首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The central circadian clock within the suprachiasmatic nucleus (SCN) plays an important role in temporally organizing and coordinating many of the processes governing cancer cell proliferation and tumor growth in synchrony with the daily light/dark cycle which may contribute to endogenous cancer prevention. Bioenergetic substrates and molecular intermediates required for building tumor biomass each day are derived from both aerobic glycolysis (Warburg effect) and lipid metabolism. Using tissue-isolated human breast cancer xenografts grown in nude rats, we determined that circulating systemic factors in the host and the Warburg effect, linoleic acid uptake/metabolism and growth signaling activities in the tumor are dynamically regulated, coordinated and integrated within circadian time structure over a 24-hour light/dark cycle by SCN-driven nocturnal pineal production of the anticancer hormone melatonin. Dim light at night (LAN)-induced melatonin suppression disrupts this circadian-regulated host/cancer balance among several important cancer preventative signaling mechanisms, leading to hyperglycemia and hyperinsulinemia in the host and runaway aerobic glycolysis, lipid signaling and proliferative activity in the tumor.  相似文献   

3.
生物节律基因Timeless的生物学功能研究进展   总被引:1,自引:0,他引:1  
Timeless基因广泛分布于生物体中,是主要的生物节律基因之一,它通过与节律基因Per和Cry家族成员的相互作用影响它们的表达水平。Timeless和Tipin能够稳定复制叉,促进姊妹染色单体凝聚,对DNA复制有促进作用;在细胞周期中激活S期检测点,参与ATR-Chk1和ATM-Chk2的DNA损伤修复通路,加强细胞周期的阻滞以修复DNA损伤。Timeless是生物节律和细胞周期的连接者,在多种癌组织(如肝癌、肺癌、乳腺癌、结直肠癌、肾癌和胰腺癌)中的表达水平与癌旁非癌组织相比有差异,提示Timeless表达异常可能与肿瘤的发生和发展相关。  相似文献   

4.
Circadian cycles and cell cycles are two fundamental periodic processes with a period in the range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we estimated the mutual interactions between the two oscillators by time‐lapse imaging of single mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in dividing cells clearly indicated that both oscillators tick in a 1:1 mode‐locked state, with cell divisions occurring tightly 5 h before the peak in circadian Rev‐Erbα‐YFP reporter expression. In principle, such synchrony may be caused by either unidirectional or bidirectional coupling. While gating of cell division by the circadian cycle has been most studied, our data combined with stochastic modeling unambiguously show that the reverse coupling is predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations showed that the two interacting cellular oscillators adopt a synchronized state that is highly robust over a wide range of parameters. These findings have implications for circadian function in proliferative tissues, including epidermis, immune cells, and cancer.  相似文献   

5.
《Chronobiology international》2013,30(7):1323-1339
Cell cycle progression is tightly regulated. The expressions of cell cycle regulators, the products of which either promote or inhibit cell proliferation, oscillate during each cell cycle. Cellular proliferation and the expression of cell cycle regulators are also controlled by the circadian clock. Disruption of the circadian clock may thereby lead to deregulated cell proliferation. Mammalian Per2 is a core clock gene, the product of which suppresses cancer cell proliferation and tumor growth in vivo and in vitro. Because Per1, another key clock gene, is mutated in human breast cancers, and because its clock functions are similar and complementary to those of Per2, we have studied its role in modulating breast cancer cell proliferation and tumor growth. We find that breast cancer growth rate is gated by the circadian clock with two daily peaks and troughs, and that they are coupled to the daily expression patterns of clock-controlled genes that regulate cell proliferation. Down-regulation of the expression of tumor Per1 increases cancer cell growth in vitro and tumor growth in vivo by enhancing the circadian amplitude of the two daily tumor growth peaks. The data of the study suggest Per1 has tumor-suppressor function that diminishes cancer proliferation and tumor growth, but only at specific times of day. (Author correspondence: ).  相似文献   

6.
7.
8.
Most physiological and biological processes are regulated by endogenous circadian rhythms under the control of both a master clock, which acts systemically and individual cellular clocks, which act at the single cell level. The cellular clock is based on a network of core clock genes, which drive the circadian expression of non-clock genes involved in many cellular processes. Circadian deregulation of gene expression has emerged to be as important as deregulation of estrogen signaling in breast tumorigenesis. Whether there is a mutual deregulation of circadian and hormone signaling is the question that we address in this study. Here we show that, upon entrainment by serum shock, cultured human mammary epithelial cells maintain an inner circadian oscillator, with key clock genes oscillating in a circadian fashion. In the same cells, the expression of the estrogen receptor α (ERA) gene also oscillates in a circadian fashion. In contrast, ERA-positive and -negative breast cancer epithelial cells show disruption of the inner clock. Further, ERA-positive breast cancer cells do not display circadian oscillation of ERA expression. Our findings suggest that estrogen signaling could be affected not only in ERA-negative breast cancer, but also in ERA-positive breast cancer due to lack of circadian availability of ERA. Entrainment of the inner clock of breast epithelial cells, by taking into consideration the biological time component, provides a novel tool to test mechanistically whether defective circadian mechanisms can affect hormone signaling relevant to breast cancer.Key words: circadian rhythm, clock genes, estrogen receptor alpha (ERA), breast cancer cells, entrainment, serum shock  相似文献   

9.
The cell division cycle and the circadian clock represent two major cellular rhythms. These two periodic processes are coupled in multiple ways, given that several molecular components of the cell cycle network are controlled in a circadian manner. For example, in the network of cyclin-dependent kinases (Cdks) that governs progression along the successive phases of the cell cycle, the synthesis of the kinase Wee1, which inhibits the G2/M transition, is enhanced by the complex CLOCK-BMAL1 that plays a central role in the circadian clock network. Another component of the latter network, REV-ERBα, inhibits the synthesis of the Cdk inhibitor p21. Moreover, the synthesis of the oncogene c-Myc, which promotes G1 cyclin synthesis, is repressed by CLOCK-BMAL1. Using detailed computational models for the two networks we investigate the conditions in which the mammalian cell cycle can be entrained by the circadian clock. We show that the cell cycle can be brought to oscillate at a period of 24 h or 48 h when its autonomous period prior to coupling is in an appropriate range. The model indicates that the combination of multiple modes of coupling does not necessarily facilitate entrainment of the cell cycle by the circadian clock. Entrainment can also occur as a result of circadian variations in the level of a growth factor controlling entry into G1. Outside the range of entrainment, the coupling to the circadian clock may lead to disconnected oscillations in the cell cycle and the circadian system, or to complex oscillatory dynamics of the cell cycle in the form of endoreplication, complex periodic oscillations or chaos. The model predicts that the transition from entrainment to 24 h or 48 h might occur when the strength of coupling to the circadian clock or the level of growth factor decrease below critical values.  相似文献   

10.
Living organisms have developed a multitude of timing mechanisms— “biological clocks.” Their mechanisms are based on either oscillations (oscillatory clocks) or unidirectional processes (hourglass clocks). Oscillatory clocks comprise circatidal, circalunidian, circadian, circalunar, and circannual oscillations—which keep time with environmental periodicities—as well as ultradian oscillations, ovarian cycles, and oscillations in development and in the brain, which keep time with biological timescales. These clocks mainly determine time points at specific phases of their oscillations. Hourglass clocks are predominantly found in development and aging and also in the brain. They determine time intervals (duration). More complex timing systems combine oscillatory and hourglass mechanisms, such as the case for cell cycle, sleep initiation, or brain clocks, whereas others combine external and internal periodicities (photoperiodism, seasonal reproduction). A definition of a biological clock may be derived from its control of functions external to its own processes and its use in determining temporal order (sequences of events) or durations. Biological and chemical oscillators are characterized by positive and negative feedback (or feedforward) mechanisms. During evolution, living organisms made use of the many existing oscillations for signal transmission, movement, and pump mechanisms, as well as for clocks. Some clocks, such as the circadian clock, that time with environmental periodicities are usually compensated (stabilized) against temperature, whereas other clocks, such as the cell cycle, that keep time with an organismic timescale are not compensated. This difference may be related to the predominance of negative feedback in the first class of clocks and a predominance of positive feedback (autocatalytic amplification) in the second class. The present knowledge of a compensated clock (the circadian oscillator) and an uncompensated clock (the cell cycle), as well as relevant models, are briefly reviewed. Hourglass clocks are based on linear or exponential unidirectional processes that trigger events mainly in the course of development and aging. An important hourglass mechanism within the aging process is the limitation of cell division capacity by the length of telomeres. The mechanism of this clock is briefly reviewed. In all clock mechanisms, thresholds at which “dependent variables” are triggered play an important role. (Chronobiology International, 18(3), 329–369, 2001)  相似文献   

11.
The Per1 gene is a core clock factor that plays an essential role in generating circadian rhythms. Recent data reveal that major biological pathways, including those critical to cell division, are under circadian control. We report here that Per1 provides an important link between the circadian system and the cell cycle system. Overexpression of Per1 sensitized human cancer cells to DNA damage-induced apoptosis; in contrast, inhibition of Per1 in similarly treated cells blunted apoptosis. The apoptotic phenotype was associated with altered expression of key cell cycle regulators. In addition, Per1 interacted with the checkpoint proteins ATM and Chk2. Ectopic expression of Per1 in human cancer cell lines led to significant growth reduction. Finally, Per1 levels were reduced in human cancer patient samples. Our results highlight the importance of circadian regulation to fundamental cellular functions and support the hypothesis that disruption of core clock genes may lead to cancer development.  相似文献   

12.
13.
14.
15.
Most physiological and biological processes are regulated by endogenous circadian rhythms under the control of both a master clock, which acts systemically and individual cellular clocks, which act at the single cell level. The cellular clock is based on a network of core clock genes, which drive the circadian expression of non-clock genes involved in many cellular processes. Circadian deregulation of gene expression has emerged to be as important as deregulation of estrogen signaling in breast tumorigenesis. Whether there is a mutual deregulation of circadian and hormone signaling is the question that we address in this study. Here we show that, upon entrainment by serum shock, cultured human mammary epithelial cells maintain an inner circadian oscillator, with key clock genes oscillating in a circadian fashion. In the same cells, the expression of the estrogen receptor α (ER A) gene also oscillates in a circadian fashion. In contrast, ER A-positive and -negative breast cancer epithelial cells show disruption of the inner clock. Further, ER A-positive breast cancer cells do not display circadian oscillation of ER A expression. Our findings suggest that estrogen signaling could be affected not only in ER A-negative breast cancer, but also in ER A-positive breast cancer due to lack of circadian availability of ER A. Entrainment of the inner clock of breast epithelial cells, by taking into consideration the biological time component, provides a novel tool to test mechanistically whether defective circadian mechanisms can affect hormone signaling relevant to breast cancer.  相似文献   

16.
周期节律是由内在时钟系统介导的多重生物过程的周期循环.周期节律系统是由位于大脑的视神经交叉上核的中央时钟系统和位于外周的几乎存在于所有细胞的外周时钟系统组成的.中央时钟与外周时钟都能够对生物体的生理过程进行调控,如激素的分泌、能量代谢、细胞增殖、DNA损伤修复等.而周期节律基因的表达失调,对其下游靶基因包括细胞周期相关基因的表达,以及细胞抗凋亡能力等产生重要的影响.而这一结果会导致细胞增殖加速及基因组不稳定,并可能促进肿瘤的发生.许多实验证据表明,肿瘤是一种节律相关的生理失调,在许多肿瘤中都发现周期节律遭到破坏,如乳腺癌、前列腺癌、子宫内膜癌等.本文将从周期节律对细胞周期进程及对细胞DNA损伤修复的影响来讨论分子水平上细胞的周期节律与肿瘤发生发展的关系.  相似文献   

17.
The circadian clock controls the expression of nearly 50% of protein coding genes in mice and most likely in humans as well. Therefore, disruption of the circadian clock is presumed to have serious pathological effects including cancer. However, epidemiological studies on individuals with circadian disruption because of night shift or rotating shift work have produced contradictory data not conducive to scientific consensus as to whether circadian disruption increases the incidence of breast, ovarian, prostate, or colorectal cancers. Similarly, genetically engineered mice with clock disruption do not exhibit spontaneous or radiation-induced cancers at higher incidence than wild-type controls. Because many cellular functions including the cell cycle and cell division are, at least in part, controlled by the molecular clock components (CLOCK, BMAL1, CRYs, PERs), it has also been expected that appropriate timing of chemotherapy may increase the efficacy of chemotherapeutic drugs and ameliorate their side effect. However, empirical attempts at chronochemotherapy have not produced beneficial outcomes. Using mice without and with human tumor xenografts, sites of DNA damage and repair following treatment with the anticancer drug cisplatin have been mapped genome-wide at single nucleotide resolution and as a function of circadian time. The data indicate that mechanism-based studies such as these may provide information necessary for devising rational chronochemotherapy regimens.  相似文献   

18.
Epidemiological studies suggest that dietary polyunsaturated fatty acids (PUFA) may influence breast cancer progression and prognosis. In order to study potential mechanisms of action of fatty acid modulation of tumor growth, we studied, in vitro, the influence of n-3 and n-6 fatty acids on proliferation, cell cycle, differentiation and apoptosis of MCF-7 human breast cancer cells. Both eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) inhibited the MCF-7 cell growth by 30% and 54%, respectively, while linoleic acid (LA) had no effect and arachidonic acid (AA) inhibited the cell growth by 30% (p < 0.05). The addition of vitamin E (10uM) to cancer cells slightly restored cell growth. The incubation of MCF-7 cells with PUFAs did not alter the cell cycle parameters or induce cell apoptosis. However, the growth inhibitory effects of EPA, DHA and AA were associated with cell differentiation as indicated by positive Oil-Red-O staining of the cells. Lipid droplet accumulation was increased by 65%, 30% and 15% in the presence of DHA, EPA and AA, respectively; (p < 0.05). These observations suggest that fatty acids may influence cellular processes at a molecular level, capable of modulating breast cancer cell growth.  相似文献   

19.
20.
Mechanisms of breast cancer progression and invasion, often involve alteration of hormonal signaling, and upregulation and/or activation of signal transduction pathways that input to cell cycle regulation. Herein, we describe a rationally designed first-in-class novel small molecule inhibitor for targeting oncogenic and hormonal signaling in ER-positive breast cancer. BC-N102 treatment exhibits dose-dependent cytotoxic effects against ER+ breast cancer cell lines. BC-N102 exhibited time course- and dose-dependent cell cycle arrest via downregulation of the estrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR), phosphatidylinositol 3-kinase (PI3K), phosphorylated (p)-extracellular signal-regulated kinase (ERK), p-Akt, CDK2, and CDK4 while increasing p38 mitogen-activated protein kinase (MAPK), and mineralocorticoid receptor (MR) signaling in breast cancer cell line. In addition, we found that BC-N102 suppressed breast cancer tumorigenesis in vivo and prolonged the survival of animals. Our results suggest that the proper application of BC-N102 may be a beneficial chemotherapeutic strategy for ER+ breast cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号