delay measurements for changes in cell size and clonogenic cell population allowed correlation of the growth delay and cell survival data.  相似文献   

11.
12.
Summary FRTL-5 cells, a diploid line of differentiated rat thyroid epithelial cells, have been grown as multicellular spheroids in spinner culture. Spheroids were initiated by seeding FRTL-5 cells either into Lab-Tek dishes or culture flasks with a 0.5% agar base. Thyroid stimulating hormone (TSH, >1.0 mU/ml) was required for initial cell aggregation and spheroid growth. After 1 wk cellular aggregates were transferred to suspension culture in spinner flasks. As with FRTL-5 monolayer cultures, continued spheroid growth required the addition of TSH to the culture medium. The most unique characteristic of the FRTL-5 spheroids was the development of central lumina similar to thyroid follicles in vivo. Follicular structures were absent from spheroids not stimulated with TSH. In the presence of TSH epithelial cells seem metabolically active with morphological evidence of biosynthesis of thyroglobulin-like material and basal laminar-like components. In contrast, all evidence of cellular metabolic activity is absent from cells in spheroids maintained in the absence of TSH. Thus, nontransformed FRTL-5 cells grown as three-dimensional multicellular spheroids responded to hormonal manipulation in a manner comparable to follicular epithelial cells in vivo. This spheroid model might therefore prove to be a very effective tool for investigating aspects of thyroid physiology and pathology in vitro. This work was supported by Grant CA-11198 and CA-20329 awarded by the National Institutes of Health, and a Biomedical Research Support Grant awarded to R. T. Mulcahy.  相似文献   

13.
To generate multicellular tumor spheroids (MTS) based on human breast adenocarcinoma MCF-7 cells and to study them as a novel in vitro model for anticancer drug screening, a technique for cell microencapsulation in biocompatible alginate-chitosan microcapsules has been used in this study. Using the MTS based on the MCF-7 cells methotrexate (MTX) cytotoxicity has been investigated. A set of MTS with an average size of 150, 200 and 300 μm was prepared as a function of cultivation time. Cell viability was evaluated after MTS incubation in cultivation medium containing various MTX concentrations (1, 2, 10, 50 and 100 nM) for 48 h. MTS were shown to be markedly more resistant to MTX than the monolayer culture. The increase of the spheroid size was in correlation with the enhanced MTS resistance to MTX. Thus, at 100 nM MTX a number of viable cells in MTS with the size of 300 μm was 2.5-fold higher than that in the monolayer culture. It is suggested that the cells microencapsulated into MTS can better mimic cell behavior in small solid tumors compared to the monolayer culture. In the future MTS could be proposed as a novel in vitro model for anticancer drug screening.  相似文献   

14.
The growth characteristics of multicellular spheroids, derived from human melanoma xenografts and cultivated in liquid-overlay culture, were studied and compared with those of the parent tumours. Six of the seven melanomas investigated formed spheroids, which grew exponentially up to a volume of 1-2 X 10(7) microns 3 (a diameter of 270-340 microns) before the growth rate tapered off. The morphology of the spheroids varied considerably among the melanomas; some spheroids grew as densely packed, spherical structures of cells whereas others were loosely packed and showed an irregular shape. Central necrosis developed when the spheroids attained a diameter of 150-200 microns. The histological and cytological appearance of the spheroids was remarkably similar to that of the parent xenograft in five of the six cases. The sixth melanoma contained two subpopulations with distinctly different DNA content, one of which was predominant in the spheroids, the other in the tumours. This gave rise to clear histological and cytological differences. The volume-doubling time of the spheroids during the exponential growth phase ranged from 1.7 +/- 0.2 to 2.7 +/- 0.4 days and the fraction of cells in S from 13 +/- 1 to 28 +/- 2%. The volume-doubling time decreased with increasing fraction of cells in S, indicating that the differences in growth rate were due mainly to differences in the growth fraction or to differences in the duration of G1. The spheroid volume-doubling times did not correlate with those of the parent xenografts (Td = 4.2-22.5 days at V = 200 mm3), possibly because the cell loss factors of the xenografts were large and varied among the melanomas. The fractions of cells in G1/G0, S and G2 + M in the spheroids and the xenografts did not correlate either, but were found to be within the same narrow ranges in the spheroids and the xenografts--i.e. 50-80% (G1/G0), 10-30% (S) and 10-20% (G2 + M).  相似文献   

15.
PurposeTo develop an on-lattice agent-based model describing the growth of multicellular tumor spheroids using simple Monte Carlo tools.MethodsCells are situated on the vertices of a cubic grid. Different cell states (proliferative, hypoxic or dead) and cell evolution rules, driven by 10 parameters, and the effects of the culture medium are included. About twenty spheroids of MCF-7 human breast cancer were cultivated and the experimental data were used for tuning the model parameters.ResultsSimulated spheroids showed adequate sizes of the necrotic nuclei and of the hypoxic and proliferative cell phases as a function of the growth time, mimicking the overall characteristics of the experimental spheroids. The relation between the radii of the necrotic nucleus and the whole spheroid obtained in the simulations was similar to the experimental one and the number of cells, as a function of the spheroid volume, was well reproduced. The statistical variability of the Monte Carlo model described the whole volume range observed for the experimental spheroids. Assuming that the model parameters vary within Gaussian distributions it was obtained a sample of spheroids that reproduced much better the experimental findings.ConclusionsThe model developed allows describing the growth of in vitro multicellular spheroids and the experimental variability can be well reproduced. Its flexibility permits to vary both the agents involved and the rules that govern the spheroid growth. More general situations, such as, e. g., tumor vascularization, radiotherapy effects on solid tumors, or the validity of the tumor growth mathematical models can be studied.  相似文献   

16.
The rate of consumption of oxygen by V-79 cells in multicellular spheroids was measured as a function of the spheroid diameter. In situ consumption was equal to that of exponentially growing cells for spheroids less than 200 micron in diameter. The rate of oxygen consumption decreased for cells in spheroids between 200 and 400 micron diameter to a value one-fourth the initial, then remained constant with further spheroid growth. Comparison of consumption rates for spheroid-derived cells before and after dissociation from the spheroid structure indicated that the spheroid microenvironment accounted for only 20% of the change in oxygen consumption rate. Cell-cell contact, cell packing, and cell volume were not critical parameters. Plateau-phase cells had a fivefold lower rate of oxygen consumption than exponential cells, and it is postulated that the spheroid quiescent cell population accounts for a large part of the intrinsic alteration in oxygen consumption of cells in spheroids. Some other mechanism must be involved in the regulation of cellular oxygen consumption in V-79 spheroids to account for the remainder of the reduction observed in this system.  相似文献   

17.
Multicellular tumour spheroids (MCTS) are three-dimensional cell culture systems which are widely used in cancer research. They are characterized by an outer zone of proliferating cells, an inner region of differentiating quiescent cells and an area of so-called necrotic cell death in their centre. The exact cause of this cell death, a controversy for many years, was the aim of the present study. Our data show that cell death in the centre of MCTS of three colorectal adenocarcinoma cell lines (HRT-18, HT-29 and CX-2) was induced by apoptosis. Apoptotic cells were initially distributed at random but accumulated very quickly in the quiescent and central area at day 4-5, suggesting a time- rather than size-dependent synchronization of apoptosis parallel to the formation of the proliferation gradient in MCTS. To study mechanisms inducing apoptosis, the Fas-pathway was investigated. A cell-cell contact-dependent expression of CD95 was found in all MCTS. FasL was not detected in monolayer cultures, but was expressed in spheroids of HRT-18 and CX-2. We found that TNF alpha and TGF beta 1 activated the CD95 pathway in all three cell lines. Since both TNF-alpha and TGF-beta are known to be inducible by hypoxia in a variety of cell types, we suggest that these hypoxia-induced factors sensitize the CD95 pathway in the quiescent area of MCTS. Furthermore, a loss of the heat shock proteins 27, 32, 60, 73 and 90 was observed in the quiescent area of spheroids. This suggests that tumour cell differentiation in the inner region of MCTS may be an additional factor inducing apoptosis.  相似文献   

18.
The interleukin-2-dependent mouse natural killer (NK) cell line NKB61A2 concomitantly exhibits NK and natural cytotoxic (NC) activities. This was determined by the cells' ability to lyse both the NK-sensitive YAC-1 lymphoma and the NC-sensitive WEHI-164 fibrosarcoma cell lines in a 4- and 18-hour 51Cr release assay, respectively. Cell-free supernatant from NKB61A2 cells grown in culture for 48 h had substantial lytic activity against WEHI-164. The mouse mast cell line PT18-A17 and the rat basophilic leukemia cell line RBL-2H3, which both express NC activity, also produced a soluble factor during culture which lysed WEHI-164 cells. This activity was increased in the basophilic/mast cells by crossbridging the surface IgE receptors. Similar results were obtained by triggering the basophilic NC cells with the calcium ionophore ionomycin and the tumor promoter phorbol-12-myristate-13-acetate (PMA). Such triggering of NKB61A2 cells, however, did not significantly increase their NC activity. Interestingly, both ionomycin and PMA had an inhibitory effect on the NK activity of NKB61A2. Recently it has been found that tumor necrosis factor (TNF) is a major mediator of NC activity. To determine if the soluble factor responsible for the NC activity of the NK clone was related to TNF, a rabbit polyclonal antiserum to mouse TNF was tested against the cell-free culture medium of NKB61A2, PT18-A17, RBL-2H3 and murine recombinant TNF (Mu-rTNF). The lytic activity of the culture medium from all these cells and the Mu-rTNF control was abrogated by this antibody. These data suggest that the murine cell line NKB61A2 has both NK and NC activities and that the NC activity is due to a factor immunologically similar to TNF. In addition, the enhancement of NC activity in the NK cell line is apparently under control by a separate pathway, different from that in the basophilic cells.  相似文献   

19.
20.
Multicellular tumor spheroids (MCTS) are used as organotypic models of normal and solid tumor tissue. Traditional techniques for generating MCTS, such as growth on nonadherent surfaces, in suspension, or on scaffolds, have a number of drawbacks, including the need for manual selection to achieve a homogeneous population and the use of nonphysiological matrix compounds. In this study we describe a mild method for the generation of MCTS, in which individual spheroids form in hanging drops suspended from a microtiter plate. The method has been successfully applied to a broad range of cell lines and shows nearly 100% efficiency (i.e., one spheroid per drop). Using the hepatoma cell line, HepG2, the hanging drop method generated well-rounded MCTS with a narrow size distribution (coefficient of variation [CV] 10% to 15%, compared with 40% to 60% for growth on nonadherent surfaces). Structural analysis of HepG2 and a mammary gland adenocarcinoma cell line, MCF-7, composed spheroids, revealed highly organized, three-dimensional, tissue-like structures with an extensive extracellular matrix. The hanging drop method represents an attractive alternative for MCTS production, because it is mild, can be applied to a wide variety of cell lines, and can produce spheroids of a homogeneous size without the need for sieving or manual selection. The method has applications for basic studies of physiology and metabolism, tumor biology, toxicology, cellular organization, and the development of bioartificial tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号