首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disorganized redox homeostasis is a main factor causing a number of diseases and it is imperative to comprehend the orchestration of circadian clock under oxidative stress in the organism, Drosophila melanogaster. This investigation analyses the influence of hesperidin on the circadian rhythms of lipid peroxidation products and antioxidants during rotenone-stimulated oxidative stress in fruit fly. The characteristics of rhythms of thiobarbituric acid reactive substances (TBARS), antioxidants (superoxide dismutase (SOD) and catalase (CAT)) were noticeably decreased in rotenone administered flies. Supplementation of hesperidin to rotenone-treated flies increased the mesor and modulated the amplitudes of antioxidants and conspicuously decreased the mesor values of TBARS. In addition, delays in acrophase in rotenone-induced flies were reversed by hesperidin treatment. Thus, treatment of hesperidin caused normalization of the altered rhythms. Disorganization of 24 h rhythms in markers of redox homeostasis was observed during rotenone treatment and the impairment is severe in circadian clock mutant (Cryb) flies. Reversibility of rhythms was prominent subsequent to hesperidin treatment in wild-type flies than (Cryb) flies. These observations denote a role of circadian clock in redox homeostasis and the use of Drosophila model in screening putative antioxidative phytomedicines prior to their usage in mammalian systems.  相似文献   

2.
The circadian clock regulates vital aspects of physiology including protein synthesis and oxidative stress response. In this investigation, we performed a proteome-wide scrutiny of rhythmic protein accrual in Drosophila melanogaster on exposure to rotenone, rotenone + hesperidin and hesperidin in D. melanogaster. Total protein from fly samples collected at 6 h intervals over the 24 h period was subjected to two-dimensional gel electrophoresis and mass spectrometry. Bioinformatics tool, Protein ANalysis THrough Evolutionary Relationships classification system was used to the determine the biological processes of the proteins of altered abundance. Conspicuous variations in the proteome (151 proteins) of the flies exposed to oxidative stress (by rotenone treatment) and after alleviating oxidative stress (by hesperidin treatment) were observed during the 24 h cycle. Significantly altered levels of abundance of a wide variety of proteins under oxidative stress (rotenone treatment) and under alleviation of oxidative stress (rotenone + hesperidin treatment) and hesperidin (alone) treatment were observed. These proteins are involved in metabolism, muscle activity, heat shock response, redox homeostasis, protein synthesis/folding/degradation, development, ion-channel/cellular transport, and gustatory and olfactory function of the flies. Our data indicates that numerous cellular processes are involved in the temporal regulation of proteins and widespread modulations happen under rotenone treatment and, action of hesperidin could also be seen on these categories of proteins.  相似文献   

3.
刘永杰  贺金  肖鹏 《昆虫学报》2009,52(7):769-774
为了探讨鱼藤酮对黑腹果蝇Drosophila melanogaster运动行为的影响与其头部多巴胺水平之间的关系,我们测定了鱼藤酮对黒腹果蝇成虫运动行为、头部多巴胺水平及酪氨酸羟化酶和多巴脱羧酶基因表达的影响。结果表明:与取食未加入药剂饲料的果蝇相比雌成虫用0.2~0.8 mmol/L、雄成虫用0.1~0.8 mmol/L浓度药液配制的饲料连续饲养6 d后运动能力显著下降,在0.8 mmol/L浓度下雌、雄成虫的运动能力分别仅为对照的55.6%和49.1%。取食用0.8 mmol/L浓度药液配制饲料6,12和21 d的果蝇雌、雄成虫头部多巴胺水平均显著下降,雌成虫头部多巴胺水平分别为对照雌成虫的83.2%,72.3%和59.8%;雄成虫头部多巴胺水平分别为对照雄成虫的79.3%,66.8%和53.2%。用0.8 mmol/L浓度鱼藤酮处理6,12和21d,雌成虫头部酪氨酸羟化酶基因(pale)的表达水平分别为对照的76.3%,51.4%和37.3%,多巴脱羧酶基因(Ddc)的表达水平分别为对照的87.1%,78.2%和63.5%, 均显著下降。结果提示,鱼藤酮可干扰果蝇成虫头部酪氨酸羟化酶和多巴脱羧酶基因的表达,导致果蝇头部多巴胺水平下降,进而影响了果蝇的运动行为。  相似文献   

4.
紫外线对黑尾果蝇的生物学效应   总被引:8,自引:0,他引:8  
张建民 《昆虫知识》1994,31(4):242-244
野生型黑尾果蝇经紫外线连续处理3代,随着照射时间延长,每代均表现显著的生物学效应。这些生物学效应主要是子代数量减少,羽化延续时间缩短,体重减轻,而且有致略效应和间接的诱变效应。但处理后的子代性别比例变化不大。  相似文献   

5.
The gastrointestinal tract, due to its role as a digestive organ and as a barrier between the exterior and interior milieus, is critically impacted by dietary, environmental, and inflammatory conditions that influence health and lifespan. Work in flies is now uncovering the multifaceted molecular mechanisms that control homeostasis in this tissue, and establishing its central role in health and lifespan of metazoans. The Drosophila intestine has thus emerged as a productive, genetically accessible model to study various aspects of the pathophysiology of aging. Studies in flies have characterized the maintenance of regenerative homeostasis, the development of immune senescence, the loss of epithelial barrier function, the decline in metabolic homeostasis, as well as the maintenance of epithelial diversity in this tissue. Due to its fundamental similarity to vertebrate intestines, it can be anticipated that findings obtained in this system will have important implications for our understanding of age-related changes in the human intestine. Here, I review recent studies exploring age-related changes in the fly intestine, and their insight into the regulation of health and lifespan of the animal.  相似文献   

6.
Accruing evidences imply that circadian organization of biochemical, endocrinological, cellular and physiological processes contribute to wellness of organisms and in the development of pathologies such as malignancy, sleep and endocrine disorders. Oxidative stress is known to mediate a number of diseases and it is notable to comprehend the orchestration of circadian clock of a model organism of circadian biology, Drosophila melanogaster, under oxidative stress. We investigated the nexus between circadian clock and oxidative stress susceptibility by exposing D. melanogaster to hydrogen peroxide (H2O2) or rotenone; the reversibility of rhythms following exposure to Bacopa monnieri extract (ayurvedic medicine rich in antioxidants) was also investigated. Abolishment of 24 h rhythms in physiological response (negative geotaxis), oxidative stress markers (protein carbonyl and thiobarbituric acid reactive substances) and antioxidants (superoxide dismutase, catalase, glutathione-S-transferase and reduced glutathione) were observed under oxidative stress. Furthermore, abolishment of per mRNA rhythm in H2O2 treated wild type flies and augmented susceptibility to oxidative stress in clock mutant (cryb) flies connotes the role of circadian clock in reactive oxygen species (ROS) homeostasis. Significant reversibility of rhythms was noted following B. monnieri treatment in wild type flies than cryb flies. Our experimental approach revealed a relationship involving oxidative stress and circadian clock in fruit fly and the utility of Drosophila model in screening putative antioxidative phytomedicines prior to their use in mammalian systems.  相似文献   

7.
Advanced paternal age has been repeatedly shown to modulate offspring quality via male- and/or female-driven processes, and there are theoretical reasons to expect that some of these effects can be sex-specific. For example, sex allocation theory predicts that, when mated with low-condition males, mothers should invest more in their daughters compared to their sons. This is because male fitness is generally more condition-dependent and more variable than female fitness, which makes it less risky to invest in female offspring. Here, we explore whether paternal age can affect the quality and quantity of offspring in a sex-specific way using Drosophila melanogaster as a model organism. In order to understand the contribution of male-driven processes on paternal age effects, we also measured the seminal vesicle size of young and older males and explored its relationship with reproductive success and offspring quality. Older males had lower competitive reproductive success, as expected, but there was no difference between the offspring sex ratio of young and older males. However, we found that paternal age caused an increase in offspring quality (i.e., offspring weight), and that this increase was more marked in daughters than sons. We discuss different male- and female-driven processes that may explain such sex-specific paternal age effects.  相似文献   

8.
Clinal variation for repeat number in the Thr-Gly region of the period circadian timing gene in Drosophila melanogaster was described in Europe and has subsequently been used as evidence of thermal selection on period alleles. To test for clinal variation in this gene along the east coast of Australia, the period polymorphism was scored on flies from multiple samples collected repeatedly over a 5-year interval, along with variation at another circadian rhythm locus, clock. For period, there was no consistent evidence of clinal variation in the 17 and/or 20 repeat alleles, although when average allele length was examined a weak consistent clinal pattern was detected. For clock there was no evidence of clinal variation in the two most common alleles or in average repeat size. These data are inconsistent with the reported patterns in Europe and suggest that clinal variation in timing genes needs to be re-examined in this region.  相似文献   

9.
Circadian clocks are endogenous approximately 24 h oscillators that temporally regulate many physiological and behavioural processes. In order to be beneficial for the organism, these clocks must be synchronized with the environmental cycles on a daily basis. Both light : dark and the concomitant daily temperature cycles (TCs) function as Zeitgeber (‘time giver’) and efficiently entrain circadian clocks. The temperature receptors mediating this synchronization have not been identified. Transient receptor potential (TRP) channels function as thermo-receptors in animals, and here we show that the Pyrexia (Pyx) TRP channel mediates temperature synchronization in Drosophila melanogaster. Pyx is expressed in peripheral sensory organs (chordotonal organs), which previously have been implicated in temperature synchronization. Flies deficient for Pyx function fail to synchronize their behaviour to TCs in the lower range (16–20°C), and this deficit can be partially rescued by introducing a wild-type copy of the pyx gene. Synchronization to higher TCs is not affected, demonstrating a specific role for Pyx at lower temperatures. In addition, pyx mutants speed up their clock after being exposed to TCs. Our results identify the first TRP channel involved in temperature synchronization of circadian clocks.  相似文献   

10.
Maternal age is generally known to be negatively correlated with the lifespan of offspring in several animal models including yeast, rotifers, flies, and possibly in humans. However, several reports have shown positive effects of parental age on offspring lifespan. Thus, there was a need to investigate further the inconsistent results on the effect of parental age on lifespan. In this study, the effects of parental age on offspring fitness and lifespan were examined by using Drosophila melanogaster. The lifespan of offspring from old parents was significantly increased compared with that of the young counterparts in the Canton‐S (CS) strain but not in other D. melanogaster strains, such as Oregon‐R (OR) and w1118. To find out why the lifespan is increased in the offspring from old parents in CS flies, fitness components that could modulate lifespan were examined in CS flies. Egg weight and body weight were reduced by parental aging and the offspring of old fathers or old mothers developed faster than that of the young. In addition, the offspring of old parents had increased resistance to oxidative and heat shock stresses. However, reproductive capacity, mating preference, and food intake were unaffected by parental aging. These results indicate that parental aging in CS strain D. melanogaster has beneficial effects on the lifespan and fitness of offspring. The presence of strain‐specific manner effects suggests that genetic background might be a significant factor in the parental age effect.  相似文献   

11.
The patterns of the ribosomal DNA (rDNA) repeat units in seven Drosophila melanogaster inversional mutants have been studied. Among them, only the In(1)sc8 and its deletional derivative Df(1)mal12 female rDNAs exibited significant reduction in the size of nearly all units, compared to the wild-type females (Canton S, Oregon R). Further investigation shows that each kind of repeat (insertion-free, insertion-containing) in the Xsc8 rDNA array is highly enriched with short (reduced to 4 kilobases) intergenic spacers (IGSs). We revealed two main types of rearrangements. Only part of the 4 kb IGSs display variable length deletions (0.2–0.6 kb) at the 5′ ends, within the so-called ‘1900’ base pair (bp) region, recognizable by restriction endonuclease AluI. The presence of additional 100–150 bp DNA in the start portion of this region has also been demonstrated. In contrast, the 3′ end spacer regions, corresponding to the external transcribed spacer, do not show any changes in size. These data indicate how reductions of approximately 1.1 kb DNAs in sc8 IGSs, carrying both the rearranged and non-rearranged ‘1900’ sequences, are achieved: the fixed decrease of a number of 240 bp AluI subrepeats, clustered in the central IGS portion, also contribute. None of the other similar inversional mutants examined has so many IGS variants. Therefore, alterations in the Xsc8 rRNA gene cluster seem not to be dependent on its inversional status. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Cross-generational effects refer to nongenetic influences of the parental phenotype or environment on offspring phenotypes. Such effects are commonly observed, but their adaptive significance is largely unresolved. We examined cross-generational effects of parental temperature on offspring fitness (estimated via a serial-transfer assay) at different temperatures in a laboratory population of Drosophila melanogaster. Parents were reared at 18 degrees C, 25 degrees C, or 29 degrees C (Tpar) and then their offspring were reared at 18 degrees C, 25 degrees C, or 29 degrees C (Toff) to evaluate several competing hypotheses (including an adaptive one) involving interaction effects of parental and offspring temperature on offspring fitness. The results clearly show that hotter parents are better; in other words, the higher the temperature of the parents, the higher the fitness of their offspring, independent of offspring thermal environment. These data contradict the adaptive cross-generational hypothesis, which proposes that offspring fitness is maximal when the offspring thermal regime matches the parental one. Flies with hot parents have high fitness seemingly because their own offspring develop relatively quickly, not because they have higher fecundity early in life.  相似文献   

13.
Poly(ADP-ribose) polymerase (PARP) is conserved in eukaryotes. To analyze the function of PARP, we isolated and characterized the gene for PARP in Drosophila melanogaster. The PARP gene consisted of six translatable exons and spanned more than 50 kb. The DNA binding domain is encoded by exons 1-4. Although the consensus cleavage site of CED-3 like protease during apoptosis is conserved from human to Xenopus laevis PARPs, it is neither conserved in the corresponding region of Drosophila nor Sarcophaga peregrina. There are two cDNAs species in Drosophila. One cDNA could encode the full length PARP protein (PARP I), while the other is a truncated cDNA which could encode a partial-length PARP protein (PARP II), which lacks the automodification domain and is possibly produced by alternative splicing. The expression of these two forms of PARP in E. coli demonstrated that while PARP II has the catalytic NAD-binding domain and DNA-binding domain it is enzymatically inactive. On the other hand PARP I is active. A deletion mutant of PARP gene could grow to the end of embryogenesis but did not grow to the adult fly. These results suggest that the PARP gene plays an important function during the development of Drosophila.  相似文献   

14.
We quantified the variation and plasticity in cold tolerance among four larval stages of four laboratory strains of Drosophila melanogaster in response to both acute (<2 h of cold exposure) and chronic (7 h of cold exposure) cold exposure. We observed significant differences in basal cold tolerance between the strains and among larval stages. Early larval instars were generally more tolerant of acute cold exposures than third-instar larvae. However, wandering larvae were more tolerant of chronic cold exposures than the other stages. Early stages also displayed a more pronounced rapid cold-hardening response than the later stages. Heat pre-treatment did not confer a significant increase in cold tolerance to any of the strains at any stage, pointing to different mechanisms being involved in resolving heat- and cold-elicited damage. However, when heat pre-treatment was combined with rapid cold-hardening as sequential pre-treatments, both positive (heat first) and negative (heat second) effects on cold tolerance were observed. We discuss possible mechanisms underlying cold-hardening and the effects of acute and chronic cold exposures.  相似文献   

15.
Identifying regions of the Drosophila melanogaster genome that have been recent targets of positive Darwinian selection will provide evidence for adaptations that have helped this species to colonize temperate habitats. We have begun a search for such genomic regions by analyzing multiple loci (about 250) dispersed across the X chromosome in a putatively ancestral population from East Africa and a derived European population. For both populations we found evidence for past changes in population size. We estimated that a major bottleneck associated with the colonization of Europe occurred about 3,500-16,000 years ago. We also found that while this bottleneck can account for most of the reduction in variation observed in the European sample, there is a deficit of polymorphism in some genomic regions that cannot be explained by demography alone.  相似文献   

16.
S-腺苷甲硫氨酸合成酶(SamS)是目前已知的唯一在生物体内催化腺苷甲硫氨酸合成的酶。它是除自身以外、所有甲基化反应的甲基供体,并且参与多胺的生物合成。多胺对于稳定DNA、RNA和蛋白质大分子的双螺旋结构具有重要作用,和DNA的甲基化一起参与了基因组的印迹(impriting)过程。在分离到SamS基因的基础上,本文通过Northernblot和酶活两种方法,对该基因在野生型果蝇和四个等位突变体发育过程中主要阶段的转录和转译水平进行了测定。野生型果蝇由瑞典Umea大学果蝇中心提供。由于该基因的突变是阴性致死突变,研究中采用了杂合子突变体:Su(z)5,L(2)M6,L(2)R23和Df(2L)PM44,均由所在实验室诱变获得。Northern分析时,以cDNA#10和a微管蛋白基因为探针,分析果蝇卵巢、幼虫、蛹、胚胎、雄性和雌性成蝇中该基因Poly(A)RNA的转录水平。通过测定蛋白粗提物中的酶活,分析果蝇卵巢、幼虫、蛹、以及雄性成蝇腹部组织中该基因的翻译水平。Fig.1,2&3表明:SamS基因主要在成熟雌蝇的卵巢中高表达,在雄性成蝇中该基因的表达水平明显低于雌性。在其它发育阶段及组织部位中仅维持  相似文献   

17.
Wolbachia are Gram‐negative endosymbionts that are known to cause embryonic lethality when infected male insects mate with uninfected females or with females carrying a different strain of Wolbachia, a situation characterized as cytoplasmic incompatibility (CI). However, the mechanism of CI is not yet fully understood, although recent studies on Drosophila melanogaster have achieved great progress. Here, we found that Wolbachia infection caused changes in the expressions of several immunity‐related genes, including significant upregulation of kenny (key), in the testes of D. melanogaster. Overexpression of key in fly testes led to a significant decrease in egg hatch rates when these flies mate with wild‐type females. Wolbachia‐infected females could rescue this embryonic lethality. Furthermore, in key overexpressing testes terminal deoxynucleotidyl transferase‐mediated dUTP‐biotin nick‐end labeling signal was significantly stronger than in the control testes, and the level of reactive oxygen species was significantly increased. Overexpression of key also resulted in alterations of some other immunity‐related gene expressions, including the downregulation of Zn72D. Knockdown of Zn72D in fly testes also led to a significant decrease in egg hatch rates. These results suggest that Wolbachia might induce the defect in male host fertility by immunity‐related pathways and thus cause an oxidative damage and cell death in male testes.  相似文献   

18.
In a study of the regulation of enzyme patterns in imaginal discs the aldehyde oxidase pattern was determined for some homoeotic mutations of D. melanogaster. Earlier indications that suggested that this pattern follows the determinitive state of compartments within imaginal discs were confirmed by the aldehyde oxidase (AO) pattern of both the wing and haltere discs from en1; bx3, en1; pbx, and en1; bx3 pbx larvae and the antennal discs from Antp73b and ssa larvae. We additionally analyzed whether AO activity depended on the determinative state of an entire compartment or was expressed autonomously in clones. Homozygous engrailed clones were induced by mitotic recombination. From the AO clones found in normally negative areas of the posterior compartment it was concluded that enzyme activity depended upon the determinative state of the cells and was not a function of the compartment as a whole. The results are described with reference to a scheme in which compartmental and subcompartmental selector genes are thought to determine a binary code on which AO patterns depend.  相似文献   

19.
We studied the fertility of D. melanogaster females heterozygous for the dominant temperature sensitive mutation l(2)M167 DTS , which exerts a recessive lethal effect at 25°C, under the conditions of stable temperature regimes 25, 28, and 29°C and changing regimes 25 → 29°C and 29 → 25°C. It was shown that inhibition of total activity of oogenesis due to a decreased number of functioning ovarioles is one of the mechanisms underlying the decreased fertility of l(2)M167 DTS /+ females. Analysis of individual fertility of each female confirmed also the role of sterility as a component of fertility of the females. Sterilization was realized due both to full depletion of functioning ovarioles and disturbed mechanism of laying the mature eggs onto a substrate as a result of violation of the feedback blocking normal ovulation, which led to the breakdown of ovarioles and filling of the abdominal cavity with mature oocytes. A significant polymorphism of heterozygous females by their fertility was observed. The intensity of sterilization and mortality of l(2)M167 DTS /+ females sharply increased at an elevated temperature (29°C), especially at the pupal stage.  相似文献   

20.
管德龙  梁露  张敏 《昆虫知识》2014,(2):460-468
【目的】探明重金属镉(Cadmium,Cd)对黑腹果蝇Drosophila melanogaster DNA甲基化修饰相关基因表达的影响,初步分析镉胁迫可能导致果蝇的表观遗传变异及其可遗传性。【方法】收集8 h内羽化未交配的雌、雄果蝇,在添加不同质量浓度(0、0.9375、1.875、3.75、7.5、15.0、30.0、60.0 mg/kg)Cd的培养基中培养,以Real-time PCR定量检测亲代(F0)果蝇生殖系统、去生殖系统体细胞、整体表达量变化趋势及解除胁迫的子代(F1)果蝇DNA甲基化修饰系统相关基因(dDnmt2、dMBD2/3)在mRNA水平的表达变化。【结果】重金属镉胁迫诱导了果蝇卵巢、精巢、去卵巢雌果蝇、去精巢雄果蝇、完整雌果蝇、完整雄果蝇的dDnmt2、dMBD2/3在mRNA水平的表达上调,呈现一定剂量依赖性及雌、雄组织差异性,且这种表达变化持续至子一代。【结论】研究结果揭示了重金属镉胁迫可诱导果蝇dDnmt2、dMBD2/3表达量上调,其可能与果蝇的DNA甲基化修饰过程相关联,导致表观遗传变异并可能向子代传递。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号