首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA damage response is crucial for maintaining genomic integrity and preventing cancer by coordinating the activation of checkpoints and the repair of damaged DNA. Central to DNA damage response are the two checkpoint kinases ATM and ATR that phosphorylate a wide range of substrates. RING finger and WD repeat domain 3 (RFWD3) was initially identified as a substrate of ATM/ATR from a proteomic screen. Subsequent studies showed that RFWD3 is an E3 ubiquitin ligase that ubiquitinates p53 in vitro and positively regulates p53 levels in response to DNA damage. We report here that RFWD3 associates with replication protein A (RPA), a single-stranded DNA-binding protein that plays essential roles in DNA replication, recombination, and repair. Binding of RPA to single-stranded DNA (ssDNA), which is generated by DNA damage and repair, is essential for the recruitment of DNA repair factors to damaged sites and the activation of checkpoint signaling. We show that RFWD3 is physically associated with RPA and rapidly localizes to sites of DNA damage in a RPA-dependent manner. In vitro experiments suggest that the C terminus of RFWD3, which encompass the coiled-coil domain and the WD40 domain, is necessary for binding to RPA. Furthermore, DNA damage-induced phosphorylation of RPA and RFWD3 is dependent upon each other. Consequently, loss of RFWD3 results in the persistent foci of DNA damage marker γH2AX and the repair protein Rad51 in damaged cells. These findings suggest that RFWD3 is recruited to sites of DNA damage and facilitates RPA-mediated DNA damage signaling and repair.  相似文献   

2.
p21 is a well-established regulator of cell cycle progression. The role of p21 in DNA repair, however, remains poorly characterized. Here, we describe a critical role of p21 in a replication-coupled DNA double-strand break (DSB) repair that is mechanistically distinct from its cell cycle checkpoint function. We demonstrate that p21-deficient cells exhibit elevated chromatid-type aberrations, including gaps and breaks, dicentrics and radial formations, following exposure to several DSB-inducing agents. p21(-/-) cells also exhibit an increased DNA damage-inducible DNA-PK(CS) S2056 phosphorylation, indicative of elevated non-homologous DNA end joining. Concomitantly, p21(-/-) cells are defective in replication-coupled homologous recombination (HR), exhibiting decreased sister chromatid exchanges and HR-dependent repair as determined using a crosslinked GFP reporter assay. Importantly, we establish that the DSB hypersensitivity of p21(-/-) cells is associated with increased cyclin-dependent kinase (CDK)-dependent BRCA2 S3291 phosphorylation and MRE11 nuclear foci formation and can be rescued by inhibition of CDK or MRE11 nuclease activity. Collectively, our results uncover a novel mechanism by which p21 regulates the fidelity of replication-coupled DSB repair and the maintenance of chromosome stability distinct from its role in the G1-S phase checkpoint.  相似文献   

3.
Cellular senescence is a permanent state of cell cycle arrest that protects the organism from tumorigenesis and regulates tissue integrity upon damage and during tissue remodeling. However, accumulation of senescent cells in tissues during aging contributes to age‐related pathologies. A deeper understanding of the mechanisms regulating the viability of senescent cells is therefore required. Here, we show that the CDK inhibitor p21 (CDKN1A) maintains the viability of DNA damage‐induced senescent cells. Upon p21 knockdown, senescent cells acquired multiple DNA lesions that activated ataxia telangiectasia mutated (ATM) and nuclear factor (NF)‐κB kinase, leading to decreased cell survival. NF‐κB activation induced TNF‐α secretion and JNK activation to mediate death of senescent cells in a caspase‐ and JNK‐dependent manner. Notably, p21 knockout in mice eliminated liver senescent stellate cells and alleviated liver fibrosis and collagen production. These findings define a novel pathway that regulates senescent cell viability and fibrosis.  相似文献   

4.
The p53 response to DNA damage   总被引:12,自引:0,他引:12  
Meek DW 《DNA Repair》2004,3(8-9):1049-1056
  相似文献   

5.
The ECS (endocannabinoid system) plays an important role in the onset of obesity and metabolic disorders, implicating central and peripheral mechanisms predominantly via CB1 (cannabinoid type 1) receptors. CB1 receptor antagonist/inverse agonist treatment improves cardiometabolic risk factors and insulin resistance. However, the relative contribution of peripheral organs to the net beneficial metabolic effects remains unclear. In the present study, we have identified the presence of the endocannabinoid signalling machinery in skeletal muscle and also investigated the impact of an HFD (high-fat diet) on lipid-metabolism-related genes and endocannabinoid-related proteins. Finally, we tested whether administration of the CB1 inverse agonist AM251 restored the alterations induced by the HFD. Rats were fed on either an STD (standard/low-fat diet) or an HFD for 10 weeks and then treated with AM251 (3 mg/kg of body weight per day) for 14 days. The accumulated caloric intake was progressively higher in rats fed on the HFD than the STD, resulting in a divergence in body weight gain. AM251 treatment reduced accumulated food/caloric intake and body weight gain, being more marked in rats fed on the HFD. CB2 (cannabinoid type 2) receptor and PPARα (peroxisome-proliferator-activated receptor α) gene expression was decreased in HFD-fed rats, whereas MAGL (monoglyceride lipase) gene expression was up-regulated. These data suggest an altered endocannabinoid signalling as a result of the HFD. AM251 treatment reduced CB2 receptor, PPARγ and AdipoR1 (adiponectin receptor 1) gene expression in STD-fed rats, but only partially normalized the CB2 receptor in HFD-fed rats. Protein levels corroborated gene expression results, but also showed a decrease in DAGL (diacylglycerol) β and DAGLα after AM251 treatment in STD- and HFD-fed rats respectively. In conclusion, the results of the present study indicate a diet-sensitive ECS in skeletal muscle, suggesting that blockade of CB1 receptors could work towards restoration of the metabolic adaption imposed by diet.  相似文献   

6.
Zhang XP  Liu F  Wang W 《Biophysical journal》2012,102(10):2251-2260
The selective expression of p53-targeted genes is central to the p53-mediated DNA damage response. It is affected by multiple factors including posttranslational modifications and cofactors of p53. Here, we proposed an integrated model of the p53 network to characterize how the cellular response is regulated by key cofactors of p53, Hzf and ASPP. We found that the sequential induction of Hzf and ASPP is crucial to a reliable cell-fate decision between survival and death. After DNA damage, activated p53 first induces Hzf, which promotes the expression of p21 to arrest the cell cycle and facilitate DNA repair. The cell recovers to normal proliferation after the damage is repaired. If the damage is beyond repair, Hzf is effectively degraded, and activated E2F1 induces ASPP, which promotes the expression of Bax to trigger apoptosis. Furthermore, interrupting the induction of Hzf or ASPP remarkably impairs the cellular function. We also proposed two schemes for the production of the unknown E3 ubiquitin ligase for Hzf degradation: it is induced by either E2F1 or p53. In both schemes, the sufficient degradation of Hzf is required for apoptosis induction. These results are in good agreement with experimental observations or are experimentally testable.  相似文献   

7.
The RING domain is a conserved zinc finger motif, which serves as a protein-protein interaction interface. Searches of a human heart expressed sequence tag data base for genes encoding the RING domain identified a novel cDNA, named striated muscle RING zinc finger protein (SMRZ). The SMRZ cDNA is 1.9 kilobase pairs in length and encodes a polypeptide of 288 amino acid residues; analysis of the peptide sequence demonstrated an N-terminal RING domain. Fluorescence in situ hybridization localized SMRZ to chromosome 1p33-34. Northern blots demonstrated that SMRZ is expressed exclusively in striated muscle. In the cardiovascular system, SMRZ is more highly expressed in the fetal heart than in the adult heart (slightly higher expression in the ventricle than in the atrium), suggesting that SMRZ is developmentally regulated. SMRZ was found to interact with SMT3b, a ubiquitin-like protein, through the SMRZ-RING domain. This interaction was abolished by mutagenesis of conserved RING domain residues. Transient transfection of SMRZ into C2C12 myoblasts showed localization of SMRZ to the nucleus. These data suggest that SMRZ may play an important role in striated muscle cell embryonic development and perhaps in cell cycle regulation.  相似文献   

8.
9.
In this study, we attempt to gain insights into the molecular mechanism underlying MDM2-mediated TGF-beta resistance. MDM2 renders cells refractory to TGF-beta by overcoming a TGF-beta-induced G1 cell cycle arrest. Because the TGF-beta resistant phenotype is reversible upon removal of MDM2, MDM2 likely confers TGF-beta resistance by directly targeting the cellular machinery involved in the growth inhibition by TGF-beta. Investigation of the structure-function relationship of MDM2 reveals three elements essential for MDM2 to confer TGF-beta resistance in both mink lung epithelial cells and human mammary epithelial cells. One of these elements is the C-terminal half of the p53-binding domain, which at least partially retained p53-binding and inhibitory activity. Second, the ability of MDM2 to mediate TGF-beta resistance is disrupted by mutation of the nuclear localization signal, but is restored upon coexpression of MDMX. Finally, mutations of the zinc coordination residues of the RING finger domain abrogates TGF-beta resistance, but not the ability of MDM2 to inhibit p53 activity or to bind MDMX. These data suggest that RING finger-mediated p53 inhibition and MDMX interaction are not sufficient to cause TGF-beta resistance and imply a crucial role of the E3 ubiquitin ligase activity of this domain in MDM2-mediated TGF-beta resistance.  相似文献   

10.
Nonproteolytic ubiquitylation of chromatin surrounding deoxyribonucleic acid (DNA) double-strand breaks (DSBs) by the RNF8/RNF168/HERC2 ubiquitin ligases facilitates restoration of genome integrity by licensing chromatin to concentrate genome caretaker proteins near the lesions. In parallel, SUMOylation of so-far elusive upstream DSB regulators is also required for execution of this ubiquitin-dependent chromatin response. We show that HERC2 and RNF168 are novel DNA damage-dependent SUMOylation targets in human cells. In response to DSBs, both HERC2 and RNF168 were specifically modified with SUMO1 at DSB sites in a manner dependent on the SUMO E3 ligase PIAS4. SUMOylation of HERC2 was required for its DSB-induced association with RNF8 and for stabilizing the RNF8-Ubc13 complex. We also demonstrate that the ZZ Zinc finger in HERC2 defined a novel SUMO-specific binding module, which together with its concomitant SUMOylation and T4827 phosphorylation promoted binding to RNF8. Our findings provide novel insight into the regulatory complexity of how ubiquitylation and SUMOylation cooperate to orchestrate protein interactions with DSB repair foci.  相似文献   

11.
Genotoxic agents such as ionizing radiation trigger cell cycle arrest at the G1/S and G2/M checkpoints, allowing cells to repair damaged DNA before entry into mitosis. DNA damage-induced G1 arrest involves p53-dependent expression of p21 (Cip1/Waf-1), which inhibits cyclin-dependent kinases and blocks S phase entry. While much of the core DNA damage response has been well-studied, other signaling proteins that intersect with and modulate this response remain uncharacterized. In this study, we identify Suppressor of Cytokine Signaling (SOCS)-3 as an important regulator of radiation-induced G1 arrest. SOCS3-deficient fibroblasts fail to undergo G1 arrest and accumulate in the G2/M phase of the cell cycle. SOCS3 knockout cells phosphorylate p53 and H2AX normally in response to radiation, but fail to upregulate p21 expression. In addition, STAT3 phosphorylation is elevated in SOCS3-deficient cells compared to WT cells. Normal G1 arrest can be restored in SOCS3 KO cells by retroviral transduction of WT SOCS3 or a dominant-negative mutant of STAT3. Our results suggest a novel function for SOCS3 in the control of genome stability by negatively regulating STAT3-dependent radioresistant DNA synthesis, and promoting p53-dependent p21 expression.  相似文献   

12.
The role of p53 in tissue protection is not well understood. Loss of p53 blocks apoptosis in the intestinal crypts following irradiation but paradoxically accelerates gastrointestinal (GI) damage and death. PUMA and p21 are the major mediators of p53-dependent apoptosis and cell-cycle checkpoints, respectively. To better understand these two arms of p53 response in radiation-induced GI damage, we compared animal survival, as well as apoptosis, proliferation, cell-cycle progression, DNA damage, and regeneration in the crypts of WT, p53 knockout (KO), PUMA KO, p21 KO, and p21/PUMA double KO (DKO) mice in a whole body irradiation model. Deficiency in p53 or p21 led to shortened survival but accelerated crypt regeneration associated with massive nonapoptotic cell death. Nonapoptotic cell death is characterized by aberrant cell-cycle progression, persistent DNA damage, rampant replication stress, and genome instability. PUMA deficiency alone enhanced survival and crypt regeneration by blocking apoptosis but failed to rescue delayed nonapoptotic crypt death or shortened survival in p21 KO mice. These studies help to better understand p53 functions in tissue injury and regeneration and to potentially improve strategies to protect or mitigate intestinal damage induced by radiation.  相似文献   

13.
14.
In response to DNA damage, checkpoint signalling protects genome integrity at the cost of repressing cell cycle progression and DNA replication. Mechanisms for checkpoint down‐regulation are therefore necessary for proper cellular proliferation. We recently uncovered a phosphatase‐independent mechanism for dampening checkpoint signalling, where the checkpoint adaptor Rad9 is counteracted by the repair scaffolds Slx4‐Rtt107. Here, we establish the molecular requirements for this new mode of checkpoint regulation. We engineered a minimal multi‐BRCT‐domain (MBD) module that recapitulates the action of Slx4‐Rtt107 in checkpoint down‐regulation. MBD mimics the damage‐induced Dpb11‐Slx4‐Rtt107 complex by synergistically interacting with lesion‐specific phospho‐sites in Ddc1 and H2A. We propose that efficient recruitment of Dpb11‐Slx4‐Rtt107 or MBD via a cooperative ‘two‐site‐docking’ mechanism displaces Rad9. MBD also interacts with the Mus81 nuclease following checkpoint dampening, suggesting a spatio‐temporal coordination of checkpoint signalling and DNA repair via a combinatorial mode of BRCT‐domains interactions.  相似文献   

15.
Wang H  Zhou W  Zheng Z  Zhang P  Tu B  He Q  Zhu WG 《DNA Repair》2012,11(2):146-156
Histone deacetylase (HDAC) inhibitors have been proven to be effective therapeutic agents to kill cancer cells through inhibiting HDAC activity or altering the structure of chromatin. As a potent HDAC inhibitor, depsipeptide not only modulates histone deacetylation but also activates non-histone protein p53 to inhibit cancer cell growth. However, the mechanism of depsipeptide-induced p53 transactivity remains unknown. Here, we show that depsipeptide causes DNA damage through induction of reactive oxygen species (ROS) generation, as demonstrated by a comet assay and by detection of the phosphorylation of H2AX. Depsipeptide induced oxidative stress was confirmed to relate to a disturbance in reduction-oxidation (redox) reactions through inhibition of the transactivation of thioredoxin reductase (TrxR) in human cancer cells. Upon treatment with depsipeptide, p53 phosphorylation at threonine 18 (Thr18) was specifically induced. Furthermore, we also demonstrated that phosphorylation of p53 at Thr18 is required for p53 acetylation at lysine 373/382 and for p21 expression in response to depsipeptide treatment. Our results demonstrate that depsipeptide plays an anti-neoplastic role by generating ROS to elicit p53/p21 pathway activation.  相似文献   

16.
17.
18.
19.
20.
Ubiquitin-mediated degradation of the cyclin-dependent kinase inhibitor p27 provides a powerful route for enforcing normal progression through the mammalian cell cycle. According to a current model, the ubiquitination of p27 during S-phase progression is mediated by SCF(Skp2) E3 ligase that captures Thr187-phosphorylated p27 by means of the F-box protein Skp2, which in turn couples the bound substrate via Skp1 to a catalytic core complex composed of Cul1 and the Rbx/Roc RING finger protein. Here we identify Skp2 as a component of an Skp1-cullin-F-box complex that is based on a Cul1-Ro52 RING finger B-box coiled-coil motif family protein catalytic core. Ro52-containing complexes display E3 ligase activity and promote the ubiquitination of Thr187-phosphorylated p27 in a RING-dependent manner in vitro. The knockdown of Ro52 expression in human cells with small interfering RNAs causes the accumulation of p27 and the failure of cells to enter S phase. Importantly, these effects are abrogated by the simultaneous removal of p27. Taken together, these data suggest a key role for Ro52 RING finger protein in the regulation of p27 degradation and S-phase progression in mammalian cells and provide evidence for the existence of a Cul1-based catalytic core that utilizes Ro52 RING protein to promote ubiquitination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号