首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to assess the invasive potential of introduced non‐native and translocated fishes in Turkey (Anatolia and Thrace) by applying the Fish Invasiveness Screening Kit (FISK), a risk identification tool for freshwater fishes. From independent evaluations by two assessors of 35 species, calibration of FISK for Turkey identified a threshold score of 23, which reliably distinguished between potentially invasive (high risk) and potentially non‐invasive (medium to low risk) fishes for Anatolia (Asia) and Thrace (Europe). No species was categorized as ‘low risk’, 18 species were categorized as ‘medium risk’ and 17 as ‘high risk’ (two being ‘moderately high risk’, nine ‘high risk’, and six ‘very high risk’). The highest scoring species was gibel carp Carassius gibelio, whereas the lowest scoring species was Caucasian dwarf goby Knipowitschia caucasica, a translocated species. Assessor certainty in their responses averaged overall between ‘mostly uncertain’ and ‘mostly certain’, with red piranha Pygocentrus nattereri and topmouth gudgeon Pseudorasbora parva achieving the lowest and highest certainty values, respectively, and with overall significant differences in certainty between assessors. The results of the present study indicate that FISK is a useful and viable tool for identifying potentially invasive non‐native fishes in Turkey, a country characterized by natural biogeographical frontiers.  相似文献   

2.
[目的]调查北京地区鱼类多样性和群落分布及评估外来鱼种的入侵风险.[方法]选取北京地区水库、湖泊和河流3种水体类型共33个采样点,于2020年6月10—17日开展水生态监测,利用环境DNA宏条形码技术对各样点的鱼类多样性和群落结构进行监测和分析,对目前北京地区水生态系统中本地鱼种和外来鱼种进行分类汇总,并评估典型外来入...  相似文献   

3.
Invasive non‐native species (NNS) are internationally recognized as posing a serious threat to global biodiversity, economies and human health. The identification of invasive NNS is already established, those that may arrive in the future, their vectors and pathways of introduction and spread, and hotspots of invasion are important for a targeted approach to managing introductions and impacts at local, regional and global scales. The aim of this study was to identify which marine and brackish NNS are already present in marine systems of the northeastern Arabia area (Arabian Gulf and Sea of Oman) and of these which ones are potentially invasive, and which species have a high likelihood of being introduced in the future and negatively affect biodiversity. Overall, 136 NNS were identified, of which 56 are already present in the region and a further 80 were identified as likely to arrive in the future, including fish, tunicates, invertebrates, plants and protists. The Aquatic Species Invasiveness Screening Kit (AS‐ISK) was used to identify the risk of NNS being (or becoming) invasive within the region. Based on the AS‐ISK basic risk assessment (BRA) thresholds, 36 extant and 37 horizon species (53.7% of all species) were identified as high risk. When the impact of climate change on the overall assessment was considered, the combined risk score (BRA+CCA) increased for 38.2% of all species, suggesting higher risk under warmer conditions, including the highest‐risk horizon NNS the green crab Carcinus maenas, and the extant macro‐alga Hypnea musciformis. This is the first horizon‐scanning exercise for NNS in the region, thus providing a vital baseline for future management. The outcome of this study is the prioritization of NNS to inform decision‐making for the targeted monitoring and management in the region to prevent new bio‐invasions and to control existing species, including their potential for spread.  相似文献   

4.
The potential invasiveness of 28 freshwater fishes in northern Kyushu Island, Japan, was evaluated using the Fish Invasiveness Scoring Kit (FISK). The five co-authors scored the level of invasiveness for each species and calculated the total FISK scores; the maximum and minimum scores were then eliminated, and the mean of the remaining three scores was used as the final score for each species. The mean scores ranged from 11.0 (Hypomesus nipponensis) to 31.0 (Cyprinus carpio). The receiver operating characteristic curve indicated that the threshold value between fishes that present a high risk of invasion and the other species were 19.8.  相似文献   

5.
Little is known about the vegetation found in the karst springs of Wisconsin’s unglaciated region, the Driftless Area. We sampled 26 of these springs, documenting all associated plant species and their status (native, non-native, invasive) and analyzed whether vegetation patterns are related to spring orientation or to spring area. Two-way ANOVA results show that non-native and invasive species, namely Nasturtium officinale (watercress, Brassicaceae), are significantly more abundant than natives in north-facing springs (p < 0.01), but not in south-facing springs. Generally, native species are restricted to, or more abundant in, south-facing springs, and may have a microtopographical preference for these sites, which may receive more direct solar radiation. Nasturtium officinale, the most abundant invasive species, has high cover values in both north and south orientations and is less restricted in its distribution. Correlation analysis shows that the larger the spring, the higher the percent of Nasturtium (p < 0.01) and invasive species cover (as a percent of spring area) (p < 0.005). Larger springs often had slower moving water and this may have contributed to the success of Nasturtium, which may outcompete shade-intolerant natives in the larger springs. Native species cover was negatively related to spring area, though this result was marginally insignificant (p = 0.08).  相似文献   

6.
Background and AimsDisplacement of native plant species by non-native invaders may result from differences in their carbon economy, yet little is known regarding how variation in leaf traits influences native–invader dynamics across climate gradients. In Hawaii, one of the most heavily invaded biodiversity hotspots in the world, strong spatial variation in climate results from the complex topography, which underlies variation in traits that probably drives shifts in species interactions.MethodsUsing one of the most comprehensive trait data sets for Hawaii to date (91 species and four islands), we determined the extent and sources of variation (climate, species and species origin) in leaf traits, and used mixed models to examine differences between natives and non-native invasives.Key ResultsWe detected significant differences in trait means, such that invasives were more resource acquisitive than natives over most of the climate gradients. However, we also detected trait convergence and a rank reversal (natives more resource acquisitive than invasives) in a sub-set of conditions. There was significant intraspecific trait variation (ITV) in leaf traits of natives and invasives, although invasives expressed significantly greater ITV than natives in water loss and photosynthesis. Species accounted for more trait variation than did climate for invasives, while the reverse was true for natives. Incorporating this climate-driven trait variation significantly improved the fit of models that compared natives and invasives. Lastly, in invasives, ITV was most strongly explained by spatial heterogeneity in moisture, whereas solar energy explains more ITV in natives.ConclusionsOur results indicate that trait expression and ITV vary significantly between natives and invasives, and that this is mediated by climate. These findings suggest that although natives and invasives are functionally similar at the regional scale, invader success at local scales is contingent on climate.  相似文献   

7.
Globally, introductions of alien species are increasingly common, with invasive predators potentially having detrimental effects via predation on native species. However, native prey may avoid predation by adopting new behaviors. To determine whether invasive fish populations consume endemic shrimp in invaded Hawaiian anchialine habitats or if adopted patterns of diel migration prevents predation as previously hypothesized, a total of 183 invasive poeciliids (158 Gambusia affinis and 25 Poecilia reticulata) were collected for gut content analyses from four anchialine sites during wet and dry seasons on the islands of Hawai‘i and Maui. Predation on shrimp was not detected in habitats where they retreat exclusively into the underlying aquifer diurnally and only emerge nocturnally. However, low levels of predation were detected (7/65 fishes, only by Gambusia affinis) at Waianapanapa Cave, Maui, where shrimp retreat into both the aquifer and a cave during the day. Thus, adopted behavioral responses to invasive fishes generally, though not universally, prevent predation on endemic Hawaiian anchialine shrimps. However, non-consumptive effects resulting from behavioral modification of shrimps may have appreciable impacts on the Hawaiian anchialine ecosystem and warrant further study.  相似文献   

8.
Climate change and invasive species can both have negative impacts on native species diversity. Additionally, climate change has the potential to favor invasive species over natives, dealing a double blow to native biodiversity. It is, therefore, vital to determine how changing climate conditions are directly linked to demographic rates and population growth of non-native species so we can quantitatively evaluate how invasive populations may be affected by changing conditions and, in turn, impact native species. Cordylophora caspia, a hydrozoan from the Ponto-Caspian region, has become established in the brackish water habitats of the San Francisco Estuary (SFE). We conducted laboratory experiments to study how temperature and salinity affect C. caspia population growth rates, in order to predict possible responses to climate change. C. Caspia population growth increased nonlinearly with temperature and leveled off at a maximum growth rate near the annual maximum temperature predicted under a conservative climate change scenario. Increasing salinity, however, did not influence growth rates. Our results indicate that C. caspia populations in the SFE will benefit from predicted regional warming trends and be little affected by changes in salinity. The population of C. caspia in the SFE has the potential to thrive under future climate conditions and may subsequently increase its negative impact on the food web.  相似文献   

9.

The influence of climate change on the ecological impacts of invasive alien species (IAS) remains understudied, with deoxygenation of aquatic environments often-overlooked as a consequence of climate change. Here, we therefore assessed how oxygen saturation affects the ecological impact of a predatory invasive fish, the Ponto-Caspian round goby (Neogobius melanostomus), relative to a co-occurring endangered European native analogue, the bullhead (Cottus gobio) experiencing decline in the presence of the IAS. In individual trials and mesocosms, we assessed the effect of high, medium and low (90%, 60% and 30%) oxygen saturation on: (1) functional responses (FRs) of the IAS and native, i.e. per capita feeding rates; (2) the impact on prey populations exerted; and (3) how combined impacts of both fishes change over invasion stages (Pre-invasion, Arrival, Replacement, Proliferation). Both species showed Type II potentially destabilising FRs, but at low oxygen saturation, the invader had a significantly higher feeding rate than the native. Relative Impact Potential, combining fish per capita effects and population abundances, revealed that low oxygen saturation exacerbates the high relative impact of the invader. The Relative Total Impact Potential (RTIP), modelling both consumer species’ impacts on prey populations in a system, was consistently higher at low oxygen saturation and especially high during invader Proliferation. In the mesocosm experiment, low oxygen lowered RTIP where both species were present, but again the IAS retained high relative impact during Replacement and Proliferation stages at low oxygen. We also found evidence of multiple predator effects, principally antagonism. We highlight the threat posed to native communities by IAS alongside climate-related stressors, but note that solutions may be available to remedy hypoxia and potentially mitigate impacts across invasion stages.

  相似文献   

10.
Non-native trees may have significant impacts on the carbon sink capacity of forested lands. However, large-scale patterns of the relative capacity of native and non-native forests to uptake and store carbon remain poorly described in the literature, and this information is urgently needed to support management decisions. In this study, we analyzed 17,065 plots from the Spanish Forest Inventory (covering c. 30 years) to quantify carbon storage and sequestration of natural forests and plantations of native and non-native trees under contrasting climate types, while controlling for the effects of environmental factors (forest structure, climate, soil, topography, and management). We found that forest origin (non-native vs. native) highly influenced carbon storage and sequestration, but such effect was dependent on climate. Carbon storage was greater in non-native than in native forests in both wet and dry climates. Non-native forests also had greater carbon sequestration than native ones in the wet climate, due to higher carbon gains by tree growth. However, in the dry climate, native forests had greater carbon gains by tree ingrowth and lower carbon loss by tree mortality than non-native ones. Furthermore, forest type (classified by the dominant species) and natural forests versus tree plantations were important determinants of carbon storage and sequestration. Native and non-native Pinus spp. forests had low carbon storage, whereas non-native Eucalyptus spp. forests and native Quercus spp., Fagus sylvatica, and Eurosiberian mixed forests (especially not planted ones) had high carbon storage. Carbon sequestration was greatest in Eucalyptus globulus, Quercus ilex, and Pinus pinaster forests. Overall, our findings suggest that the relative capacity of native and non-native forests to uptake and store carbon depends on climate, and that the superiority of non-native forests over native ones in terms of carbon sequestration declines as the abiotic filters become stronger (i.e., lower water availability and higher climate seasonality).  相似文献   

11.
In central Europe, both brown trout Salmo trutta and European grayling Thymallus thymallus are threatened native salmonid species with high value in recreational angling and nature conservation. On the other hand, rainbow trout Oncorhynchus mykiss and brook trout Salvelinus fontinalis are intensively stocked non-native species of high angling value but no value for nature conservation. This study tested if harvest rates of native salmonids are negatively correlated to intensive stocking and harvest rates of non-native salmonids in inland freshwater recreational fisheries. Data were collected from 250 fishing sites (river and stream stretches) over 13 years using mandatory angling logbooks. Logbooks were collected from individual anglers by the Czech Fishing Union in the regions of Prague and Central Bohemia, Czechia (central Europe) and processed by the author of this study. In result, anglers harvested 200,000 salmonids with total weight of 80 tons over 13 years. Intensive stocking of multiple salmonid species lead to slightly lower harvests of native salmonids. Inversely, intensive harvests of multiple salmonid species lead to slightly higher harvest of native salmonids. Recapture rates of stocked salmonids were relatively low (0.6%–3.7%), proving fish stocking moderately ineffective. Since the effects of non-native salmonid stocking and harvest rates on native salmonid harvest were significant but not strong, it is suggested that rivers and streams that support fishing for non-native salmonids still support fishing for native salmonids. However, this idea does not apply for fishing sites with really high intensity of non-native salmonid stocking – harvest rates of natives were very low on these fishing sites.  相似文献   

12.
Brazil has a highly diverse freshwater fish fauna and their freshwaters provide valuable provisioning ecosystem services in aquaculture and sport angling, especially in the developed regions in the south. Non-native fish now comprise a substantial proportion of the total aquaculture production and value, contributing at least $US 250?million in 2008 (63% of the total value of freshwater fish aquaculture) according to the Fish and Agriculture Organisation. Much of this aquaculture activity is centred in Central and Southern Brazil, such as impounded sections of the upper River Paraná. The non-native fishes used tend to feed at relatively low trophic levels, with the most prominently species being Cyprinus carpio and Oreochromis niloticus. Ecological risk assessment suggests these species are potentially highly invasive and deleterious to the native fish diversity of invaded water bodies. Fishes introduced for the creation of sport fisheries tend feed higher trophic levels through piscivory, such as the peacock basses (Cichla species) from Amazonia. Their introductions have generally resulted in establishment and invasion, which tends to be followed by significant and rapid declines in native fish diversity as a consequence of increased predation pressure. Thus, whilst non-native fish in the upper Paraná River support provisioning ecosystem services of substantial economic value, the principal species used represent high risks to fish diversity and conservation. It is recommended local management should concentrate on reducing these risks through use of more appropriate species in these ecosystem services, with these decisions derived using risk assessment and precautionary principles.  相似文献   

13.
Despite long-standing interest of terrestrial ecologists, freshwater ecosystems are a fertile, yet unappreciated, testing ground for applying community phylogenetics to uncover mechanisms of species assembly. We quantify phylogenetic clustering and overdispersion of native and non-native fishes of a large river basin in the American Southwest to test for the mechanisms (environmental filtering versus competitive exclusion) and spatial scales influencing community structure. Contrary to expectations, non-native species were phylogenetically clustered and related to natural environmental conditions, whereas native species were not phylogenetically structured, likely reflecting human-related changes to the basin. The species that are most invasive (in terms of ecological impacts) tended to be the most phylogenetically divergent from natives across watersheds, but not within watersheds, supporting the hypothesis that Darwin''s naturalization conundrum is driven by the spatial scale. Phylogenetic distinctiveness may facilitate non-native establishment at regional scales, but environmental filtering restricts local membership to closely related species with physiological tolerances for current environments. By contrast, native species may have been phylogenetically clustered in historical times, but species loss from contemporary populations by anthropogenic activities has likely shaped the phylogenetic signal. Our study implies that fundamental mechanisms of community assembly have changed, with fundamental consequences for the biogeography of both native and non-native species.  相似文献   

14.
Submersed aquatic plants have a key role in maintaining functioning aquatic ecosystems through their effects on the hydrological regime, sedimentation, nutrient cycling and habitat of associated fauna. Modifications of aquatic plant communities, for example through the introduction of invasive species, can alter these functions. In the Sacramento-San Joaquin River Delta, California, a major invasive submersed plant, Brazilian waterweed Egeria densa, has become widespread and greatly affected the functionality of the submersed aquatic plant community. Rapid assessments of the distribution and abundance of this species are therefore crucial to direct management actions early in the season. Given the E. densa bimodal growth pattern (late spring and fall growth peaks), summer assessments of this species may indicate which and where other submersed species may occur and fall assessments may indicate where this and other species may occur in the following spring, primarily because the Delta’s winter water temperatures are usually insufficient to kill submersed aquatic plant species. We assessed community composition and distribution in the fall of 2007 and summer of 2008 using geostatistical analysis; and measured summer biomass, temperature, pH, salinity, and turbidity. In the fall of 2007, submersed aquatic plants covered a much higher proportion of the waterways (60.7%) than in the summer of 2008 (37.4%), with a significant overlap between the seasonal distribution of native and non-native species. Most patches were monospecific, and multispecies patches had significantly higher dominance by E. densa, co-occurring especially with Ceratophyllum demersum. As species richness of non-natives increased there was a significant decrease in richness of natives, and of native biomass. Sustained E. densa summer biomass negatively affected the likelihood of presence of Myriophyllum spicatum, Potamogeton crispus, and Elodea canadensis but not their biomass within patches. Depth, temperature and salinity were associated with biomass; however, the direction of the effect was species specific. Our results suggest that despite native and invasive non-native submersed plant species sharing available niches in the Delta, E. densa affects aquatic plant community structure and composition by facilitating persistence of some species and reducing the likelihood of establishment of other species. Successful management of this species may therefore facilitate shifts in existing non-native or native plant species.  相似文献   

15.
Inter- and intraspecific competitive abilities are significant determinants of invasive success and the ecological impact of non-native plants. We tested two major hypotheses on the competitive ability of invasive species using invasive (Taraxacum officinale) and native (T. platycarpum) dandelions: differential interspecific competitive ability between invasive and native species and the kin recognition of invasive species. We collected seeds from two field sites where the two dandelion species occurred nearby. Plants were grown alone, with kin (plants from the same maternal genotype) or strangers (plants from different populations) of the same species, or with different species in a growth chamber, and the performance at the early developmental stage between species and treatments was compared. The invasive dandelions outcompeted the native dandelions when competing against each other, although no difference between species was detected without competition or with intraspecific competition. Populations of native species responded to interspecific competition differently. The effect of kinship on plant performance differed between the tested populations in both species. A population produced more biomass than the other populations when grown with a stranger, and this trend was manifested more in native species. Our results support the hypothesis that invasive plants have better competitive ability than native plants, which potentially contributes to the establishment and the range expansion of T. officinale in the introduced range. Although kin recognition is expected to evolve in invasive species, the competitive ability of populations rather than kinship seems to affect plant growth of invasive T. officinale under intraspecific competition.  相似文献   

16.
Understanding the resilience of ecosystems globally is hampered by the complex and interacting drivers of change characteristic of the Anthropocene. This is true for drylands of the western US, where widespread alteration of disturbance regimes and spread of invasive non-native species occurred with westward expansion during the 1800s, including the introduction of domestic livestock and spread of Bromus tectorum, an invasive non-native annual grass. In addition, this region has experienced a multi-decadal drought not seen for at least 1200 years with potentially large and interacting impacts on native plant communities. Here, we present 24 years of twice-annual plant cover monitoring (1997–2021) from a semiarid grassland never grazed by domestic livestock but subject to a patchy invasion of B. tectorum beginning in ~1994, compare our findings to surveys done in 1967, and examine potential climate drivers of plant community changes. We found a significant warming trend in the study area, with more than 75% of study year temperatures being warmer than average (1966–2021). We observed a native perennial grass community with high resilience to climate forcings with cover values like those in 1967. In invaded patches, B. tectorum cover was greatest in the early years of this study (1997–2001; ~20%–40%) but was subsequently constrained by climate and subtle variation in soils, with limited evidence of long-term impacts to native vegetation, contradicting earlier studies. Our ability to predict year-to-year variation in functional group and species cover with climate metrics varied, with a 12-month integrated index and fall and winter patterns appearing most important. However, declines to near zero live cover in recent years in response to regional drought intensification leave questions regarding the resiliency of intact grasslands to ongoing aridification and whether the vegetation observations reported here may be a leading indicator of impending change in this protected ecosystem.  相似文献   

17.
1. Temperate regions with fish communities dominated by cold‐water species (physiological optima <20 °C) are vulnerable to the effects of warming temperatures caused by climate change, including displacement by non‐native cool‐water (physiological optima 20–28 °C) and warm‐water fishes (physiological optima >28 °C) that are able to establish and invade as the thermal constraints on the expression of their life history traits diminish. 2. England and Wales is a temperate region into which at least 38 freshwater fishes have been introduced, although 14 of these are no longer present. Of the remaining 24 species, some have persisted but failed to establish, some have established populations without becoming invasive and some have become invasive. The aim of the study was to predict the responses of these 24 non‐native fishes to the warming temperatures of England and Wales predicted under climate change in 2050. 3. The predictive use of climate‐matching models and an air and water temperature regression model suggested that there are six non‐native fishes currently persistent but not established in England and Wales whose establishment and subsequent invasion would benefit substantially from the predicted warming temperatures. These included the common carp Cyprinus carpio and European catfish Silurus glanis, fishes that also exert a relatively high propagule pressure through stocking to support angling and whose spatial distribution is currently increasing significantly, including in open systems. 4. The potential ecological impacts of the combined effects of warming temperatures, current spatial distribution and propagule pressure on the establishment and invasion of C. carpio and Sglanis were assessed. The ecological consequences of Ccarpio invasion were assessed as potentially severe in England and Wales, with impacts likely to relate to habitat destruction, macrophyte loss and increased water turbidity. However, evidence of ecological impacts of Sglanis elsewhere in their introduced range was less clear and so their potential impacts in England and Wales remain uncertain.  相似文献   

18.
In Hawaii, invasive plants have the ability to alter litter-based food chains because they often have litter traits that differ from native species. Additionally, abundant invasive predators, especially those representing new trophic levels, can reduce prey. The relative importance of these two processes on the litter invertebrate community in Hawaii is important, because they could affect the large number of endemic and endangered invertebrates. We determined the relative importance of litter resources, represented by leaf litter of two trees, an invasive nitrogen-fixer, Falcataria moluccana, and a native tree, Metrosideros polymorpha, and predation of an invasive terrestrial frog, Eleutherodactylus coqui, on leaf litter invertebrate abundance and composition. Principle component analysis revealed that F. moluccana litter creates an invertebrate community that greatly differs from that found in M. polymorpha litter. We found that F. moluccana increased the abundance of non-native fragmenters (Amphipoda and Isopoda) by 400% and non-native predaceous ants (Hymenoptera: Formicidae) by 200%. E. coqui had less effect on the litter invertebrate community; it reduced microbivores by 40% in F. moluccana and non-native ants by 30% across litter types. E. coqui stomach contents were similar in abundance and composition in both litter treatments, despite dramatic differences in the invertebrate community. Additionally, our results suggest that invertebrate community differences between litter types did not cascade to influence E. coqui growth or survivorship. In conclusion, it appears that an invasive nitrogen-fixing tree species has a greater influence on litter invertebrate community abundance and composition than the invasive predator, E. coqui.  相似文献   

19.
Invasive species and anthropogenic habitat alteration are major drivers of biodiversity loss. When multiple invasive species occupy different trophic levels, removing an invasive predator might cause unexpected outcomes owing to complex interactions among native and non-native prey. Moreover, external factors such as habitat alteration and resource availability can affect such dynamics. We hypothesized that native and non-native prey respond differently to an invasive predator, habitat alteration and bottom-up effects. To test the hypothesis, we used Bayesian state-space modelling to analyse 8-year data on the spatio-temporal patterns of two endemic rat species and the non-native black rat in response to the continual removal of the invasive small Indian mongoose on Amami Island, Japan. Despite low reproductive potentials, the endemic rats recovered better after mongoose removal than did the black rat. The endemic species appeared to be vulnerable to predation by mongooses, whose eradication increased the abundances of the endemic rats, but not of the black rat. Habitat alteration increased the black rat''s carrying capacity, but decreased those of the endemic species. We propose that spatio-temporal monitoring data from eradication programmes will clarify the underlying ecological impacts of land-use change and invasive species, and will be useful for future habitat management.  相似文献   

20.
The ability of an invasive species to establish is mostly determined by its biotic interactions with native species from the recipient community. Here, we evaluate the competitive effects and responses of the invasive Eragrostis plana when interacting with native species, in order to identify possible mechanisms driving invasion in Río de la Plata grasslands. A pairwise competition experiment was performed consisting of treatments that varied in the identity of neighbour plant species: (i) control (no interaction); (ii) intraspecific interaction; (iii) interspecific interaction between native and invasive species; and (iv) interspecific interaction between two co‐occurring native species. Data analysis was separated into the effect of E. plana on the performance of three native perennial grasses (target species: Aristida laevis, Eragrostis neesii and Paspalum notatum) and the response of E. plana to natives (target species: E. plana). Separately for each target species, components of plant performance were compared between neighbouring species treatments. We found that the strength of competitive interactions depended on both target and neighbour species identity. Regarding natives, interspecific competition was stronger than intraspecific. Native species showed distinctive responses to whether the neighbour was the invasive or a co‐occurring native (Eragrostis lugens). Competition between E. plana and native species was stronger than between co‐occurring natives. We demonstrated E. plana had a greater negative effect on native's species performance than the native congener E. lugens. Regarding E. plana, intraspecific competition was stronger than interspecific, and its response was positive or neutral when interacting with natives, suggesting its high tolerance to grow in competition with neighbours. We conclude E. plana's negative effects on native species performance, and its positive or neutral responses to neighbouring native plants demonstrate its strong competitive ability in the recipient community. This may explain its invasion success in southern Brazil and in the encompassing Río de la Plata grasslands. Abstract in Spanish is available with online material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号