首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The age and growth parameters of Dipturus chilensis were estimated by counting growth rings from thin sections of vertebral centra from 400 fish (246 females and 154 males), ranging from 23 to 124 cm total length (LT), and backcalculating fish lengths at previous ages. Marginal increment analysis lent support to the hypothesis of annual deposition of band‐pairs, which formed during the winter months. The oldest female D. chilensis aged in this study was 21 years and 117 cm LT, whereas the oldest male was 18 years and 93 cm LT. A 4·7% index of average per cent error (IAPE) suggested that this is a precise method for calculating the age of D. chilensis. Observed LT were lower than backcalculated LT, which implies the influence of Lee's phenomenon. The von Bertalanffy growth equations, based on mean length‐at‐age data, were estimated as Lt = 128·3 (1 ? e?0·112 (t + 0·514)) for females and Lt = 107·8 (1 ? e?0·134 (t + 0·862)) for males where t is age (years). Growth was significantly different between sexes: females reached a larger adult size. Ages and lengths at 50% maturity were estimated at 14 years of age and 106 cm LT for females and 11 years of age and 86 cm LT for males. At c. 14 years, there was a decline in growth rates in females. The factor most likely responsible for this was sexual maturity, which caused a discontinuity in growth of female fish. These results show that this species is slow‐growing, long‐lived, relatively large and of delayed maturity, characteristics that make it vulnerable to exploitation.  相似文献   

2.
In this review we collected data on the length at maturity (Lm) and maximum reported total length (Lmax) of 565 Mediterranean marine fish stocks, representing 150 species, 68 families, 24 orders and 3 classes. Overall, Lm ranged from 2 cm, for the males of the toothcarp Aphanius fasciatus, to 350 cm, for the females of the bluntnose sixgill shark Hexanchus griseus. Lm was positively linearly related with Lmax for Actinopterygii (logLm = ?0.123 + 0.92 × logLmax; r 2 = 0.87, n = 471, P < 0.001) and Elasmobranchii (logLm = ?0.008 + 0.922 × logLmax; r 2 = 0.90, n = 92, P < 0.001) with the two slopes being significantly different (ANCOVA: F = 2,904, P < 0.001). The reproductive load (Lm/Lmax) ranged between 0.23 (sand steenbras Lithognathus mormyrus) and 0.94 (angular roughshark Oxynotus centrina and thornback ray Raja clavata). The mean Lm/Lmax was significantly (ANOVA, F = 34.14, P < 0.001) lower for Actinopterygii (mean = 0.59, SD = 0.122, n = 471) compared to Elasmobranchii (mean = 0.70, SD = 0.132, n = 92) and Holocephali (mean = 0.77, SD = 0.077, n = 2). The Lm/Lmax was significantly (ANOVA, F = 43.80, P < 0.001) higher for species providing some form of parental care, i.e. guarders, bearers, nesters (mean Lm/Lmax ± SD = 0.68 ± 0.141, n = 111) compared to non-guarders (mean Lm/Lmax ± SD = 0.59 ± 0.123, n = 454). The mean Lm/Lmax displayed a remarkable constancy with longitude (northern and southern Mediterranean coastline: ANOVA, F = 0.01, P = 0.93), latitude (western, central and eastern regions: ANOVA, F = 1.25, P = 0.29) and habitat (ANOVA, F = 0.85, P = 0.51).  相似文献   

3.
The above-ground parts of two years old seedlings of Douglas fir (Pseudotsuga menziesii) were exposed to filtered air, NH3, NO2+, SO2 (66, 96 and 95 μg m?3, respectively), to a mixture of NO2+NH3 (55 + 82 μg m?3) or SO2+NO2 (128 + 129 μg m?3), for 8 months in fumigation chambers. Both chlorophyll fluorescence and gas exchange measurements were carried out on shoots which had sprouted at the beginning of the exposure period. The chlorophyll fluorescence measurements were performed after 3 and 5 months of exposure (average shoot age 70 and 140 days, respectively). Light response curves of electron transport rate (J) were determined, in which J was deduced from chlorophyll fluorescence. In addition, light response curves of net CO2 assimilation were determined after 5 months of exposure. After 3 months of exposure (average shoot age 70 days) all exposure treatments showed a lower maximum electron transport rate (Jmax) as compared to the control shoots (filtered air). A large reduction (45%) was observed for shoots exposed to SO2+NO2. During the exposure period between 3 and 5 months (average shoot age 70 and 140 days, respectively) a decrease of Jmax was observed for all treatments. Jmax had further declined some time after termination of the exposure, when average shoot age was 310 days. Shoots exposed to SO2 and SO2+NO2 also showed a reduction in maximum net CO2 assimilation (Pmax) as compared to the control shoots. However, shoots exposed to NO2 showed no reduction and even a higher Pmax was observed for shoots exposed to NH3 or NO2+NH3. Needles of these treatments also showed a higher chlorophyll content which might explain the contradictory results obtained for these treatments: the increased amount of photosynthetic units counteracts the reduction in Jmax and consequently no reduction in Pmax is measured. Shoots exposed to SO2 and SO2+NO2 also showed a reduction in maximum stomatal conductance (gs). However, the stomatal opening was larger than could be expected on basis of their (maximum) CO2 assimilation rate. Consequently, water use efficiency of these shoots was lower than that of the control shoots. Also shoots exposed to NO2 had a lower water use efficiency due to a significantly higher maximum gs. Shoots exposed to NH3 showed a high transpiration rate in the dark, indicating imperfect stomatal closure.  相似文献   

4.
Michael Hickman 《Ecography》1978,1(4):337-350
Cooking Lake (113°02′W, 53°26′N), a well-mixed, shallow (mean depth (1.59 m), eutrophic lake in Alberta, Canada, is characterized by eutrophic chlorococcalean and cyanophycean phytoplankton associations, and little change in standing crop with increasing depth. Standing crop and primary productivity are low during the winter but pronounced spring and summer maxima occur. Mean yearly areal standing crop (ΔB) and primary productivity (ΔA) were 212.4 mg m?2 chlorophyll a and 301.8 mg C h?1 m?2 respectively. Annual productivity was estimated at 1322 g C m?2. The mean increase in the extinction coefficient (?) per unit increase in standing crop (B) was 0.03 In units m?1. High non-algal light attenuation (?q) occurred avenging 41 which prevented the ratio B/? from attaining more than 65% of the theoretical maximum except once when algal self-shading occurred. Close correlations existed between B (mg m?3 chlorophyll a) and A max (mg h?1 m?3) ΔA and ΔB, ΔA and B, Amax, and Amax/?, and ΔA and Io′, (W m?2). The depth of the euphotic zone (Zeu) varied between 0.5 and 1 25 m; the average relationship between zeu and E was Zeu= 3.74/?, and the mean standing Crop found in the euphotic zone represented 55.2% of the theoretical maximum, The high ?q, values made the model of Tailing (1957) inapplicable to Cooking Lake. The Q10 value for the lake was 2.2. The maximum rate of photosynthesis per unit of population per h. Ømax, (mg C sag chlorophyll a?1 h?1) was more closely related to temperature than irradiance and ma depressed by pH values greater than 9.1. Growth of the phytoplankton was not nutrient limited: instead irradiance and temperature were more important. Indirect evidence that free CO2 limited photosynthetic rates, is provided by the Ømax: pH relationship.  相似文献   

5.
Whether fluctuation in density influenced the growth and maturation variables of three aggregated cohorts (fish born during the 1986–1993, 1996–2003 and 2004–2008 periods) of Pacific sardine Sardinops sagax caeruleus collected off the Californian coast from 2004 to 2010 was investigated. Using a von Bertalanffy mixed‐effects model with aggregated cohorts as covariates, estimated growth rate significantly covaried with aggregated cohorts. Growth rate (K) was modelled as a fixed effect and estimated to be 0·264 ± 0·015 (±s.e ). Statistical contrasts among aggregated cohorts showed that the 1996–2003 cohorts had a significantly lower growth rate than the other two aggregated cohorts. The theoretical age at length zero (t0) and the standard length at infinity (LS) were modelled as random effects, and were estimated to be ?2·885 ± 0·259 (±s.e ) and 273·13 ± 6·533 mm (±s.e ). The relation of ovary‐free mass at length was significantly different among the three aggregated cohorts, with the allometric coefficient estimated to be 2·850 ± 0·013 (±s.e ) for the S. sagax population. The age‐at‐length trajectory of S. sagax born between 1986 and 2008 showed strong density dependence effects on somatic growth rates. In contrast to the density‐dependent nature of growth, the probability to be mature at‐size or at‐age was not significantly affected by aggregated cohort density. The size and the age‐at‐50% maturity were estimated to be 150·92 mm and 0·56 years, respectively. Stock migration, natural fluctuations in biomass and removal of older and larger S. sagax by fishing might have been interplaying factors controlling growth parameters during 1986–2010.  相似文献   

6.
Russian sturgeon (Acipenser gueldenstaedti Brandt & Ratzeburg, 1833) is one of the major commercial sturgeon species, but there is no adequate information and previous‐published about population dynamics and stock assessment of this species in the southern Caspian Sea. This paper examines the age structure, growth parameters, maturity, age at first capture, optimum length, natural and fishing mortality and amount of biomass in the southern Caspian Sea (Iranian waters), during a two decades time series period from 1990–1991 to 2008–2009. For a pooled data, the growth parameters were estimated as L = 214.0 cm, = 0.054, t0 = ?4.5 year. Size at fifty percent sexual maturity was at FL = 118 cm for females and 113 cm for males. The age at first capture (tc) estimated to be 12.1 years. In the catch composition, bulk of the catch (75%) belonged to 13–17 years old. The instantaneous coefficient of natural mortality (M) was estimated as 0.120 year?1 and the instantaneous coefficient of fishing mortality (F) varied during the 19‐year period between 0.130 to 0.505 year?1. The biomass showed a descending trend from 1,941.2 mt in 1990–1991 collapsed to about 55 mt in 2004–2005, and then decreased to the lowest level and represented 18.5 mt in 2008–2009. The result revealed that, the stock of Russian sturgeon is being over‐fished. We concluded that to manage the sturgeons stocks, a coordinated regional and international effort are needed to provide immediate implementation of stock enhancement and management in the Caspian Sea.  相似文献   

7.
Epinephelus adscensionis sampled from Ascension Island, South Atlantic Ocean, exhibits distinct life‐history traits, including larger maximum size and size at sexual maturity than previous studies have demonstrated for this species in other locations. Otolith analysis yielded a maximum estimated age of 25 years, with calculated von Bertalanffy growth parameters of: L = 55·14, K = 0·19, t0 = ?0·88. Monthly gonad staging and analysis of gonad‐somatic index (IG) provide evidence for spawning from July to November with an IG peak in August (austral winter), during which time somatic growth is also suppressed. Observed patterns of sexual development were supportive of protogyny, although further work is needed to confirm this. Mean size at sexual maturity for females was 28·9 cm total length (LT; 95% C.I. 27·1–30·7 cm) and no females were found >12 years and 48·0 cm LT, whereas all confirmed males sampled were mature, >35·1 cm LT with an age range from 3 to 18 years. The modelled size at which 50% of individuals were male was 41·8 cm (95% C.I. 40·4–43·2 cm). As far as is known, this study represents the first comprehensive investigation into the growth and reproduction of E. adscensionis at its type locality of Ascension Island and suggests that the population may be affected less by fisheries than elsewhere in its range. Nevertheless, improved regulation of the recreational fishery and sustained monitoring of abundance, length frequencies and life‐history parameters are needed to inform long‐term management measures, which could include the creation of marine reserves, size or temporal catch limits and stricter export controls.  相似文献   

8.
The net exchange of CO2 (NEE) between a Scots pine (Pinus sylvestris L.) forest ecosystem in eastern Finland and the atmosphere was measured continuously by the eddy covariance (EC) technique over 4 years (1999–2002). The annual temperature coefficient (Q10) of ecosystem respiration (R) for these years, respectively, was 2.32, 2.66, 2.73 and 2.69. The light‐saturated rate of photosynthesis (Amax) was highest in July or August, with an annual average Amax of 10.9, 14.6, 15.3 and 17.1 μmol m?2 s?1 in the 4 years, respectively. There was obvious seasonality in NEE, R and gross primary production (GPP), exhibiting a similar pattern to photosynthetically active radiation (PAR) and air temperature. The integrated daily NEE ranged from 2.59 to ?4.97 g C m?2 day?1 in 1999, from 2.70 to ?4.72 in 2000, from 2.61 to ?4.71 in 2001 and from 5.27 to ?4.88 in 2002. The maximum net C uptake occurred in July, with the exception of 2000, when it was in June. The interannual variation in ecosystem C flux was pronounced. The length of the growing season, based on net C uptake, was 179, 170, 175 and 176 days in 1999–2002, respectively, and annual net C sequestration was 152, 101, 172 and 205 g C m?2 yr?1. It is estimated that ecosystem respiration contributed 615, 591, 752 and 879 g C m?2 yr?1 to the NEE in these years, leading to an annual GPP of ?768, ?692, ?924 and ?1084 g C m?2 yr?1. It is concluded that temperature and PAR were the main determinants of the ecosystem CO2 flux. Interannual variations in net C sequestration are predominantly controlled by average air temperature and integrated radiation in spring and summer. Four years of EC data indicate that boreal Scots pine forest ecosystem in eastern Finland acts as a relatively powerful carbon sink. Carbon sequestration may benefit from warmer climatic conditions.  相似文献   

9.
Two tagged‐and‐recaptured tiger sharks Galeocerdo cuvier, measuring 172 and 304 cm total length (LT) and at age 0·75 and 3·50 years, exhibited unmatched growth rates of 118·4 and 55·5 cm year?1, respectively. The larger fish was nearly mature, indicating that G. cuvier off Brazil could mature considerably earlier than conspecifics from other regions.  相似文献   

10.
The mating system and allozyme variation at 20 loci in three Klamath Mountains and two Sierra Nevada populations of Jeffrey pine (Pinus jeffreyi Grev. & Balf.) were investigated. On average, multilocus estimates of the proportion of viable progeny due to outcrossing (tm) were high in all populations (mean tm = 0.935, range 0.881 to 0.971). Despite differences in stand structure, tm did not differ (P > 0.05) between the Klamath (mean tm = 0.933) and Sierra Nevada (mean tm = 0.937) populations. At all but one locus in one population and at two in another, genotype frequencies fit (P > 0.05) Hardy-Weinberg expectations. Mean estimates of observed heterozygosity in Klamath (0.182) and Sierra Nevada (0.327) populations were comparable to values reported for other conifers.  相似文献   

11.
Abstract Net nitrate uptake rates were measured and the kinetics calculated in non-nodulated Pisum sativum L. cv. Marma and Lemna gibba L. adapted to constant relative rates of nitrate-N additions (RA), ranging from 0.03 to 0.27 d?1 for Pisum and from 0.05 to 0.40 d?1 for Lemna, Vmax of net nitrate uptake (measured in the range 10 to 100 mmol m?3 nitrate, i.e. ‘system I’) increased with RA in the growth limiting range but decreased when RA exceeded the relative growth rate (RGR), Km was not significantly related to changes in RA. On the basis of previous 13N-flux experiments, it is concluded that the differences in Vmax at growth limiting RA are attributable to differences in influx rates. Linear relationships between Vmax and tissue nitrogen concentrations were obtained in the growth limiting range for both species, and extrapolated intercepts relate well with the previously defined minimal nitrogen concentrations for plant growth (Oscarson, Ingemarsson & Larsson, 1989). Analysis of Vmax for net nitrate uptake on intact plant basis in relation to nitrogen demand during stable, nitrogen limited, growth shows an increased overcapacity at lower RA values in both species, which is largely explained by the increased relative root size at low RA. A balancing nitrate concentration, defined as the steady state concentration needed to sustain the relative rate of increase in plant nitrogen (RN), predicted by RA, was calculated for both species. In the growth limiting range, this value ranges from 3.5 mmol m?3 (RA 0.03 d?1) to 44 mmol m?3 (RA 0.21 d?1) for Pisum and from 0.2 mmol m?3 (RA 0.05 d?1) to 5.4 mmol m?3 (RA 0.03 d?1) for Lemna. It is suggested that this value can be used as a unifying measure of the affinity for nitrate, integrating the performance of the nitrate uptake system with nitrate flux and long term growth and demand for nitrogen.  相似文献   

12.
Leaf age-dependent changes in structure, nitrogen content, internal mesophyll diffusion conductance (gm), the capacity for photosynthetic electron transport (Jmax) and the maximum carboxylase activity of Rubisco (Vcmax) were investigated in mature non-senescent leaves of Laurus nobilis L., Olea europea L. and Quercus ilex L. to test the hypothesis that the relative significance of biochemical and diffusion limitations of photosynthesis changes with leaf age. The leaf life-span was up to 3 years in L. nobilis and O. europea and 6 years in Q. ilex. Increases in leaf age resulted in enhanced leaf dry mass per unit area (MA), larger leaf dry to fresh mass ratio, and lower nitrogen contents per dry mass (NM) in all species, and lower nitrogen contents per area (NA) in L. nobilis and Q. ilex. Older leaves had lower gm, Jmax and Vcmax. Due to the age-dependent increase in MA, mass-based gm, Jmax and Vcmax declined more strongly (7- to 10-fold) with age than area-based (5- to 7-fold) characteristics. Diffusion conductance was positively associated with foliage photosynthetic potentials. However, this correlation was curvilinear, leading to lower ratio of chloroplastic to internal CO2 concentration (Cc/Ci) and larger drawdown of CO2 from leaf internal air space to chloroplasts (ΔC) in older leaves with lower gm. Overall the age-dependent decreases in photosynthetic potentials were associated with decreases in NM and in the fraction of N in photosynthetic proteins, whereas decreases in gm were associated with increases in MA and the fraction of cell walls. These age-dependent modifications altered the functional scaling of foliage photosynthetic potentials with MA, NM, and NA. The species primarily differed in the rate of age-dependent modifications in foliage structural and functional characteristics, but also in the degree of age-dependent changes in various variables. Stomatal openness was weakly associated with leaf age, but due to species differences in stomatal openness, the distribution of total diffusion limitation between stomata and mesophyll varied among species. These data collectively demonstrate that in Mediterranean evergreens, structural limitations of photosynthesis strongly interact with biochemical limitations. Age-dependent changes in gm and photosynthetic capacities do not occur in a co-ordinated manner in these species such that mesophyll diffusion constraints curb photosynthesis more in older than in younger leaves.  相似文献   

13.
Photosynthesis and respiration of three Alaskan Porphyra species, P. abbottiae V. Krishnam., P. pseudolinearis Ueda species complex (identified as P. pseudolinearis” below), and P. torta V. Krishnam., were investigated under a range of environmental parameters. Photosynthesis versus irradiance (PI) curves revealed that maximal photosynthesis (Pmax), irradiance at maximal photosynthesis (Imax), and compensation irradiance (Ic) varied with salinity, temperature, and species. The Pmax of Porphyra abbottiae conchocelis varied between 83 and 240 μmol O2 · g dwt?1 · h?1 (where dwt indicates dry weight) at 30–140 μmol photons · m?2 · s?1 (Imax) depending on temperature. Higher irradiances resulted in photoinhibition. Maximal photosynthesis of the conchocelis of P. abbottiae occurred at 11°C, 60 μmol photons · m?2·s?1, and 30 psu (practical salinity units). The conchocelis of P. “pseudolinearis” and P. torta had similar Pmax values but higher Imax values than those of P. abbottiae. The Pmax of P. “pseudolinearis” conchocelis was 200–240 μmol O2 · g dwt?1 · h?1 and for P. torta was 90–240 μmol O2 · g dwt?1 · h?1. Maximal photosynthesis for P. “pseudolinearis” occurred at 7°C and 250 μmol photons · m?2 · s?1 at 30 psu, but Pmax did not change much with temperature. Maximal photosynthesis for P. torta occurred at 15°C, 200 μmol photons · m?2 · s?1, and 30 psu. Photosynthesis rates for all species declined at salinities <25 or >35 psu. Estimated compensation irradiances (Ic) were relatively low (3–5 μmol · photons · m?2 · s?1) for intertidal macrophytes. Porphyra conchocelis had lower respiration rates at 7°C than at 11°C or 15°C. All three species exhibited minimal respiration rates at salinities between 25 and 35 psu.  相似文献   

14.
The present work examined the key elements featuring in the various methods used to characterize the erythrocyte sodium-lithium countertransport. Effects of medium composition on lithium efflux were investigated in 20 subjects. Mean lithium efflux (mmol Li/l RBC.h) into a 150 mm sodium medium was significantly higher than efflux into a revised sodium-rich medium (149 mm) containing 1 mm Mg (0.335 ± 0.100 vs. 0.298 ± 0.085 respectively; P < 0.03). Mean lithium efflux into sodium-free media where sodium had been entirely replaced by magnesium, was significantly lower than efflux into a choline-based medium containing only 1 mm magnesium (0.088 ± 0.027 vs. 0.109 ± 0.034 respectively; P= 0.03). Sodium-lithium countertransport activity and the transporter's kinetic profile were measured simultaneously in 35 subjects using traditional choline-based and kinetic methodologies. There was a significant correlation between countertransport activity and maximal rate of turnover (V max) (r= 0.62; P < 0.001); V max values were consistently greater than their corresponding countertransport activities (P < 0.001). On subdividing the subject group into tertiles based on the Michaelis-Menten constant (k m ) values (mm), <75, 75 − 150 and >150, the slopes of the regression lines for each group diminished progressively (0.64, 0.49 and 0.23 respectively), correlations within each group remained significant (P < 0.001, P < 0.001 and P < 0.02). No significant correlation was found between k m values and countertransport activity (r= 0.035; P=ns). Increasing the number of points representing sodium concentrations within the range 0–150 mm, improved the confidence in the emerging estimates of V max and k m obtained by linear transformation. Comparison of kinetic data derived using four different analytical methods (two linear transformations, a nonlinear regression and a statistical method), showed no significant differences between the estimates yielded for either V max (P= 0.88, ns) or k m (P= 0.92, ns). This study has highlighted the critical roles of assay conditions and derivation techniques used when measuring sodium-lithium countertransport, emphasizing the need for standardization of the methodology. Received: 10 December 1996/Revised: 2 October 1997  相似文献   

15.
左涛  张贝叶  王俊  左明  王安东 《生态学报》2024,44(7):3086-3097
牡蛎礁是生态系统服务价值高、但退化最严重及受关注度最高的海洋生境之一,牡蛎礁修复亦成为国际海洋生态修复的热点。掌握牡蛎自然种群状况及动态变化是评估牡蛎礁修复效果的基础。目前,我国天然牡蛎礁的牡蛎种群状况相关的背景资料较为缺乏。在黄河口西南侧的小岛河河口新发现天然活体牡蛎礁,但该牡蛎礁曾被大规模的商业采捕,亟需推进针对性的保护和修复研究工作。基于2021年11月对该牡蛎礁开展的牡蛎种群生态调查,分析其种类组成、年龄结构及生长特征。结果显示:该牡蛎礁分布有近江牡蛎(Crassostrea ariakensis)和长牡蛎(Crassostrea gigas)。牡蛎礁上以活体牡蛎为主,死亡牡蛎壳体数仅占6.1%-6.7%。活体牡蛎的密度和生物量分别为(2811±778)个/m2和(21.97±30.43)kg/m2,近江牡蛎较多,其密度和生物量分别占比55.7%和76.4%。近江牡蛎和长牡蛎的年龄分别介于0+-4+ 龄和0+-2+ 龄,它们都以壳高介于30-40 mm及壳质量<5 g的0+ 龄个体数量居多(>80%)。近江牡蛎的壳体形态参数均值都高于同龄组长牡蛎的相应值。两种牡蛎壳体均呈负异速增长,不同龄级的壳体延展方向不同。拟合von Bertalanffy生长方程得到,近江牡蛎和长牡蛎的渐近壳高分别为286 mm和173 mm,估算的拐点年龄分别为5.47 龄和2.56 龄,两种牡蛎的生长曲线分布存在极显著差异(P<0.001)。以上结果表明,小岛河河口的天然牡蛎礁的牡蛎自然种群资源较丰富,具有高密度、低龄和低死亡率等特点,有较好的活力和扩张潜力,有利于被采捕后的礁体的恢复。两种牡蛎中,近江牡蛎因其具有较高的生物量和较长的生长年龄,对礁体形成和扩繁可能更为重要。建议对该天然牡蛎礁及牡蛎种群开展周期>3年的原位保护、修复和连续监测计划。  相似文献   

16.
Accurate age estimates for fish are critical for properly understanding stock dynamics and health; this is particularly true for larger billfishes. Here we determined the most accurate aging estimation methods for swordfish (Xiphias gladius). We compared age estimates obtained from fin-ray sections, otolith sections, whole otoliths, and vertebrae collected from 87 swordfish off the east coast of Corsica. Age estimates from otolith sections were most consistently estimated across different readers (lowest average percentage error), followed by fin-ray sections, third vertebrae, and whole otoliths. When the age estimates from the otolith sections were compared with the other three age sclerochronological methods, we found the average percentage error to be lowest between the otolith section and fin-ray methods. However, age estimates from fin rays proved most useful for estimating swordfish younger than 6 years, as the fin ray-based age diverged from that of the otolith sections as the swordfish aged. Combining fin ray and otolith section techniques, we estimated the growth parameters of 1–12-year-old females (L = 259.412, k = 0.113, t0 = −2.499) and 1–7-year-old males (L = 175.543, k = 0.202, t0 = −2.239). We found that females grew significantly faster than males after 3 years and remained larger thereafter. Our calculated growth rates for this region of the north-western Mediterranean Sea were lower than those of the Atlantic, Pacific, and eastern Mediterranean Sea swordfish populations, and similar to growth rates recorded for the western Mediterranean Sea populations. Our study provides critical knowledge on biological-related parameters to serve as a guide for preserving the swordfish population in the Mediterranean Sea.  相似文献   

17.
The kinetics of NADH oxidation by the outer membrane electron transport system of intact beetroot (Beta vulgaris L.) mitochondria were investigated. Very different values for Vmax and the Km for NADH were obtained when either antimycin A-insensitive NADH-cytochrome c activity (Vmax= 31 ± 2.5 nmol cytochrome c (mg protein)?1 min?1; Km= 3.1 ± 0.8 μM) or antimycin A-insensitive NADH-ferricyanide activity (Vmax= 1.7 ± 0.7 μmol ferricyanide (mg protein)?1 min?1; Km= 83 ± 20 μM) were measured. As ferricyanide is believed to accept electrons closer to the NADH binding site than cytochrome c, it was concluded that 83 ± 20 μM NADH represented a more accurate estimate of the binding affinity of the outer membrane dehydrogenase for NADH. The low Km determined with NADH-cytochrome c activity may be due to a limitation in electron flow through the components of the outer membrane electron transport chain. The Km for NADH of the externally-facing inner membrane NADH dehydrogenase of pea leaf (Pisum sativum L. cv. Massey Gem) mitochondria was 26.7 ± 4.3 μM when oxygen was the electron acceptor. At an NADH concentration at which the inner membrane dehydrogenase should predominate, the Ca2+ chelator, ethyleneglycol-(β-aminoethylether)-N,N,-tetraacetic acid (EGTA), inhibited the oxidation of NADH through to oxygen and to the ubiquinone-10 analogues, duroquinone and ubiquinone-1, but had no effect on the antimycin A-insensitive ferricyanide reduction. It is concluded that the site of action of Ca2+ involves the interaction of the enzyme with ubiquinone and not with NADH.  相似文献   

18.
The sharpbelly Hemiculter leucisculus, an invasive species, has expanded its range throughout much of Asia and into the Middle East. However, little is known of its adaptive changes regarding life history traits such as age, growth and mortality that could possibly explain its success as an invasive species. A detailed study of the invasive sharpbelly was conducted based on 4539 samples collected from July 2009 to June 2011 in Erhai Lake, China. Standard length ranged from 4.3–19.1 cm for females and 4.6–12.3 cm for males. Length–weight relationships for females and males were significantly different and described as W = 0.0076SL3.2608 and W = 0.0084SL3.1901, respectively. Otoliths are ideal for age determination because of the single annulus formed each year. Based on marginal increment analysis, the total mean CV for age estimate between two readings was 3.55%. The von Bertalanffy growth curves computed by observed length‐at‐age data were expressed as Lt = 25.6 (1 ? e?0.176 (t + 1.347)) for females and Lt = 16.4 (1 ? e?0.354 (t + 0.819)) for males. According to the age, growth and mortality data, there are three possible reasons for H. leucisculus attaining such dominance within a short time in Erhai Lake. First, because of the simple age structure of this species: 97.58% of males were 1–2 years old with a maximum age of only 3 years; 93.14% of females were 1–3 years old, with a maximum age of 6 years. Second, females grew larger than males at any age. Third, instantaneous mortality rates were much higher for males (4.22 year?1) than for females (1.17 year?1).  相似文献   

19.
The Chilean jack mackerel (Trachurus murphyi) is a predominantly Southeast Pacific Ocean species. It is relatively difficult to determine its age, and multiple studies of its growth off South America have produced markedly different sets of von Bertalanffy parameters. T. murphyi was first identified from New Zealand waters in the mid-1980s and has comprised part of the commercial landings of Trachurus species (along with Trachurus declivis and Trachurus novaezelandiae) since then. Results from 13 years of age determination of New Zealand samples using sectioned otoliths indicate that a partially validated age determination method has been developed, with a precision level (average percentage error) of 4.6%. The best available von Bertalanffy growth parameters for the New Zealand population (sexes combined) are as follows: L, 51.9 cm fork length; K, 0.223 per year; t0, −0.5 year. Analyses by sex showed that males have a significantly larger L than females. Estimated annual catch-at-length and catch-at-age distributions from the fishery are presented for 2007–2019. There have been at least two episodes of immigration of T. murphyi from international waters, but little evidence of spawning success to maintain the New Zealand population.  相似文献   

20.
N-Nitrosodimethylamine (NDMA) is an emerging contaminant of concern. N-nitrodimethylamine (DMNA) is a structural analog to NDMA. NDMA and DMNA have been found in drinking water, groundwater, and other media and are of concern due their toxicity. The authors evaluated biotransformation of NDMA and DMNA by cultures enriched from contaminated groundwater growing on benzene, butane, methane, propane, or toluene. Maximum specific growth rates of enriched cultures on butane (μmax = 1.1 h?1) and propane (μmax = 0.65 h?1) were 1 to 2 orders of magnitude higher than those presented in the literature. Growth rates of mixed cultures grown on benzene (μmax = 1.3 h?1), methane (μmax = 0.09 h?1), and toluene (μmax = 0.99 h?1) in these studies were similar to those presented in the literature. NDMA biotransformation rates for methane oxidizers (υmax = 1.4 ng min?1 mg?1) and toluene oxidizers (υmax = 2.3 ng min?1 mg?1) were comparable to those presented in the literature, whereas the biotransformation rate for propane oxidizers (υmax = 0.37 ng min?1 mg?1) was lower. NDMA biotransformation rates for benzene oxidizers (υmax = 1.02 ng min?1 mg?1) and butane oxidizers (υmax = 1.2 ng min?1 mg?1) were comparable to those reported for other primary substrates. These studies showed that DMNA biotransformation rates for benzene (υmax = 0.79 ng min?1 mg?1), butane (υmax = 1.0 ng min?1 mg?1), methane (υmax = 2.1 ng min?1 mg?1), propane (υmax = 1.46 ng min?1 mg?1), and toluene (υmax = 0.52 ng min?1 mg?1) oxidizers were all comparable. These studies highlight potential bioremediation methods for NDMA and DMNA in contaminated groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号