首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To examine the relationship between mitochondrial energy coupling in skeletal muscle and change in uncoupling protein 3 (UCP3) expression during the transition from the fed to fasted state, we used a novel noninvasive (31)P/(13)C NMR spectroscopic approach to measure the degree of mitochondrial energy coupling in the hind limb muscles of awake rats before and after a 48-h fast. Compared with fed levels, UCP3 mRNA and protein levels in the gastrocnemius increased 1.7- (p < 0.01) and 2.9-fold (p < 0.001), respectively, following a 48-h fast. Tricarboxylic acid cycle flux measured using (13)C NMR as an index of mitochondrial substrate oxidation was 212 +/- 23 and 173 +/- 25 nmol/g/min (p not significant) in the fed and 48-h fasted groups, respectively. Unidirectional ATP synthesis flux measured using (31)P NMR was 79 +/- 15 and 57 +/- 9 nmol/g/s (p not significant) in the fed and 48-h fasted groups, respectively. Mitochondrial energy coupling as expressed by the ratio of ATP synthesis to tricarboxylic acid cycle flux was not different between the fed and fasted states. To test the hypothesis that UCP3 may be involved in the translocation of long chain free fatty acids (FFA) into the mitochondrial matrix under conditions of elevated FFA availability, [U-(13)C]palmitate/albumin was administered in a separate group of rats with (+) or without (-) etomoxir (an inhibitor of carnitine palmitoyltransferase I). The ratio of glutamate enrichment ((+) etomoxir/(-) etomoxir) in the hind limb muscles was the same between groups, indicating that UCP3 does not appear to function as a translocator for long chain FFA in skeletal muscle following a 48-h fast. In summary, these data demonstrate that despite a 2-3-fold increase in UCP3 mRNA and protein expression in skeletal muscle during the transition from the fed to fasted state, mitochondrial energy coupling does not change. Furthermore, UCP3 does not appear to have a major role in FFA translocation into the mitochondria. The physiological role of UCP3 following a 48-h fast in skeletal muscle remains to be elucidated.  相似文献   

2.
3.
Uncoupling protein 3 (UCP3) is a member of the mitochondrial transporter superfamily that is expressed primarily in skeletal muscle. UCP3 is upregulated in various conditions characterized by skeletal muscle atrophy, including hyperthyroidism, fasting, denervation, diabetes, cancer, lipopolysaccharide (LPS), and treatment with glucocorticoids (GCs). The influence of sepsis, another condition characterized by muscle cachexia, on UCP3 expression and activity is not known. We examined UCP3 gene and protein expression in skeletal muscles from rats after cecal ligation and puncture and from sham-operated control rats. Sepsis resulted in a two- to threefold increase in both mRNA and protein levels of UCP3 in skeletal muscle. Treatment of rats with the glucocorticoid receptor antagonist RU-38486 prevented the sepsis-induced increase in gene and protein expression of UCP3. The UCP3 mRNA and protein levels were increased 2.4- to 3.6-fold when incubated muscles from normal rats were treated with dexamethasone (DEX) and/or free fatty acids (FFA) ex vivo. In addition, UCP3 mRNA and protein levels were significantly increased in normal rat muscles in vivo with treatment of either DEX or FFA. The results suggest that sepsis upregulates the gene and protein expression of UCP3 in skeletal muscle, which may at least in part be mediated by GCs and FFA.  相似文献   

4.
Chronic administration of leptin has been shown to reduce adiposity through energy intake and expenditure. The present study aims to examine how acute central infusion of leptin regulates peripheral lipid metabolism, as assessed by markers indicative of their mobilization and utilization. A bolus infusion of 1 microg/rat leptin into the third cerebroventricle increased the expression of mRNA for hormone-sensitive lipase (HSL), an indicator of lipolysis, in white adipose tissue (WAT). This was accompanied by elevation of plasma levels of glycerol, but not of free fatty acids, as compared to the saline control (P < 0.03). The same treatment with leptin decreased plasma insulin levels but did not affect the plasma glucose level (P < 0.05 for insulin). Among the major regulators of the transportation or utilization of energy substrates, leptin treatment increased expression of mRNA for uncoupling protein 1 (UCP1) in brown adipose tissue (BAT), UCP2 in WAT, and UCP3 in quadriceps skeletal muscle, but not those for fatty acid-binding protein in WAT, carnitine phosphate transferase-1, a marker for beta oxidation of fatty acids in muscle, nor glucose transporter 4 in WAT and muscle (P < 0.01 for HSL, P < 0.05 for UCP1, and P < 0.005 for UCP2 and UCP3). These results indicate that, even in a single bolus, leptin may regulate the mobilization and/or utilization of energy substrates such as fatty acids by affecting lipolytic activity in WAT and by increasing the expression of UCPs in BAT, WAT, and muscle.  相似文献   

5.
The function of uncoupling protein 3 (UCP3) is still not established. Mitochondrial uncoupling, control of ROS production, protection against lipotoxicity and protection against oxidative stress are functions classically discussed. To establish a role for UCP3 in these functions, we have here used UCP3 (-/-) mice, backcrossed for 10 generations on a C57Bl/6 background. In isolated skeletal muscle mitochondria, we examined uncoupled respiration, both unstimulated and in the presence of fatty acids. We did not observe any difference between mitochondria from wildtype and UCP3 (-/-) mice. We measured H(2)O(2) production rate and respiration rate under reactive oxygen species-generating conditions (succinate without rotenone) but found no effect of UCP3. We tested two models of acute lipotoxicity-fatty acid-induced oxidative inhibition and fatty acid-induced swelling-but did not observe any protective effect of UCP3. We examined oxidative stress by quantifying 4-hydroxynonenal protein adducts and protein carbonyls in the mitochondria-but did not observe any protective effect of UCP3. We conclude that under the experimental conditions tested here, we find no evidence for the function of UCP3 being basal or induced uncoupling, regulation of ROS production, protection against acute lipotoxicity or protection against oxidative damage.  相似文献   

6.
The discovery of the human homologue of the thermogenic protein UCP1, named uncoupling protein 3 (UCP3), boosted research on the role of this skeletal muscle protein in energy metabolism and body weight regulation. Nowadays, 9 years after its discovery emerging data indicate that the primary physiological role of UCP3 may be the mitochondrial handling of fatty acids rather than regulating energy expenditure via thermogenesis. UCP3 has been proposed to export fatty acid anions or fatty acid peroxides away from the matrix-side of the mitochondrial inner membrane to prevent their deleterious accumulation. In this way, UCP3 could protect mitochondria against lipid-induced oxidative mitochondrial damage, a function especially important under conditions of high fatty acid supply to skeletal muscle mitochondria. Such function may be clinically relevant in the development of type 2 diabetes mellitus, a condition characterized by muscular fat accumulation, mitochondrial damage and low levels of UCP3.  相似文献   

7.
Rats bearing the Yoshida AH-130 ascites hepatoma showed an increased expression of both uncoupling protein-2 (UCP2) (two-fold) and UCP3 (three- to four-fold) in skeletal muscle (both soleus and gastrocnemius). The increase in mRNA content was associated with increased circulating concentrations of fatty acids (two-fold), triglyceride (two-fold) and cholesterol (1.9-fold). Administration of nicotinic acid to tumor-bearing rats abolishes the hyperlipidemic increase associated with tumor burden. The vitamin treatment also resulted in a decreased UCP3 gene expression in soleus muscle but not in gastrocnemius. It is concluded that circulating fatty acids may be involved in the regulation of UCP3 gene expression in aerobic muscles during experimental cancer cachexia. Since the UCP3 protein could have a role in energy expenditure, it may be suggested that hypolipidemic agents may have a beneficial role in the treatment of the cachectic syndrome.  相似文献   

8.
Uncoupling protein (UCP) 1 (UCP1) catalyzes a proton leak in brown adipose tissue (BAT) mitochondria that results in nonshivering thermogenesis (NST), but the extent to which UCP homologs mediate NST in other tissues is controversial. To clarify the role of UCP3 in mediating NST in a hibernating species, we measured Ucp3 expression in skeletal muscle of arctic ground squirrels in one of three activity states (not hibernating, not hibernating and fasted for 48 h, or hibernating) and housed at 5 degrees C or -10 degrees C. We then compared Ucp3 mRNA levels in skeletal muscle with Ucp1 mRNA and UCP1 protein levels in BAT in the same animals. Ucp1 mRNA and UCP1 protein levels were increased on cold exposure and decreased with fasting, with the highest UCP1 levels in thermogenic hibernators. In contrast, Ucp3 mRNA levels were not affected by temperature but were increased 10-fold during fasting and >3-fold during hibernation. UCP3 protein levels were increased nearly fivefold in skeletal muscle mitochondria isolated from fasted squirrels compared with nonhibernators, but proton leak kinetics in the presence of BSA were unchanged. Proton leak in BAT mitochondria also did not differ between fed and fasted animals but did show classical inhibition by the purine nucleotide GDP. Levels of nonesterified fatty acids were highest during hibernation, and tissue temperatures during hibernation were related to Ucp1, but not Ucp3, expression. Taken together, these results do not support a role for UCP3 as a physiologically relevant mediator of NST in muscle.  相似文献   

9.
The cloning of the uncoupling protein (UCP)1 homologs UCP2 and UCP3 has raised considerable interest in the mechanism. The expression of UCP3 mainly in skeletal muscle mitochondria and the potency of the skeletal muscle as a thermogenic organ made UCP3 an attractive target for studies toward manipulation of energy expenditure to fight disorders such as obesity and type 2 diabetes. Overexpressing UCP3 in mice resulted in lean, hyperphagic mice. However, the lack of an apparent phenotype in mice lacking UCP3 triggered the search for alternative functions of UCP3. The observation that fatty acid levels significantly affect UCP3 expression has given UCP3 a position in fatty acid handling and/or oxidation. Emerging data indicate that the primary physiological role of UCP3 may be the mitochondrial handling of fatty acids rather than the regulation of energy expenditure through thermogenesis. It has been proposed that UCP3 functions to export fatty acid anions away from the mitochondrial matrix. In doing so, fatty acids are exchanged with protons, explaining the uncoupling activity of UCP3. The exported fatty acid anions may originate from hydrolysis of fatty acid esters by a mitochondrial thioesterase, or they may have entered the mitochondria as nonesterified fatty acids by incorporating into and flip‐flopping across the mitochondrial inner membrane. Regardless of the origin of the fatty acid anions, this putative function of UCP3 might be of great importance in protecting mitochondria against fatty acid accumulation and may help to maintain muscular fat oxidative capacity.  相似文献   

10.
Thompson MP  Kim D 《FEBS letters》2004,568(1-3):4-9
Physiological and pathological states that are associated with elevated plasma fatty acids (FAs) increase uncoupling protein 2 (UCP2) mRNA in white adipose tissue and UCP3 mRNA in skeletal muscle and heart. A direct effect of unsaturated fatty acids from all classes has been shown in various cultured cells. There is evidence that FAs could induce expression of UCPs by acting as ligands for peroxisome proliferator-activated receptors, influencing the function of sterol responsive element binding protein or activating 5'-AMP-activated protein kinase. Oleic acid has been shown to stimulate the activity of the promoter regions of UCP2 and UCP3 genes and the FA responsive regions are beginning to be characterised.  相似文献   

11.
12.
Noradrenaline signals the initiation of brown fat thermogenesis and the fatty acids liberated by the hormone-stimulated lipolysis act as second messengers to activate the uncoupling protein UCP1. UCP1 is a mitochondrial transporter that catalyses the re-entry of protons to the mitochondrial matrix thus allowing a regulated discharge of the proton gradient. The high affinity of UCP1 for fatty acids is a distinct feature of this uncoupling protein. The uncoupling proteins belong to a protein superfamily formed by the mitochondrial metabolite carriers. Members of this family present a tripartite structure where a domain containing two transmembrane helices, linked by a long hydrophilic loop, is repeated three times. Using protein chimeras, where the repeats had been swapped between UCP1 and UCP3, it has been shown that the central third of UCP1 is necessary and sufficient for the response of the protein to fatty acids. We have extended those studies and in the present report we have generated protein chimeras where different regions of the second repeat of UCP1 have been sequentially replaced with their UCP2 counterparts. The resulting chimeras present a progressive degradation of the characteristic bioenergetic properties of UCP1. We demonstrate that the presence of the second matrix loop is necessary for the high affinity activation of UCP1 by fatty acids.  相似文献   

13.
The recently discovered uncoupling protein 3 (UCP3) is highly homologous to the mitochondrialinner membrane protein UCP1, which generates heat by uncoupling the respiratory chainfrom oxidative phosphorylation. The thermogenic function of UCP1 protects against cold andregulates the energy balance in rodents. We review in vitro studies investigating the uncouplingactivity of UCP3 and in vivo studies, which address UCP3 gene expression in brown adiposetissue and skeletal muscle under various metabolic conditions. The data presented are, for themost, consistent with an uncoupling role for UCP3 in regulatory thermogenesis. We alsodiscuss mediators of UCP3 regulation and propose a potential role for intracellular fatty acidsin the mechanism of UCP3 modulation. Finally, we hypothesize a role for UCP3 in themetabolic adaptation of the mitochondria to the degradation of fatty acids.  相似文献   

14.
Darren A. Talbot 《BBA》2005,1709(2):150-156
Mitochondrial uncoupling proteins only catalyse proton transport when they are activated. Activators include superoxide and reactive alkenals, suggesting new physiological functions for UCP2 and UCP3: their activation by superoxide when protonmotive force is high causes mild uncoupling, which lowers protonmotive force and attenuates superoxide generation by the electron transport chain. This feedback loop acts to prevent excessive mitochondrial superoxide production. Superoxide inactivates aconitase in the mitochondrial matrix, so aconitase activity provides a sensitive measure of the effects of UCPs on matrix superoxide. We find that inhibition of UCP3 in isolated skeletal muscle mitochondria by GDP decreases aconitase activity by 25% after 20 min incubation. The GDP effect is absent in skeletal muscle mitochondria from UCP3 knockout mice, showing that it is mediated by UCP3. Protection of aconitase by UCP3 in the absence of nucleotides does not require added fatty acids. The purine nucleoside diphosphates and triphosphates cause aconitase inactivation, but the monophosphates and CDP do not, consistent with the known nucleotide specificity of UCP3. The IC50 for GDP is about 100 μM. These findings support the proposal that UCP3 attenuates endogenous radical production by the mitochondrial electron transport chain at high protonmotive force.  相似文献   

15.
Mitochondrial uncoupling proteins only catalyse proton transport when they are activated. Activators include superoxide and reactive alkenals, suggesting new physiological functions for UCP2 and UCP3: their activation by superoxide when protonmotive force is high causes mild uncoupling, which lowers protonmotive force and attenuates superoxide generation by the electron transport chain. This feedback loop acts to prevent excessive mitochondrial superoxide production. Superoxide inactivates aconitase in the mitochondrial matrix, so aconitase activity provides a sensitive measure of the effects of UCPs on matrix superoxide. We find that inhibition of UCP3 in isolated skeletal muscle mitochondria by GDP decreases aconitase activity by 25% after 20 min incubation. The GDP effect is absent in skeletal muscle mitochondria from UCP3 knockout mice, showing that it is mediated by UCP3. Protection of aconitase by UCP3 in the absence of nucleotides does not require added fatty acids. The purine nucleoside diphosphates and triphosphates cause aconitase inactivation, but the monophosphates and CDP do not, consistent with the known nucleotide specificity of UCP3. The IC(50) for GDP is about 100 microM. These findings support the proposal that UCP3 attenuates endogenous radical production by the mitochondrial electron transport chain at high protonmotive force.  相似文献   

16.
哺乳动物因为缺乏Δ-12和ω-3脂肪酸脱氢酶,不能自身合成必需的多不饱和脂肪酸.目前,通过转基因技术在哺乳动物体内表达ω-3脂肪酸脱氢酶,能将长链的n-6多不饱和脂肪酸转化成n-3多不饱和脂肪酸,造成体内长链的n-6多不饱和脂肪酸含量显著减低.本研究通过自我剪切2A肽介导Δ-12和ω-3脂肪酸脱氢酶(FAT-2和FAT-1)以及人过氧化氢酶(human catalase,hCAT)在小鼠的肌肉同时表达.结果表明,转基因小鼠肌肉中长链n-3多不饱和脂肪酸含量提高2.6倍,长链n-6多不饱和脂肪酸含量没有显著变化,而n-6/n-3比例显著降低(P < 0.01).同时蛋白质印迹检测到人过氧化氢酶hCAT在小鼠的肌肉组织中表达,且过氧化氢酶活性比野生型小鼠显著提高(P < 0.01).  相似文献   

17.
18.
The objective of this study was to investigate the sex-dependent regulation of skeletal muscle uncoupling protein (UCP)3 mRNA expression in response to overweight and its relationship with serum levels of free fatty acids, leptin, and insulin. Two obesity models were used: rats made obese by feeding them with a cafeteria diet for 14 wk, and postcafeteria overweight rats fed a chow diet for 10 wk after consuming the cafeteria diet for 14 wk. The effects of 24-h fasting were studied in postcafeteria rats and their age-matched controls. The cafeteria rats ate a high-fat diet and attained an excess body weight that was higher in females (+59%) than in males (+39%). A trend to higher induction of abdominal muscle UCP3 mRNA in male rats than in females after cafeteria diet was apparent (+116% increase vs. +26% increase). Postcafeteria male but not female rats still showed the tendency to have increased UCP3 mRNA levels relative to their age-matched controls. A linear regression analysis showed a significant positive correlation of the UCP3 mRNA levels with overweight and with serum levels of leptin and insulin in males, but not in females, and no correlation with serum free fatty acid levels. A subsequent correlation analysis and a multiple linear regression analysis showed that overweight was the only parameter actually related to UCP3 mRNA levels in males. Fasting-induced upregulation of muscle UCP3 mRNA levels was higher in males (5- to 7-fold) than in females (3- to 4-fold). Our results point to the existence of sex-associated differences in the control of muscle UCP3 expression in response to overweight and fasting, with an impaired induction in female rats under both conditions. The correlation of abdominal muscle UCP3 mRNA expression with overweight in males could be related to their relative resistance to gain weight after chronic overeating of a cafeteria diet, by the purported role of UCP3 in the regulation of lipid utilization.  相似文献   

19.
To examine the thermogenic significance of the classical uncoupling protein-1 (UCP1), the thermogenic potential of brown adipocytes isolated from UCP1-ablated mice was investigated. Ucp1(-/-) cells had a basal metabolic rate identical to wild-type; the mitochondria within them were coupled to the same degree. The response to norepinephrine in wild-type cells was robust ( approximately 10-fold increase in thermogenesis); Ucp1(-/-) cells only responded approximately 3% of this. Ucp1(-/-) cells were as potent as wild-type in norepinephrine-induced cAMP accumulation and lipolysis and had a similar mitochondrial respiratory complement. In wild-type cells, fatty acids induced a thermogenic response similar to norepinephrine, but fatty acids (and retinoate) were practically without effect in Ucp1(-/-) cells. It is concluded that no other adrenergically induced thermogenic mechanism exists in brown adipocytes except that mediated by UCP1 and that entopic expression of UCP1 does not lead to overt innate uncoupling, and it is suggested that fatty acids are transformed to an intracellular physiological activator of UCP1. High expression of UCP2 and UCP3 in the tissue was not associated with an overt innate highly uncoupled state of mitochondria within the cells, nor with an ability of norepinephrine or endo- or exogenous fatty acids to induce uncoupled respiration in the cells. Thus, UCP1 remains the only physiologically potent thermogenic uncoupling protein in these cells.  相似文献   

20.
According to alternative hypotheses, mitochondrial uncoupling protein 1 (UCP1) is either a proton channel ("buffering model") or a fatty acid anion carrier ("fatty acid cycling"). Transport across the proton channel along a chain of hydrogen bonds (Grotthus mechanism) may include fatty acid carboxyl groups or occur in the absence of fatty acids. In this work, we demonstrate that planar bilayers reconstituted with UCP1 exhibit an increase in membrane conductivity exclusively in the presence of fatty acids. Hence, we can exclude the hypothesis considering a preexisting H+ channel in UCP1, which does not require fatty acid for function. The augmented conductivity is nearly completely blocked by ATP. Direct application of transmembrane voltage and precise current measurements allowed determination of ATP-sensitive conductances at 0 and 150 mV as 11.5 and 54.3 pS, respectively, by reconstituting nearly 3 x 10(5) copies of UCP1. The proton conductivity measurements carried out in presence of a pH gradient (0.4 units) allowed estimation of proton turnover numbers per UCP1 molecule. The observed transport rate of 14 s-1 is compatible both with carrier and channel nature of UCP1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号