首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
主要介绍一种通过原位易错PCR构建随机突变文库的新技术。本实验室最近发表的一项国际专利中,利用来源于海栖热孢菌的极耐热性DNA连接酶,在传统PCR循环中加入一个连接步骤,即变性—退火—延伸—连接的四步循环法PCR,从而实现环状质粒的PCR指数扩增(PPCP)。原位易错PCR中所用引物为一段线性双链DNA,它含有与模板质粒不同的筛选标记,产物转化宿主菌后,模板质粒在筛选平板上被直接剔除。筛选到的阳性突变子可用作模板直接进入突变文库的再次构建,通过筛选获得二级或多级累加的正突变。利用这种方法构建了一个木聚糖酶基因和一个纤维素酶基因的随机突变文库,并筛选出具有正向突变的蛋白,证明以PPCP为基础的原位易错PCR技术,为基因定向进化提供了一种快速有效的随机突变文库构建的新方法。  相似文献   

2.
Directed evolution relies on both random and site-directed mutagenesis of individual genes and regulatory elements to create variants with altered activity profiles for engineering applications. Central to these experiments is the construction of large libraries of related variants. However, a number of technical hurdles continue to limit routine construction of random mutagenesis libraries in Escherichia coli, in particular, inefficiencies during digestion and ligation steps. Here, we report a restriction enzyme-free approach to library generation using megaprimers termed MegAnneal. Target DNA is first exponentially amplified using error-prone polymerase chain reaction (PCR) and then linearly amplified with a single 3′ primer to generate long, randomly mutated, single-stranded megaprimers. These are annealed to single-stranded dUTP-containing template plasmid and extended with T7 polymerase to create a complementary strand, and the resulting termini are ligated with T4 DNA ligase. Using this approach, we are able to reliably generate libraries of approximately 107 colony-forming units (cfu)/μg DNA/transformation in a single day. We have created MegAnneal libraries based on three different single-chain antibodies and identified variants with enhanced expression and ligand-binding affinity. The key advantages of this approach include facile amplification, restriction enzyme-free library generation, and a significantly reduced risk of mutations outside the targeted region and wild-type contamination as compared with current methods.  相似文献   

3.
4.
Optimized construction of microsatellite-enriched libraries   总被引:1,自引:0,他引:1  
The construction of microsatellite-enriched libraries is an indispensable tool to search for molecular markers as complete genome sequences are still not available for the majority of species of interest. Numerous protocols are available in the literature for the construction of these libraries; however, sometimes their low efficiency or lack of optimization in the protocols can restrict their efficacy. We have designed and tested various adapters and ligation methods; we also tested oligo-repeat combinations and hybridization temperatures, and created libraries with this new protocol for four organisms: Ipomoea batatas (L.) Lam, Chionanthus retusus Lindley & Paxton, Rotylenchulus reniformis Linford & Olivera and Puccinia kuehnii W. Krüger. The number of microsatellites detected for these species ranged from 2494 to 3919 per Mb of nonredundant sequence, that was 0.86 and 1.53 microsatellites per contig, with 37-66% of di-nucleotide motifs and 21-49% of tri- to octa-nucleotide repeats combined. A simplified protocol is provided for the successful generation of SSR-enriched libraries.  相似文献   

5.
The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high‐throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general‐purpose method, called “Structure‐based Optimization of Combinatorial Mutagenesis ” (SOCoM ), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library‐averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β‐lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure‐based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large‐scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure‐based assessments, such as the energy gap between alternative conformational or bound states.  相似文献   

6.
7.
8.
Creating random mutagenesis libraries using megaprimer PCR of whole plasmid   总被引:1,自引:0,他引:1  
Miyazaki K  Takenouchi M 《BioTechniques》2002,33(5):1033-4, 1036-8
The conventional method for cloning a DNA fragment is to insert it into a vector and ligate it. Although this method is commonly used, it is labor intensive because the ratio and concentrations of the DNA insert and the vector need optimizing. Even then, the resultant library is often plagued with unwanted plasmids that have no inserts or multiple inserts. These species have to be eradicated to avoid tedious screening, especially when producing a mutant gene library. To overcome these problems, we modified the QuikChange protocol so that each plasmid carries a single insert. Although the QuikChange was originally developed for site-directed mutagenesis using complementary mutagenic oligonucleotide primers in whole plasmid PCR, we found that the protocol also worked for megaprimers consisting of hundreds of nucleotides. Based on this discovery, we used insert fragments, which we wanted to clone, as the primers in the QuikChange reaction. The resultant libraries were virtually free from species with no inserts or multiple inserts. The present method, which we designated MEGAWHOP (megaprimer PCR of whole plasmid), is thus ideal for creating random mutagenesis megalibraries.  相似文献   

9.
Towards targeted mutagenesis and gene replacement in plants   总被引:4,自引:0,他引:4  
Advances in the development of biotechnological tools for plant gene disruption and repair have lagged behind the rapid progress made in whole-genome sequencing of many model and crop plant species. Plant DNA-repair machinery predominantly uses non-homologous end-joining (NHEJ), making the homologous recombination (HR)-based methods, which have proved fruitful for gene targeting in non-plant systems, unsuitable for use in plant systems. Two recent reports describe successful targeted mutagenesis and gene targeting in Arabidopsis by either harnessing the plant NHEJ machinery using site-specific induction of double-strand breaks (DSBs), or by activation of a HR pathway through overexpression of a yeast DNA recombination gene in transgenic plants. These reports provide a foundation from which new technologies for site-specific genome alterations in plant species can be developed.  相似文献   

10.
Although there have been recent transformative advances in the area of protein structure prediction, prediction of point mutations that improve protein stability remains challenging. It is possible to construct and screen large mutant libraries for improved activity or ligand binding. However, reliable screens for mutants that improve protein stability do not yet exist, especially for proteins that are well folded and relatively stable. Here, we demonstrate that incorporation of a single, specific, destabilizing mutation termed parent inactivating mutation into each member of a single-site saturation mutagenesis library, followed by screening for suppressors, allows for robust and accurate identification of stabilizing mutations. We carried out fluorescence-activated cell sorting of such a yeast surface display, saturation suppressor library of the bacterial toxin CcdB, followed by deep sequencing of sorted populations. We found that multiple stabilizing mutations could be identified after a single round of sorting. In addition, multiple libraries with different parent inactivating mutations could be pooled and simultaneously screened to further enhance the accuracy of identification of stabilizing mutations. Finally, we show that individual stabilizing mutations could be combined to result in a multi-mutant that demonstrated an increase in thermal melting temperature of about 20 °C, and that displayed enhanced tolerance to high temperature exposure. We conclude that as this method is robust and employs small library sizes, it can be readily extended to other display and screening formats to rapidly isolate stabilized protein mutants.  相似文献   

11.
T Imai  M V Olson 《Genomics》1990,8(2):297-303
We describe an improved method for construction of yeast artificial-chromosome (YAC) libraries that contain large inserts of foreign DNA. The procedure consists of seven steps: (i) preparation of human DNA in agarose beads; (ii) partial digestion of the DNA with EcoRI; (iii) electrophoretic elimination of the smaller partial-digest fragments; (iv) ligation of the EcoRI fragments with vector arms in molten agarose; (v) hydrolysis of agarose with agarase; (vi) fractionation of the recombinant molecules by sucrose-gradient centrifugation; and (vii) transformation of yeast. More than 7000 colonies were obtained starting with 15 micrograms of human DNA, which was fractionated on a single sucrose gradient. The average size of these YACs was approximately 380 kb. It is estimated that the total length of human DNA present in the clones corresponds to 80% of the length of the human haploid genome. The results of screening the clones for a number of single-copy genes indicate that the clones reflect a nearly random sampling of the human genome. The efficiency of the cloning is sufficient to support the construction of multihit libraries for the human genome or for the genomes of other higher organisms.  相似文献   

12.
Protein engineering using directed evolution or saturation mutagenesis at hot spots is often used to improve enzyme properties such as their substrate selectivity or stability. This requires access to robust high-throughput assays to facilitate the analysis of enzyme libraries. However, relatively few studies on directed evolution or saturation mutagenesis of glycosyltransferases have been reported in part due to a lack of suitable screening methods. In the present study we report a general screening assay for glycosyltransferases that has been developed using the blood group α-(1→3)-galactosyltransferase (GTB) as a model. GTB utilizes UDP-Gal as a donor substrate and α-L-Fucp-(1→2)-β-D-Galp-O-R (H antigen) as an acceptor substrate and synthesizes the blood group B antigen α-D-Galp-(1→3)-[α-L-Fucp-(1→2)]-β-D-Galp-O-R. A closely related α-(1→3)-N-acetylgalactosaminyltransferase (GTA) uses UDP-GalNAc as a donor with the same H acceptor, yielding the A antigen α-D-Galp-NAc-(1→3)-[α-L-Fuc(1→2)]-β-D-Gal-O-R. GTA and GTB are highly homologous enzymes differing in only 4 of 354 amino acids, Arg/Gly-176, Gly/Ser-235, Leu/Met-266, and Gly/Ala-268. The screening assay is based on the color change of the pH indicator bromothymol blue when a proton is released during the transfer of Gal/GalNAc from UDP-Gal/UDP-GalNAc to the acceptor substrate. Saturation mutagenesis of GTB enzyme at M214, a hot spot adjacent to the 211DVD213 metal binding motif, was performed and the resulting library was screened for increases in UDP-GalNAc transfer activity. Two novel mutants, M214G and M214S, identified by pH indicator screening, were purified and kinetically characterized. M214S and M214G both exhibited two-fold higher kcat and specific activity than wild-type GTB for UDP-GalNAc. The results confirm the importance of residue M214 for donor enzyme specificity.  相似文献   

13.
Improved method for the construction of full-length enriched cDNA libraries   总被引:5,自引:0,他引:5  
Fu GK  Stuve LL 《BioTechniques》2003,34(5):954-957
  相似文献   

14.
Development of a new methodology to create protein libraries, which enable the exploration of global protein space, is an exciting challenge. In this study we have developed random multi-recombinant PCR (RM-PCR), which permits the shuffling of several DNA fragments without homologous sequences. In order to evaluate this methodology, we applied it to create two different combinatorial DNA libraries. For the construction of a ‘random shuffling library’, RM-PCR was used to shuffle six DNA fragments each encoding 25 amino acids; this affords many different fragment sequences whose every position has an equal probability to encode any of the six blocks. For the construction of the ‘alternative splicing library’, RM-PCR was used to perform different alternative splicings at the DNA level, which also yields different block sequences. DNA sequencing of the RM-PCR products in both libraries revealed that most of the sequences were quite different, and had a long open reading frame without a frame shift or stop codon. Furthermore, no distinct bias among blocks was observed. Here we describe how to use RM-PCR for the construction of combinatorial DNA libraries, which encode protein libraries that would be suitable for selection experiments in the global protein space.  相似文献   

15.
16.
The fraction of proteins that retain wild-type function after mutation has long been observed to decline exponentially as the average number of mutations per gene increases. Recently, several groups have used error-prone polymerase chain reactions (PCR) to generate libraries with 15 to 30 mutations per gene, on average, and have reported that orders of magnitude more proteins retain function than would be expected from the low-mutation-rate trend. Proteins with improved or novel function were isolated disproportionately from these high-error-rate libraries, leading to claims that high mutation rates unlock regions of sequence space that are enriched in positively coupled mutations. Here, we show experimentally that error-prone PCR produces a broader non-Poisson distribution of mutations consistent with a detailed model of PCR. As error rates increase, this distribution leads directly to the observed excesses in functional clones. We then show that while very low mutation rates result in many functional sequences, only a small number are unique. By contrast, very high mutation rates produce mostly unique sequences, but few retain function. Thus an optimal mutation rate exists that balances uniqueness and retention of function. Overall, high-error-rate mutagenesis libraries are enriched in improved sequences because they contain more unique, functional clones. Our findings demonstrate how optimal error-prone PCR mutation rates may be calculated, and indicate that "optimal" rates depend on both the protein and the mutagenesis protocol.  相似文献   

17.
After the deciphering of the genome sequences of several Plasmodium species, efforts must turn to elucidating gene function and identifying essential gene products. However, random approaches are lacking and gene targeting is inefficient in Plasmodium. Here, we established shuttle transposon mutagenesis in Plasmodium berghei. We constructed a mini-Tn5 derivative that can transpose into parasite genes cloned in Escherichia coli, providing an efficient means of generating knockout fragments. A 104-fold increase in frequencies of double-crossover homologous recombination in the parasite using a new electroporation technology permits to reproducibly generate pools of distinct mutants after transfection with mini-Tn5-interrupted sequences. The procedure opens the way to the systematic identification of essential genes in Plasmodium.  相似文献   

18.
Tang L  Gao H  Zhu X  Wang X  Zhou M  Jiang R 《BioTechniques》2012,52(3):149-158
Site-saturation mutagenesis is a powerful tool for protein optimization due to its efficiency and simplicity. A degenerate codon NNN or NNS (K) is often used to encode the 20 standard amino acids, but this will produce redundant codons and cause uneven distribution of amino acids in the constructed library. Here we present a novel "small-intelligent" strategy to construct mutagenesis libraries that have a minimal gene library size without inherent amino acid biases, stop codons, or rare codons of Escherichia coli by coupling well-designed combinatorial degenerate primers with suitable PCR-based mutagenesis methods. The designed primer mixture contains exactly one codon per amino acid and thus allows the construction of small-intelligent mutagenesis libraries with one gene per protein. In addition, the software tool DC-Analyzer was developed to assist in primer design according to the user-defined randomization scheme for library construction. This small-intelligent strategy was successfully applied to the randomization of halohydrin dehalogenases with one or two randomized sites. With the help of DC-Analyzer, the strategy was proven to be as simple as NNS randomization and could serve as a general tool to efficiently randomize target genes at positions of interest.  相似文献   

19.
Combinatorial libraries offer an attractive approach towards exploring protein sequence, structure and function. Although several strategies introduce sequence diversity, the likelihood of identifying proteins with novel functions is increased when the library of genes encodes for folded and soluble structures. Here we present the first application of the binary patterning approach of combinatorial protein library design to the unique central linker region of the highly-conserved protein, calmodulin (CaM). We show that this high-quality approach translates very well to the CaM protein scaffold: All library members over-express and are functionally diverse, having a range of conformations in the presence and absence of calcium as determined by circular dichroism spectroscopy. Collectively, these data support that the binary patterning approach, when applied to the highly-conserved protein fold, can yield large collections of folded, soluble and highly-expressible proteins.  相似文献   

20.
Conjugative or mobilizable plasmids carrying the transposable elements Tn5, Tn501 or mini Mu were readily transferred from Escherichia coli donors into Zymomonas mobilis recipients with frequencies depending both on donor and recipient strain used. With the exception of pULB113 (RP4::mini Mu), all foreign plasmids exhibited high instability in Z. mobilis transconjugants under both selective and non-selective conditions. Transposition events and consequent mutagenesis occurred readily in Z. mobilis transconjugant strains, with Tn5 and Tn501 being far less successful than mini Mu. Transposon mutagenesis with the help of mini Mu resulted in the isolation of a large number of independent auxotrophs with polyauxotrophs, cysteine, methionine and isoleucine requiring-isolates being the most frequent. When chromosomal DNA from all these mutants was digested with various restriction enzymes and the resulting restriction patterns were hybridized with a mini Mu probe, the majority of these mutants appeared to have insertions at different sites of the chromosome. Thus, transposon mutagenesis by mini Mu is proven to be a simple and efficient tool for mutant production and the genetic analysis of Z. mobilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号