首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Large amounts of data are being generated by high-throughput genome sequencing methods. But the rate of the experimental functional characterization falls far behind. To fill the gap between the number of sequences and their annotations, fast and accurate automated annotation methods are required. Many methods, such as GOblet, GOFigure, and Gotcha, are designed based on the BLAST search. Unfortunately, the sequence coverage of these methods is low as they cannot detect the remote homologues. Adding to this, the lack of annotation specificity advocates the need to improve automated protein function prediction.

Results

We designed a novel automated protein functional assignment method based on the neural response algorithm, which simulates the neuronal behavior of the visual cortex in the human brain. Firstly, we predict the most similar target protein for a given query protein and thereby assign its GO term to the query sequence. When assessed on test set, our method ranked the actual leaf GO term among the top 5 probable GO terms with accuracy of 86.93%.

Conclusions

The proposed algorithm is the first instance of neural response algorithm being used in the biological domain. The use of HMM profiles along with the secondary structure information to define the neural response gives our method an edge over other available methods on annotation accuracy. Results of the 5-fold cross validation and the comparison with PFP and FFPred servers indicate the prominent performance by our method. The program, the dataset, and help files are available at http://www.jjwanglab.org/NRProF/.
  相似文献   

3.

Background

Large-scale sequencing projects have now become routine lab practice and this has led to the development of a new generation of tools involving function prediction methods, bringing the latter back to the fore. The advent of Gene Ontology, with its structured vocabulary and paradigm, has provided computational biologists with an appropriate means for this task.

Methodology

We present here a novel method called ARGOT (Annotation Retrieval of Gene Ontology Terms) that is able to process quickly thousands of sequences for functional inference. The tool exploits for the first time an integrated approach which combines clustering of GO terms, based on their semantic similarities, with a weighting scheme which assesses retrieved hits sharing a certain number of biological features with the sequence to be annotated. These hits may be obtained by different methods and in this work we have based ARGOT processing on BLAST results.

Conclusions

The extensive benchmark involved 10,000 protein sequences, the complete S. cerevisiae genome and a small subset of proteins for purposes of comparison with other available tools. The algorithm was proven to outperform existing methods and to be suitable for function prediction of single proteins due to its high degree of sensitivity, specificity and coverage.  相似文献   

4.

Background  

The BLAST algorithm compares biological sequences to one another in order to determine shared motifs and common ancestry. However, the comparison of all non-redundant (NR) sequences against all other NR sequences is a computationally intensive task. We developed NBLAST as a cluster computer implementation of the BLAST family of sequence comparison programs for the purpose of generating pre-computed BLAST alignments and neighbour lists of NR sequences.  相似文献   

5.
6.

Background  

Large-scale sequence comparison is a powerful tool for biological inference in modern molecular biology. Comparing new sequences to those in annotated databases is a useful source of functional and structural information about these sequences. Using software such as the basic local alignment search tool (BLAST) or HMMPFAM to identify statistically significant matches between newly sequenced segments of genetic material and those in databases is an important task for most molecular biologists. Searching algorithms are intrinsically slow and data-intensive, especially in light of the rapid growth of biological sequence databases due to the emergence of high throughput DNA sequencing techniques. Thus, traditional bioinformatics tools are impractical on PCs and even on dedicated UNIX servers. To take advantage of larger databases and more reliable methods, high performance computation becomes necessary.  相似文献   

7.

Background  

The accomplishment of the various genome sequencing projects resulted in accumulation of massive amount of gene sequence information. This calls for a large-scale computational method for predicting protein localization from sequence. The protein localization can provide valuable information about its molecular function, as well as the biological pathway in which it participates. The prediction of localization of a protein at subnuclear level is a challenging task. In our previous work we proposed an SVM-based system using protein sequence information for this prediction task. In this work, we assess protein similarity with Gene Ontology (GO) and then improve the performance of the system by adding a module of nearest neighbor classifier using a similarity measure derived from the GO annotation terms for protein sequences.  相似文献   

8.
GoPipe: 批量序列的Gene Ontology 注释和统计分析   总被引:7,自引:0,他引:7       下载免费PDF全文
随着后基因组时代的到来,批量的测序,特别是 EST 的测序,逐渐成为普通实验室的日常工作 . 这些新的序列往往需要进行批量的 Gene Ontology (GO) 的注释及随后的统计分析 . 但是目前除了 Goblet 以外,并没有软件适合对未知序列进行批量的 GO 注释,而 GoBlet 因为具有上载量的限制,以及仅仅利用 BLAST 作为预测工具,所以仍有许多不足之处 . 开发了一个软件包 GoPipe ,通过整合 BLAST 和 InterProScan 的结果来进行序列注释,并提供了进一步作统计比较的工具 . 主程序接收任意个 BLAST 和 InterProScan 的结果文件,并依次进行文本分析、数据整合、去除冗余、统计分析和显示等工作 . 还提供了统计的工具来比较不同输入对 GO 的分布来挖掘生物学意义 . 另外,在交集工作模式下,程序取 InterProScan 和 BLAST 结果的交集, 在测试数据集中,其精确度达到 99.1% ,这大大超过了 InterProScan 本身对 GO 预测的精确度,而敏感度只是稍微下降 . 较高的精确度、较快的速度和较大的灵活性使它成为对未知序列进行批量 Gene Ontology 注释的理想的工具 . 上述软件包可以在网站 (http://gopipe.fishgenome.org/ ) 免费获得或者与作者联系获取 .  相似文献   

9.

Background  

Gene Ontology (GO) is a standard vocabulary of functional terms and allows for coherent annotation of gene products. These annotations provide a basis for new methods that compare gene products regarding their molecular function and biological role.  相似文献   

10.

Background  

Homology is a key concept in both evolutionary biology and genomics. Detection of homology is crucial in fields like the functional annotation of protein sequences and the identification of taxon specific genes. Basic homology searches are still frequently performed by pairwise search methods such as BLAST. Vast improvements have been made in the identification of homologous proteins by using more advanced methods that use sequence profiles. However additional improvement could be made by exploiting sources of genomic information other than the primary sequence or tertiary structure.  相似文献   

11.

Background

An important task in a metagenomic analysis is the assignment of taxonomic labels to sequences in a sample. Most widely used methods for taxonomy assignment compare a sequence in the sample to a database of known sequences. Many approaches use the best BLAST hit(s) to assign the taxonomic label. However, it is known that the best BLAST hit may not always correspond to the best taxonomic match. An alternative approach involves phylogenetic methods, which take into account alignments and a model of evolution in order to more accurately define the taxonomic origin of sequences. Similarity-search based methods typically run faster than phylogenetic methods and work well when the organisms in the sample are well represented in the database. In contrast, phylogenetic methods have the capability to identify new organisms in a sample but are computationally quite expensive.

Results

We propose a two-step approach for metagenomic taxon identification; i.e., use a rapid method that accurately classifies sequences using a reference database (this is a filtering step) and then use a more complex phylogenetic method for the sequences that were unclassified in the previous step. In this work, we explore whether and when using top BLAST hit(s) yields a correct taxonomic label. We develop a method to detect outliers among BLAST hits in order to separate the phylogenetically most closely related matches from matches to sequences from more distantly related organisms. We used modified BILD (Bayesian Integral Log-Odds) scores, a multiple-alignment scoring function, to define the outliers within a subset of top BLAST hits and assign taxonomic labels. We compared the accuracy of our method to the RDP classifier and show that our method yields fewer misclassifications while properly classifying organisms that are not present in the database. Finally, we evaluated the use of our method as a pre-processing step before more expensive phylogenetic analyses (in our case TIPP) in the context of real 16S rRNA datasets.

Conclusion

Our experiments make a good case for using a two-step approach for accurate taxonomic assignment. We show that our method can be used as a filtering step before using phylogenetic methods and provides a way to interpret BLAST results using more information than provided by E-values and bit-scores alone.
  相似文献   

12.

Background  

BLAST searches are widely used for sequence alignment. The search results are commonly adopted for various functional and comparative genomics tasks such as annotating unknown sequences, investigating gene models and comparing two sequence sets. Advances in sequencing technologies pose challenges for high-throughput analysis of large-scale sequence data. A number of programs and hardware solutions exist for efficient BLAST searching, but there is a lack of generic software solutions for mining and personalized management of the results. Systematically reviewing the results and identifying information of interest remains tedious and time-consuming.  相似文献   

13.

Background

Annotations that describe the function of sequences are enormously important to researchers during laboratory investigations and when making computational inferences. However, there has been little investigation into the data quality of sequence function annotations. Here we have developed a new method of estimating the error rate of curated sequence annotations, and applied this to the Gene Ontology (GO) sequence database (GOSeqLite). This method involved artificially adding errors to sequence annotations at known rates, and used regression to model the impact on the precision of annotations based on BLAST matched sequences.

Results

We estimated the error rate of curated GO sequence annotations in the GOSeqLite database (March 2006) at between 28% and 30%. Annotations made without use of sequence similarity based methods (non-ISS) had an estimated error rate of between 13% and 18%. Annotations made with the use of sequence similarity methodology (ISS) had an estimated error rate of 49%.

Conclusion

While the overall error rate is reasonably low, it would be prudent to treat all ISS annotations with caution. Electronic annotators that use ISS annotations as the basis of predictions are likely to have higher false prediction rates, and for this reason designers of these systems should consider avoiding ISS annotations where possible. Electronic annotators that use ISS annotations to make predictions should be viewed sceptically. We recommend that curators thoroughly review ISS annotations before accepting them as valid. Overall, users of curated sequence annotations from the GO database should feel assured that they are using a comparatively high quality source of information.  相似文献   

14.

Background

Today large scale genome sequencing technologies are uncovering an increasing amount of new genes and proteins, which remain uncharacterized. Experimental procedures for protein function prediction are low throughput by nature and thus can't be used to keep up with the rate at which new proteins are discovered. On the other hand, proteins are the prominent stakeholders in almost all biological processes, and therefore the need to precisely know their functions for a better understanding of the underlying biological mechanism is inevitable. The challenge of annotating uncharacterized proteins in functional genomics and biology in general motivates the use of computational techniques well orchestrated to accurately predict their functions.

Methods

We propose a computational flow for the functional annotation of a protein able to assign the most probable functions to a protein by aggregating heterogeneous information. Considered information include: protein motifs, protein sequence similarity, and protein homology data gathered from interacting proteins, combined with data from highly similar non-interacting proteins (hereinafter called Similactors). Moreover, to increase the predictive power of our model we also compute and integrate term specific relationships among functional terms based on Gene Ontology (GO).

Results

We tested our method on Saccharomyces Cerevisiae and Homo sapiens species proteins. The aggregation of different structural and functional evidence with GO relationships outperforms, in terms of precision and accuracy of prediction than the other methods reported in literature. The predicted precision and accuracy is 100% for more than half of the input set for both species; overall, we obtained 85.38% precision and 81.95% accuracy for Homo sapiens and 79.73% precision and 80.06% accuracy for Saccharomyces Cerevisiae species proteins.
  相似文献   

15.
Automated function prediction (AFP) methods increasingly use knowledge discovery algorithms to map sequence, structure, literature, and/or pathway information about proteins whose functions are unknown into functional ontologies, typically (a portion of) the Gene Ontology (GO). While there are a growing number of methods within this paradigm, the general problem of assessing the accuracy of such prediction algorithms has not been seriously addressed. We present first an application for function prediction from protein sequences using the POSet Ontology Categorizer (POSOC) to produce new annotations by analyzing collections of GO nodes derived from annotations of protein BLAST neighborhoods. We then also present hierarchical precision and hierarchical recall as new evaluation metrics for assessing the accuracy of any predictions in hierarchical ontologies, and discuss results on a test set of protein sequences. We show that our method provides substantially improved hierarchical precision (measure of predictions made that are correct) when applied to the nearest BLAST neighbors of target proteins, as compared with simply imputing that neighborhood's annotations to the target. Moreover, when our method is applied to a broader BLAST neighborhood, hierarchical precision is enhanced even further. In all cases, such increased hierarchical precision performance is purchased at a modest expense of hierarchical recall (measure of all annotations that get predicted at all).  相似文献   

16.

Background  

Through the use of DNA microarrays it is now possible to obtain quantitative measurements of the expression of thousands of genes from a biological sample. This technology yields a global view of gene expression that can be used in several ways. Functional insight into expression profiles is routinely obtained by using Gene Ontology terms associated to the cellular genes. In this paper, we deal with functional data mining from expression profiles, proposing a novel approach that studies the correlations between genes and their relations to Gene Ontology (GO). By using this "functional correlations comparison" we explore all possible pairs of genes identifying the affected biological processes by analyzing in a pair-wise manner gene expression patterns and linking correlated pairs with Gene Ontology terms.  相似文献   

17.

Background  

The detection of relationships between a protein sequence of unknown function and a sequence whose function has been characterised enables the transfer of functional annotation. However in many cases these relationships can not be identified easily from direct comparison of the two sequences. Methods which compare sequence profiles have been shown to improve the detection of these remote sequence relationships. However, the best method for building a profile of a known set of sequences has not been established. Here we examine how the type of profile built affects its performance, both in detecting remote homologs and in the resulting alignment accuracy. In particular, we consider whether it is better to model a protein superfamily using a single structure-based alignment that is representative of all known cases of the superfamily, or to use multiple sequence-based profiles each representing an individual member of the superfamily.  相似文献   

18.

Background  

RNA-protein interactions are important for a wide range of biological processes. Current computational methods to predict interacting residues in RNA-protein interfaces predominately rely on sequence data. It is, however, known that interface residue propensity is closely correlated with structural properties. In this paper we systematically study information obtained from sequences and structures and compare their contributions in this prediction problem. Particularly, different geometrical and network topological properties of protein structures are evaluated to improve interface residue prediction accuracy.  相似文献   

19.

Background  

Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, amuch needed and importanttask is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO) project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base.  相似文献   

20.
Hawkins T  Chitale M  Luban S  Kihara D 《Proteins》2009,74(3):566-582
Protein function prediction is a central problem in bioinformatics, increasing in importance recently due to the rapid accumulation of biological data awaiting interpretation. Sequence data represents the bulk of this new stock and is the obvious target for consideration as input, as newly sequenced organisms often lack any other type of biological characterization. We have previously introduced PFP (Protein Function Prediction) as our sequence-based predictor of Gene Ontology (GO) functional terms. PFP interprets the results of a PSI-BLAST search by extracting and scoring individual functional attributes, searching a wide range of E-value sequence matches, and utilizing conventional data mining techniques to fill in missing information. We have shown it to be effective in predicting both specific and low-resolution functional attributes when sufficient data is unavailable. Here we describe (1) significant improvements to the PFP infrastructure, including the addition of prediction significance and confidence scores, (2) a thorough benchmark of performance and comparisons to other related prediction methods, and (3) applications of PFP predictions to genome-scale data. We applied PFP predictions to uncharacterized protein sequences from 15 organisms. Among these sequences, 60-90% could be annotated with a GO molecular function term at high confidence (>or=80%). We also applied our predictions to the protein-protein interaction network of the Malaria plasmodium (Plasmodium falciparum). High confidence GO biological process predictions (>or=90%) from PFP increased the number of fully enriched interactions in this dataset from 23% of interactions to 94%. Our benchmark comparison shows significant performance improvement of PFP relative to GOtcha, InterProScan, and PSI-BLAST predictions. This is consistent with the performance of PFP as the overall best predictor in both the AFP-SIG '05 and CASP7 function (FN) assessments. PFP is available as a web service at http://dragon.bio.purdue.edu/pfp/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号