首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The effect of antiepileptic drug ethosuximide and sodium valproat on fusion of synaptic vesicles with synaptosomal plasma membranes was studied in cell-free system. It was shown that ethosuximide and sodium valproat increases the rate of Ca(2+)-dependent fusion reaction in vitro. We have found that convulsant drugs pentylenetetrazol and picrotoxin did not fuse membrane components of the model system. Ethosuximide- and sodium valproat-provoked fusion of synaptic vesicles and plasma membranes of synaptosomes were suppressed by convulsant drugs pentylenetetrazol and picrotoxin.  相似文献   

2.
The ATP dependence of the kinetics of Ca2+-dependent exocytosis after flash photolysis of caged Ca2+ was studied by capacitance measurements with submillisecond resolution in single synaptic terminals of retinal bipolar neurons. After control experiments verified that this combination of techniques is valid for the study of exocytosis in synaptic terminals, a comparison was made between the Ca2+ dependence of the rate of exocytosis in synaptic terminals internally dialyzed with MgATP, MgATP-γ-S, or no added Mg2+ or nucleotide. The Ca2+ threshold for release, the maximum rate of release, and the overall relationship between the rate of synaptic vesicle fusion and [Ca2+]i were found to be independent of MgATP. A decrease in the average rate at near-threshold [Ca2+]i was observed in terminals with MgATP-γ-S, but due to the small sample size is of unclear significance. The Ca2+ dependence of the delay between the elevation of [Ca2+]i and the beginning of the capacitance rise was also found to be independent of MgATP. In contrast, MgATP had a marked effect on the ability of terminals to respond to multiple stimuli. Terminals with MgATP typically exhibited a capacitance increase to a second stimulus that was >70% of the amplitude of the first response and to a third stimulus with a response amplitude that was >50% of the first, whereas terminals without MgATP responded to a second stimulus with a response <35% of the first and rarely responded to a third flash. These results suggest a major role for MgATP in preparing synaptic vesicles for fusion, but indicate that cytosolic MgATP may have little role in events downstream of calcium entry, provided that [Ca2+]i near release sites is elevated above ≈30 μM.  相似文献   

3.
We have developed a system, in which fusion of synaptic vesicles with synaptosomal plasma membranes in the presence of synaptic soluble proteins can be studiedin vitro. We found that in this system micromolar concentrations of Ca2+ trigger fusion. The extent of fusion is insensitive to Ca2+ in millimolar concentrations, but can be covered by addition of MgATP. Ultimately, characterization of such cell-free systems makes it possible to identify biochemical events, which mediate and regulate these membrane fusion eventsin vivo.  相似文献   

4.
Abstract: These experiments investigate the release of transmitter from the perfused superior cervical ganglia of cats induced by ouabain in the absence or presence of 2-(4-phenylpiperidino)cyclohexanol (vesamicol), a blocker of acetylcholine (ACh) uptake. Ouabain, perfused through the ganglia, released ACh in a Ca2+-dependent way. Vesamicol caused some inhibition of the release of ACh by ouabain; however, under this condition, the Na+, K+-ATPase inhibitor released five times more transmitter than did preganglionic stimulation at 5 Hz. Also, when ganglia exposed to vesamicol were depleted of the impulse-releasable pool of ACh, subsequent perfusion with ouabain released ACh, and this included ACh newly synthesized in the presence of vesamicol; this phenomenon could be inhibited by the lack of Ca2+ and presence of EGTA, and was completely abolished by perfusion with a medium containing 18 mM Mg2+. To test whether the release of this vesamicol-insensitive Ca2+-dependent pool by ouabain is associated with a decrease in the number of synaptic vesicles, ganglia treated with the ATPase inhibitor after the depletion of the impulse-releasable pool of ACh were fixed for electron microscopy. In the presence of Ca2+, coincident with the release of the vesamicol-insensitive pool of ACh, nerve terminals were almost depleted of synaptic vesicles; ganglia treated similarly, but with medium containing 18 mM Mg2+ instead of Ca2+, were not depleted of synaptic vesicles. These results suggest that ouabain releases a vesamicol-insensitive pool of ACh from the sympathetic ganglion and also support the notion that this compartment is vesicular and its exocytosis depends on extracellular Ca2+. It is suggested that empty-vesicle recycling in the presence of vesamicol restricts mobilization of full vesicles to release sites.  相似文献   

5.
In response to stimuli, secretary cells secrete a variety of signaling molecules packed in vesicles (e.g., neurotransmitters and peptide hormones) into the extracellular space by exocytosis. The vesicle secretion is often triggered by calcium ion (Ca2+) entered into secretary cells and achieved by the fusion of secretory vesicles with the plasma membrane. Recent accumulating evidence has indicated that members of the synaptotagmin (Syt) family play a major role in Ca2+-dependent exocytosis, and Syt I, in particular, is now widely accepted as the major Ca2+-sensor for synchronous neurotransmitter release. Involvement of other Syt isoforms in Ca2+-dependent exocytotic events other than neurotransmitter release has also been reported, and the Syt IV isoform is of particular interest, because Syt IV has several unique features not found in Syt I (e.g., immediate early gene product induced by deporalization and postsynaptic localization). In this article, we summarize the literature on the multi-functional role of Syt IV in Ca2+-dependent exocytosis.  相似文献   

6.
The plasma membrane was isolated from a calcareous red alga, Serraticardia maxima (Yendo) Silva (Corallinaceae), by aqueous two-phase partitioning. Its purity was examined with marker enzymes, Mg2+-dependent ATPase, inosine diphosphatase, cytochrome c oxidase and NADH-cytochrome c reductase, as well as the sensitivity of Mg2+-dependent ATPase to vanadate, azide and nitrate. The results showed that the isolated plasma membrane was purified enough to study its functions. Electron microscopic observations on thin tissue sections revealed that most vesicles of the isolated plasma membrane were stained by the plasma membrane specific stain, phosphotungstic acid-chromic acid. Mg2+- or Ca2+-dependent ATPases were associated with the plasma membrane. Ca2+-dependent ATPase was activated at physiological cytoplasmic concentrations of Ca2+ (0.1–10 μmol/L). However, calmodulin (0.5 μmol/L) did not affect its activity. The pH optimum was 8.0, in contrast to 7.0 for Mg2+-dependent ATPase. The isolated plasma membrane vesicles were mostly right side-out. To test for H+-translocation, right side-out vesicles were inverted; 27% of vesicles were inside-out after treatment with Triton X-100. The inside-out plasma membrane vesicles showed reduction of quinacrine fluorescence in the presence of 1 mmol/L ATP and 100 μmol/L Ca2+. The reduced fluorescence was recovered with the addition of 10 mmol/L NH4Cl, or 5 μmol/L nigericin plus 50 mmol/L KCl. UTP and CTP substituted for ATP, but ADP did not. Ca2+-dependent ATPase might pump H+ out in the physiological state. The acidification by this pump might be coupled with alkalinization at the calcifying sites, which induces calcification.  相似文献   

7.
Glutamate release and synaptic vesicle heterotypic/homotypic fusion were characterized in brain synaptosomes of rats exposed to hypergravity (10 G, 1 h). Stimulated vesicular exocytosis determined as KCl-evoked fluorescence spike of pH-sensitive dye acridine orange (AO) was decreased twice in synaptosomes under hypergravity conditions as compared to control. Sets of measurements demonstrated reduced ability of synaptic vesicles to accumulate AO (∼10% higher steady-state baseline level of AO fluorescence). Experiments with preloaded l-[14C]glutamate exhibited similar amount of total glutamate accumulated by synaptosomes, equal concentration of ambient glutamate, but the enlarged level of cytoplasmic glutamate measuring as leakage from digitonin-permeabilized synaptosomes in hypergravity. Thus, it may be suggested that +G-induced changes in stimulated vesicular exocytosis were a result of the redistribution of intracellular pool of glutamate, i.e. a decrease in glutamate content of synaptic vesicles and an enrichment of the cytoplasmic glutamate level. To investigate the effect of hypergravity on the last step of exocytosis, i.e. membrane fusion, a cell-free system consisted of synaptic vesicles, plasma membrane vesicles, cytosolic proteins isolated from rat brain synaptosomes was used. It was found that hypergravity reduced the fusion competence of synaptic vesicles and plasma membrane vesicles, whereas synaptosomal cytosolic proteins became more active to promote membrane fusion. The total rate of homo- and heterotypic fusion reaction initiated by Ca2+ or Mg2+/ATP remained unchanged under hypergravity conditions. Thus, hypergravity could induce synaptopathy that was associated with incomplete filling of synaptic vesicles with the neuromediator and changes in exocytotic release.  相似文献   

8.
The various experimental approaches and octadecyl rhodamine B chloride (R18) assay's capability to meet the criteria for examining the Ca2+dependent synaptic vesicles (SVs) fusion with target membranes have been investigated. The existence of at least two simultaneous processes one of which attributed to real Ca2+-dependent membrane fusion, while another is considered to be non-specific probe transfer has been shown. The differences in response to temperature changes were found for R18 fluorescence dequenching upon stimulation of membrane fusion or nonspecific probe transfer. The temperature dependences of the probe dequenching rate were the same for heterotypic and homotypic membrane systems and increased with the temperature growth. The combination of R18 fluorescence studies with the data obtained by dynamic light scattering (DLS) offers a unique opportunity for the determination of SVs aggregation and the membrane fusion. The cholesterol content of the synaptosomal plasma membrane was modulated by methyl-β-cyclodextrin (MCD). The MCD molecule has proven to bind directly the membrane cholesterol and interact with lipophilic probe R18 that affects its fluorescence. The obvious distinctions in probe dequenching due to the membrane mixing or the MCD effect were observed. The cholesterol depletion from the synaptosomal plasma membranes was found to inhibit the process of Ca2+-induced membrane fusion with SVs. Thus, the manipulations with conditions of R18 probe dequenching at the model conditions, specific for the Ca2+-triggered fusion steps of regulated exocytosis, allowed us to determine the relative contribution of probe transfer and genuine membrane fusion to the overall fluorescence signal.  相似文献   

9.
Neurotransmitter release depends on the fusion of secretory vesicles with the plasma membrane and the release of their contents. The final fusion step displays higher-order Ca2+ dependence, but also upstream steps depend on Ca2+. After deletion of the Ca2+ sensor for fast release – synaptotagmin-1 – slower Ca2+-dependent release components persist. These findings have provoked working models involving parallel releasable vesicle pools (Parallel Pool Models, PPM) driven by alternative Ca2+ sensors for release, but no slow release sensor acting on a parallel vesicle pool has been identified. We here propose a Sequential Pool Model (SPM), assuming a novel Ca2+-dependent action: a Ca2+-dependent catalyst that accelerates both forward and reverse priming reactions. While both models account for fast fusion from the Readily-Releasable Pool (RRP) under control of synaptotagmin-1, the origins of slow release differ. In the SPM the slow release component is attributed to the Ca2+-dependent refilling of the RRP from a Non-Releasable upstream Pool (NRP), whereas the PPM attributes slow release to a separate slowly-releasable vesicle pool. Using numerical integration we compared model predictions to data from mouse chromaffin cells. Like the PPM, the SPM explains biphasic release, Ca2+-dependence and pool sizes in mouse chromaffin cells. In addition, the SPM accounts for the rapid recovery of the fast component after strong stimulation, where the PPM fails. The SPM also predicts the simultaneous changes in release rate and amplitude seen when mutating the SNARE-complex. Finally, it can account for the loss of fast- and the persistence of slow release in the synaptotagmin-1 knockout by assuming that the RRP is depleted, leading to slow and Ca2+-dependent fusion from the NRP. We conclude that the elusive ‘alternative Ca2+ sensor’ for slow release might be the upstream priming catalyst, and that a sequential model effectively explains Ca2+-dependent properties of secretion without assuming parallel pools or sensors.  相似文献   

10.
Ca2+-sensitive Mg2+-dependent ATP phosphohydrolase (EC 3.6.1.3, ATPase) was extracted from the plain synaptic vesicle fractions that were virtually devoid of contamination. The protein pattern of the ATPase preparation on SDS polyacrylamide gel electrophoresis closely resembled that of actomyosin from skeletal muscle. The finding suggests that the main components of the ATPase are actin- and myosin-like proteins of the brain (stenin and neurin). Microsome and synaptosomal plasmalemma fractions were extracted under the same conditions to examine the possibility that the ATPase extracted derived from contaminating particulates. An entirely different ATPase was extracted from microsomes, and no protein from plasma membranes. Although Ca2+-sensitive Mg2+-dependent ATPase was extracted from coated vesicle fraction, the electrophoretic pattern was dissimilar to that of the ATPase from plain synaptic vesicle fractions. It may be inferred that the whole complex of neurostenin is located in plain synaptic vesicles from the brain.  相似文献   

11.
Most chemical neurotransmission occurs through Ca2+-dependent evoked or spontaneous vesicle exocytosis. In both cases, Ca2+ sensing is thought to occur shortly before exocytosis. In this paper, we provide evidence that the Ca2+ dependence of spontaneous vesicle release may partly result from an earlier requirement of Ca2+ for the assembly of soluble N-ethylmaleimide–sensitive fusion attachment protein receptor (SNARE) complexes. We show that the neuronal vacuolar-type H+-adenosine triphosphatase V0 subunit a1 (V100) can regulate the formation of SNARE complexes in a Ca2+–Calmodulin (CaM)-dependent manner. Ca2+–CaM regulation of V100 is not required for vesicle acidification. Specific disruption of the Ca2+-dependent regulation of V100 by CaM led to a >90% loss of spontaneous release but only had a mild effect on evoked release at Drosophila melanogaster embryo neuromuscular junctions. Our data suggest that Ca2+–CaM regulation of V100 may control SNARE complex assembly for a subset of synaptic vesicles that sustain spontaneous release.  相似文献   

12.
Synaptic vesicles fuse with the plasma membrane in response to Ca2+ influx, thereby releasing neurotransmitters into the synaptic cleft. The protein machinery that mediates this process, consisting of soluble N‐ethylmaleimide‐sensitive factor attachment protein receptors (SNAREs) and regulatory proteins, is well known, but the mechanisms by which these proteins prime synaptic membranes for fusion are debated. In this study, we applied large‐scale, automated cryo‐electron tomography to image an in vitro system that reconstitutes synaptic fusion. Our findings suggest that upon docking and priming of vesicles for fast Ca2+‐triggered fusion, SNARE proteins act in concert with regulatory proteins to induce a local protrusion in the plasma membrane, directed towards the primed vesicle. The SNAREs and regulatory proteins thereby stabilize the membrane in a high‐energy state from which the activation energy for fusion is profoundly reduced, allowing synchronous and instantaneous fusion upon release of the complexin clamp.  相似文献   

13.
In the study of membrane fusion, which is the terminal stage of exocytosis, we used a simplified model consisting of homotypic membranes of isolated synaptic vesicles (SV) obtained from the synaptosomal fraction of rat brain tissue. It was shown that fusion of SV develops in the presence of cytoplasmic proteins and 10–7 to 10–5 M Ca2+ ions. This conclusion was made based on changes in the intensity of fluorescence of a probe, R18. Calcium ions were found to be the most effective activators of the membrane fusion when the effects of bivalent cations, Ca2+, Sr2+, and Ba2+, were compared. ATP induced membrane fusion both in the presence and in the absence of Ca2+, and the effects of ATP and Ca2+ were additive. These findings allow us to believe that there are factors in the system containing SV and soluble proteins of synaptosomes, which initiate fusion of the membranes under the influence of not only Ca2+ but also ATP. The intensity of Ca2+-dependent fusion of SV dropped after trypsin treatment, i.e., proteolysis resulted in modulation of the sensitivity of vesicular proteins and/or a change in their capability of evoking membrane fusion. Monoclonal antibodies against synaptotagmin and synaptobrevin inhibited fusion of SV, but only partly. Our results support the concept that Ca2+-regulated membrane fusion is possible without the involvement of the entire SNARE complex.Neirofiziologiya/Neurophysiology, Vol. 36, No. 4, pp. 272–280, July–August, 2004.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

14.
Synaptic vesicles from rat brain were labeled with125I, and the association of the vesicles with other subcellular components of brain was examined using a centrifugation assay. Copper at micromolar concentrations enhances the binding of the vesicles to the synaptic membrane as well as other fractions. Magnesium, Ca2+, and calmodulin with Ca2+ are ineffective. There is virtually no binding of synaptic vesicles to the microtuble fraction and only a slight enhancement with Cu2+. These findings support the hypothesis that Cu may serve as a bridge between synaptic vesicles and the plasma membrane.  相似文献   

15.
A large number of plant Ca2+/H+ exchangers have been identified in endomembranes, but far fewer have been studied for Ca2+/H+ exchange in plasma membrane so far. To investigate the Ca2+/H+ exchange in plasma membrane here, inside-out plasma membrane vesicles were isolated from Arabidopsis thaliana leaves using aqueous two-phase partitioning method. Ca2+/H+ exchange in plasma membrane vesicles was measured by Ca2+-dependent dissipation of a pre-established pH gradient. The results showed that transport mediated by the Ca2+/H+ exchange was optimal at pH 7.0, and displayed transport specificity for Ca2+ with saturation kinetics at K m = 47 μM. Sulfate and vanadate inhibited pH gradient across vesicles and decreased the Ca2+-dependent transport of H+ out of vesicles significantly. When the electrical potential across plasma membrane was dissipated with valinomycin and potassium, the rate of Ca2+/H+ exchange increased comparing to control without valinomycin effect, suggesting that the Ca2+/H+ exchange generated a membrane potential (interior negative), i.e. that the stoichiometric ratio for the exchange is greater than 2H+:Ca2+. Eosin Y, a Ca2+-ATPase inhibitor, drastically inhibited Ca2+/H+ exchange in plasma membrane as it does for the purified Ca2+-ATPase in proteoliposomes, indicating that measured Ca2+/H+ exchange activity is mainly due to a plasma membrane Ca2+ pump. These suggest that calcium (Ca2+) is transported out of Arabidopsis cells mainly through a Ca2+-ATPase-mediated Ca2+/H+ exchange system that is driven by the proton-motive force from the plasma membrane H+-ATPase.  相似文献   

16.
Microsomal fractions from wheat tissues exhibit a higher level of ATP hydrolytic activity in the presence of Ca2+ than Mg2+. Here we characterise the Ca2+-dependent activity from roots of Triticum aestivum lev. Troy) and investigate its possible function. Ca2+-dependent ATP hydrolysis in the microsomal fraction occurs over a wide pH range with two slight optima at pH 5.5 and 7.5. At these pHs the activity co-migrates with the major peak of nitrate-inhibited Mg2+. Cl-ATPase on continuous sucrose gradients indicating that it is associated with the vacuolar membrane. Ca2+-dependent ATP hydrolysis can be distinguished from an inhibitory effect of Ca2+ on the plasma membrane K+, Mg2+-ATPase following microsomal membrane separation using aqueous polymer two phase partitioning. The Ca2+-dependent activity is stimulated by free Ca2+ with a Km of 8.1 μM in the absence of Mg2+ ([CaATP] = 0.8 mM). Vacuoiar membrane vacuolar preparations contain a higher Ca2+-dependent than Mg2+-dependent ATP hydrolysis, although the two activities are not directly additive. The nucleotide specificity of the divalent ion-dependent activities in vacuolar membrane-enriched fractions was low. hydrolysis of CTP and UTP being greater than ATP hydrolysis with both Ca2+ and Mg2+ The Ca2+-dependent activity did discriminate against dinucleotides, and mononucleotides. and failed to hydrolyse phosphatase substrates. Despite low nucleotide specificity the Mg2+-dependent activity functioned as a bafilomycin sensitive H+-pump in vacuolar membrane vesicles. Ca2+-dependent ATP hydrolysis was not inhibited by the V-, P-, or F-type ATPase inhibitors bafilomycin. vanadate and azide, respectively. nor by the phosphatase inhibitor molybdate, but was inhibited 20% at pH 7.5 by K+. Possible functions of Ca2+-dependent hydrolysis as a H+-pump or a Ca2+-pump was investigated using vacuolar membrane vesicles. No H+ or Ca2+ translocating activity was observed under conditions when the Ca2+-dependent ATP hydrolysis was active.  相似文献   

17.
Microsomal vesicles from 24-hour-old radish (Raphanus sativus L.) seedlings accumulate Ca2+ upon addition of MgATP. MgATP-dependent Ca2+ uptake co-migrates with the plasma membrane H+-ATPase on a sucrose gradient. Ca2+ uptake is insensitive to oligomycin, inhibited by vanadate (IC50 40 micromolar) and erythrosin B (IC50 0.2 micromolar) and displays a pH optimum between pH 6.6 and 6.9. MgATP-dependent Ca2+ uptake is insensitive to protonophores. These results indicate that Ca2+ transport in these microsomal vesicles is catalyzed by a Mg2+-dependent ATPase localized on the plasma membrane. Ca2+ strongly reduces ΔpH generation by the plasma membrane H+-ATPase and increases MgATP-dependent membrane potential difference (Δψ) generation. These effects of Ca2+ on ΔpH and Δψ generation are drastically reduced by micromolar erythrosin B, indicating that they are primarily a consequence of Ca2+ uptake into plasma membrane vesicles. The Ca2+-induced increase of Δψ is collapsed by permeant anions, which do not affect Ca2+-induced decrease of ΔpH generation by the plasma membrane H+-ATPase. The rate of decay of MgATP-dependent ΔpH, upon inhibition of the plasma membrane H+-ATPase, is accelerated by MgATP-dependent Ca2+ uptake, indicating that the decrease of ΔpH generation induced by Ca2+ reflects the efflux of H+ coupled to Ca2+ uptake into plasma membrane vesicles. It is therefore proposed that Ca2+ transport at the plasma membrane is mediated by a Mg2+-dependent ATPase which catalyzes a nH+/Ca2+ exchange.  相似文献   

18.
Abstract

The role of calcium during the synthesis, secretion and molecular organization of the primary cell-wall polysaccharides is the topic of this review. With the exception of callose synthase, the in vitro activity of all polysaccharide synthases is not controlled by Ca2+ ions. However, changes in the intracellular Ca2+ level could control the rate of exocytotic fusion of the secretory vesicles containing cell-wall matrix polysaccharides. In particular, the ability of Ca2+ to regulate the fusion of secretory vesicles with the plasma membrane is due to a class of Ca2+-dependent phospholipid-binding proteins known as annexins. The ionic interactions between calcium and the negatively charged homogalacturonan domains of the pectins are important not only for the mechanical properties of the wall but also for the gel-properties of these complex biopolymers.  相似文献   

19.
Phosphoinositides provide compartment-specific signals for membrane trafficking. Plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2) is required for Ca2+-triggered vesicle exocytosis, but whether vesicles fuse into PIP2-rich membrane domains in live cells and whether PIP2 is metabolized during Ca2+-triggered fusion were unknown. Ca2+-dependent activator protein in secretion 1 (CAPS-1; CADPS/UNC31) and ubMunc13-2 (UNC13B) are PIP2-binding proteins required for Ca2+-triggered vesicle exocytosis in neuroendocrine PC12 cells. These proteins are likely effectors for PIP2, but their localization during exocytosis had not been determined. Using total internal reflection fluorescence microscopy in live cells, we identify PIP2-rich membrane domains at sites of vesicle fusion. CAPS is found to reside on vesicles but depends on plasma membrane PIP2 for its activity. Munc13 is cytoplasmic, but Ca2+-dependent translocation to PIP2-rich plasma membrane domains is required for its activity. The results reveal that vesicle fusion into PIP2-rich membrane domains is facilitated by sequential PIP2-dependent activation of CAPS and PIP2-dependent recruitment of Munc13. PIP2 hydrolysis only occurs under strong Ca2+ influx conditions sufficient to activate phospholipase Cη2 (PLCη2). Such conditions reduce CAPS activity and enhance Munc13 activity, establishing PLCη2 as a Ca2+-dependent modulator of exocytosis. These studies provide a direct view of the spatial distribution of PIP2 linked to vesicle exocytosis via regulation of lipid-dependent protein effectors CAPS and Munc13.  相似文献   

20.
Synaptotagmin VII (Syt VII), which has a higher Ca2+ affinity and slower disassembly kinetics with lipid than Syt I and Syt IX, was regarded as being uninvolved in synaptic vesicle (SV) exocytosis but instead possibly as a calcium sensor for the slower kinetic phase of dense core vesicles (DCVs) release. By using high temporal resolution capacitance and amperometry measurements, it was demonstrated that the knockdown of endogenous Syt VII attenuated the fusion of DCV with the plasma membrane, reduced the amplitude of the exocytotic burst of the Ca2+-triggered DCV release without affecting the slope of the sustained component, and blocked the fusion pore expansion. This suggests that Syt VII is the Ca2+ sensor of DCV fusion machinery and is an essential factor for the establishment and maintenance of the pool size of releasable DCVs in PC12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号