共查询到20条相似文献,搜索用时 15 毫秒
1.
Mangrove forests are influenced by tidal flooding and ebbing for a period of approximately 12.4 hours (tidal cycle). Mangrove crickets (Apteronemobius asahinai) forage on mangrove forest floors only during low tide. Under constant darkness, most crickets showed a clear bimodal daily pattern in their locomotor activity for at least 24 days; the active phases of approximately 10 hours alternated with inactive phases of approximately 2 hours, which coincided with the time of high tide in the field. The free-running period was 12.56+/-0.13 hours (mean+/-s.d. n=11). This endogenous rhythm was not entrained by the subsequent 24 hours light-dark cycle, although it was suppressed in the photophase; the active phase in the scotophase continued from the active phase in the previous constant darkness, with no phase shift. The endogenous rhythm was assumed to be a circatidal rhythm. On the other hand, the activity under constant darkness subsequent to a light-dark cycle was more intense in the active phase continuing from the scotophase than from the photophase of the preceding light-dark cycle; this indicates the presence of circadian components. These results suggest that two clock systems are involved in controlling locomotor activity in mangrove crickets. 相似文献
2.
3.
The clock mechanism for circatidal rhythm has long been controversial, and its molecular basis is completely unknown. The mangrove cricket, Apteronemobius asahinai, shows two rhythms simultaneously in its locomotor activity: a circatidal rhythm producing active and inactive phases as well as a circadian rhythm modifying the activity intensity of circatidal active phases. The role of the clock gene period (per), one of the key components of the circadian clock in insects, was investigated in the circadian and circatidal rhythms of A. asahinai using RNAi. After injection of double-stranded RNA of per, most crickets did not show the circadian modulation of activity but the circatidal rhythm persisted without a significant difference in the period from controls. Thus, per is functionally involved in the circadian rhythm but plays no role, or a less important role, in the circatidal rhythm. We conclude that the circatidal rhythm in A. asahinai is controlled by a circatidal clock whose molecular mechanism is different from that of the circadian clock. 相似文献
4.
The circadian rhythm of locomotor activity in the Japanese honeybee Apis cerana japonica was studied to determine the involvement of parametric and/or nonparametric entrainment. The rhythm was entrained to a skeleton photoperiod in which a 1-h first light pulse was imposed in the morning along with a second light pulse in the evening, as well as to a complete photoperiodic regime (LD 12:12). However, the timing of peak activity relative to the lights-off in the evening in the skeleton photoperiod was earlier than that in the complete photoperiod. A single daily light pulse in the evening entrained the rhythm, whereas a daily light pulse in the morning allowed free-running as in constant darkness. The free-running period (τ) of locomotor activity in constant light became longer as the light intensity increased. A Winfree's type I phase response curve of the locomotor activity rhythm was obtained using a single 1-h light pulse. The results suggest that both parametric and nonparametric entrainment are involved in the circadian rhythm of individual locomotor activity in this honeybee. 相似文献
5.
Abstract We have studied the pattern for resetting the circadian rhythm in the spontaneous motor activity of the crayfish. Spontaneous motor activity was recorded continously at a constant temperature and under free running conditions in complete darkness. The effect of single light pulses applied at different circadian times, on the circadian rhythm of motor activity was measured in both transient stage and steady state. The results led us to construct a phase‐transition curve and phase‐response curve which were analyzed to obtain information about the oscillators which underlie the circadian rhythm of motor activity. 相似文献
6.
《Chronobiology international》2013,30(4):593-616
In various insect and arachnid species, three different types of photoreceptors that do not serve image processing have been discovered and analyzed by means of neurobiological methods: They can be found for example: (1) as lamina and lobula organs (LaOs and LoOs) next to the optic neuropils in the optic lobes of holo‐ and hemimetabolous insects; (2) inside the last ganglia of the cord of the scorpion and a marine midge; and (3) as modified visual photoreceptors in metamorphosized larval stemmata and the lateral eyes of scorpions, which have been compound eyes in fossil scorpion relatives. Immunocytology with various antibodies against proteins of the phototransduction cascade, the rhabdom turnover cycle and neurotransmitters of afferent and efferent pathways, was combined with light‐ and ultrastructural investigations in well‐defined adaptational states, in order to study their photoreceptive function and neuronal wiring. Pilot chronobiological experiments with a newly developed twilight simulating lamp, behavioral studies, and model calculations provide evidence that these photoreceptors may well serve a role in the complex task of detecting time cues out of natural dawn and dusk.
“…Clearly more work will be necessary before truly informed judgements can be made about the functional significance of the diversity in photoreception for entrainment. A first step will be the precise identification of photoreceptors and investigations of the mechanisms of transduction, processing and transmission of temporal information provided by the daily light cycle.…” () 相似文献
7.
Richard B. Forward Jr. Jonathan H. Cohen 《Journal of experimental marine biology and ecology》2004,299(2):255-266
Ovigerous blue crabs, Callinectes sapidus, are observed to undergo nocturnal ebb-tide transport (ETT) during their seaward spawning migration. A previous study found that females undergoing the spawning migration have a circatidal rhythm in vertical swimming, which serves as the biological basis for ETT. The present study asked three questions about this endogenous rhythm. First, does the rhythm occur in females with mature embryos regardless of whether they are undergoing ETT? Second, when exposed to a light/dark cycle in the laboratory, do ovigerous females only swim vertically at the time of ebb tide during the dark phase? Third, do attachments to the backs of ovigerous crabs affect the circatidal rhythm? The circatidal rhythm occurred in all crabs with mid-stage embryos that were prevented from undergoing ETT. The rhythm was unaffected by the light/dark cycle, which implies that migration can occur at lower light levels at depth during the day. Finally, attachments did not affect the rhythm, which suggests that tags and transmitters will not affect the spawning migration. 相似文献
8.
Abstract Daily variations in the colour temperature of the sun have been established as the Zeitgeber for arctic animals (Krüll, 1976, 1985). In the tropical regions too, there is a variation in the colour temperature from dawn to dusk. Experiments were performed to analyse whether cyclical 12 : 12h variations (Table 1) in the colour temperature assist the field mouse Mus booduga in programming the activity‐rest cycle or if the intensity of light plays a major role. Results suggest that the variations in the colour temperature used in the present experiment are not sufficient to entrain the system. Different colour temperatures given in light pulses did not evoke varying phase shifts indicating that the circadian system was not responding to the colour temperatures. The phase shifts tended to be of the same magnitude. It is speculated that it is the intensity of light that is more important for determining the day and night cycles of Mus booduga than the differences in colour temperature. 相似文献
9.
Claudia Giannetto Francesco Fazio Daniela Alberghina Michele Panzera 《Biological Rhythm Research》2015,46(4):537-543
Keeping and management of horses can induce changes to instinctive and innate behavioural patterns. We investigated the effect of five different management conditions in five groups of horses. All groups were housed in individual boxes under natural environmental and lighting conditions. They were fed three times a day (07:00, 12:30 and 20:00) and had free access to water. Group A was fed with 8 kg/capo/die of hay divided in the three meals. Group B was fed with 8 kg/capo/die of an unifeed divided in the three meals. Group C was fed with unifeed at 07:00 and 12:30 and with hay at 20:00. They were kept in wood-bedded boxes. Groups D and E were fed with unifeed at 07:00 and 12:30, respectively, and in the other, two meals received hay. They were kept in straw-bedded boxes. Our results showed a daily rhythm of total locomotor activity in all groups, influenced by management conditions. Group A engaged in meal patterns similar to those seen in grazing animals. Groups B and C showed the highest MESOR values due to a high searching behaviour. Group C showed a nocturnal acrophase contrary to the other groups. Groups D and E showed a total locomotor activity pattern similar to that observed in Group A probably due to an increase in straw-bedding consuming. The reduction of fibre in diet has an impact on physiology and behaviour of horses. The valuation of diet and in bedding provided to horses kept in box is useful to guarantee the maintenance of the physiological daily rhythm of total locomotor activity. 相似文献
10.
《Chronobiology international》2013,30(5):837-852
Four blind individuals who were thought to be entrained at an abnormal circadian phase position were reset to a more normal phase using exogenous melatonin administration. In one instance, circadian phase was shifted later. A fifth subject who was thought to be entrained was monitored over four years and eventually was shown to have a circadian period different from 24 h. These findings have implications for treating circadian phase abnormalities in the blind, for distinguishing between abnormally entrained and free‐running blind individuals, and for informing the debate over zeitgeber hierarchy in humans. 相似文献
11.
Four blind individuals who were thought to be entrained at an abnormal circadian phase position were reset to a more normal phase using exogenous melatonin administration. In one instance, circadian phase was shifted later. A fifth subject who was thought to be entrained was monitored over four years and eventually was shown to have a circadian period different from 24 h. These findings have implications for treating circadian phase abnormalities in the blind, for distinguishing between abnormally entrained and free-running blind individuals, and for informing the debate over zeitgeber hierarchy in humans. 相似文献
12.
Martin Schimmel 《Biological Rhythm Research》2013,44(3):341-346
The Lomb-Scargle periodogram was introduced in astrophysics to detect sinusoidal signals in noisy unevenly sampled time series. It proved to be a powerful tool in time series analysis and has recently been adapted in biomedical sciences. Its use is motivated by handling non-uniform data which is a common characteristic due to the restricted and irregular observations of, for instance, free-living animals. However, the observational data often contain fractions of non-Gaussian noise or may consist of periodic signals with non-sinusoidal shapes. These properties can make more difficult the interpretation of Lomb-Scargle periodograms and can lead to misleading estimates. In this letter we illustrate these difficulties for noise-free bimodal rhythms and sinusoidal signals with outliers. The examples are aimed to emphasize limitations and to complement the recent discussion on Lomb-Scargle periodograms. 相似文献
13.
ABSTRACT Locomotor activity of individual blowflies, Phormia (= Protophormia) terraenovae R.D. (Diptera, Calliphoridae) was recorded by means of running wheels. A few days after emergence, adult flies were placed in the wheels and exposed to at least two of four light-dark cycles (LD) differing in cycle duration T (LD 11:11, 12:12, 13:13 and 14:14 h). The intensity of illumination was 400 lux in L and 2 lux in D. From the actograms, phase-angle differences were read off between onset of activity and light-on (ψ/onset ), and between end of activity and light-off (ψend)- Within the range of entrainment, ψ changed systematically from negative values in T =22 h to positive values in T =28 h: the mean change in ψ per hour change in T , expressed in degree of the full circadian cycles, was 20o . Standard deviations of ψ around its mean were computed for ten-cycle intervals; in ψonset and in ψend standard deviation was minimal when 4ψ was close to zero, and increased steadily with increasing negative or positive ψ -values. 相似文献
14.
To investigate the role of non-parametric light effects in entrainment, Djungarian hamsters of two different circadian phenotypes were exposed to skeleton photoperiods, or to light pulses at different circadian times, to compile phase response curves (PRCs). Wild-type (WT) hamsters show daily rhythms of locomotor activity in accord with the ambient light/dark conditions, with activity onset and offset strongly coupled to light-off and light-on, respectively. Hamsters of the delayed activity onset (DAO) phenotype, in contrast, progressively delay their activity onset, whereas activity offset remains coupled to light-on. The present study was performed to better understand the underlying mechanisms of this phenomenon. Hamsters of DAO and WT phenotypes were kept first under standard housing conditions with a 14:10 h light–dark cycle, and then exposed to skeleton photoperiods (one or two 15-min light pulses of 100 lx at the times of the former light–dark and/or dark–light transitions). In a second experiment, hamsters of both phenotypes were transferred to constant darkness and allowed to free-run until the lengths of the active (α) and resting (ρ) periods were equal (α:ρ = 1). At this point, animals were then exposed to light pulses (100 lx, 15 min) at different circadian times (CTs). Phase and period changes were estimated separately for activity onset and offset. When exposed to skeleton-photoperiods with one or two light pulses, the daily activity patterns of DAO and WT hamsters were similar to those obtained under conditions of a complete 14:10 h light–dark cycle. However, in the case of giving only one light pulse at the time of the former light–dark transition, animals temporarily free-ran until activity offset coincided with the light pulse. These results show that photic entrainment of the circadian activity rhythm is attained primarily via non-parametric mechanisms, with the “morning” light pulse being the essential cue. In the second experiment, typical photic PRCs were obtained with phase delays in the first half of the subjective night, phase advances in the second half, and a dead zone during the subjective day. ANOVA indicated no significant differences between WT and DAO animals despite a significantly longer free-running period (tau) in DAO hamsters. Considering the phase shifts induced around CT0 and the different period lengths, it was possible to model the entrainment patterns of both phenotypes. It was shown that light-induced phase shifts of activity offset were sufficient to compensate for the long tau in WT and DAO hamsters, thus enabling a stable entrainment of their activity offsets to be achieved. With respect to activity onsets, phase shifts were sufficient only in WT animals; in DAO hamsters, activity onset showed increasing delays. The results of the present paper clearly demonstrate that, under laboratory conditions, the non-parametric component of light and dark leads to circadian entrainment in Djungarian hamsters. However, a stable entrainment of activity onset can be achieved only if the free-running period does not exceed a certain value. With longer tau values, hamsters reveal a DAO phenotype. Under field conditions, therefore, non-photic cues/zeitgebers must obviously be involved to enable a proper circadian entrainment. 相似文献
15.
《Chronobiology international》2013,30(5):596-607
C-Fos expression in the suprachiasmatic nucleus (SCN) and phase shifts of the activity rhythm following photic stimulation were investigated in Djungarian hamsters (Phodopus sungorus) of two different circadian phenotypes. Wild-type (WT) hamsters display robust daily patterns of locomotor activity according to the light/dark conditions. Hamsters of the DAO (delayed activity onset) phenotype, however, progressively delay the activity onset, whereas activity offset remains coupled to “light-on”. Although the exact reason for the delayed activity onset is not yet clarified, it is connected with a disturbed interaction between the light/dark cycle and the circadian clock. The aim was to test the link between photoreception and the behavioral output of the circadian system in hamsters of both phenotypes, to get further insight in the underlying mechanism of the DAO phenomenon. Animals were exposed to short light pulses at different times during the dark period to analyze phase shifts of the activity rhythm and expression of Fos protein in the SCN. The results indicate that the photosensitive phase in DAO hamsters is shifted like the activity onset. Also, phase shifts were significantly smaller in DAO hamsters. At the same time, levels of Fos expression did not differ between phenotypes regarding the circadian phase. The results provide evidence that the shifted photosensitivity of the circadian system in DAO hamsters does not differ from that of WT animals, and lead us to conclude that processes within the SCN that enable light information to reset the circadian pacemaker might offer an explanation for the DAO phenomenon. 相似文献
16.
《Chronobiology international》2013,30(5):649-661
Daily light and feeding cycles act as powerful synchronizers of circadian rhythmicity. Ultimately, these external cues entrain the expression of clock genes, which generate daily rhythmic behavioral and physiological responses in vertebrates. In the present study, we investigated clock genes in a marine teleost (gilthead sea bream). Partial cDNA sequences of key elements from both positive (Bmal1, Clock) and negative (Per2, Cry1) regulatory loops were cloned before studying how feeding time affects the daily rhythms of locomotor activity and clock gene expression in the central (brain) and peripheral (liver) oscillators. To this end, all fish were kept under a light-dark (LD) cycle and were divided into three experimental groups, depending on the time of their daily meal: mid-light (ML), mid-darkness (MD), or at random (RD) times. Finally, the existence of circadian control on gene expression was investigated in the absence of external cues (DD?+?RD). The behavioral results showed that seabream fed at ML or RD displayed a diurnal activity pattern (>91% of activity during the day), whereas fish fed at MD were nocturnal (89% of activity during the night). Moreover, seabream subjected to regular feeding cycles (ML and MD groups) showed food-anticipatory activity (FAA). Regardless of the mealtime, the daily rhythm of clock gene expression in the brain peaked close to the light-dark transition in the case of Bmal1 and Clock, and at the beginning of the light phase in the case of Per2 and Cry1, showing the existence of phase delay between the positive and negative elements of the molecular clock. In the liver, however, the acrophases of the daily rhythms differed depending on the feeding regime: the maximum expression of Bmal1 and Clock in the ML and RD groups was in antiphase to the expression pattern observed in the fish fed at MD. Under constant conditions (DD?+?RD), Per2 and Cry1 showed circadian rhythmicity in the brain, whereas Bmal1, Clock, and Per2 did in the liver. Our results indicate that the seabream clock gene expression is endogenously controlled and in liver it is strongly entrained by food signals, rather than by the LD cycle, and that scheduled feeding can shift the phase of the daily rhythm of clock gene expression in a peripheral organ (liver) without changing the phase of these rhythms in a central oscillator (brain), suggesting uncoupling of the light-entrainable oscillator (LEO) from the food-entrainable oscillator (FEO). These findings provide the basis and new tools for improving our knowledge of the circadian system and entraining pathways of this fish species, which is of great interest for the Mediterranean aquaculture. (Author correspondence: javisan@um.es). 相似文献
17.
M. E. Mazurov 《Biophysics》2009,54(1):61-66
The dynamics of establishing a unified sinoatrial node rhythm are considered. Mutual synchronization is shown to result in phase shifts and excitation delays. Rhythmogenesis in systems of two or many interacting pacemaker cells is examined in several point models and distributed models (Noble, Bonhoeffer-van der Pol, FitzHugh, Hodgkin-Huxley, Morris-Lecar). 相似文献
18.
Gonzalez-Acosta B Bashan Y Hernandez-Saavedra NY Ascencio F Cruz-Agüero G 《FEMS microbiology ecology》2006,55(2):311-321
Mangroves are highly productive marine ecosystems where bacteria (culturable and non-culturable) actively participate in biomineralization of organic matter and biotransformation of minerals. This study explores spatial and seasonal fluctuations of culturable heterotrophic bacteria and Vibrio spp. in the sediments of an intact mangrove ecosystem and determines the dominant environmental factors that govern these fluctuations. Sediment samples were collected monthly from three stations in the mangroves of Laguna de Balandra, Baja California Sur, Mexico, through an annual cycle. Physicochemical parameters included seawater temperature, salinity, and concentration of dissolved oxygen. Viable counts of culturable heterotrophic bacteria and Vibrio spp. were made. In one sample (March 2003), nutrient concentrations (ammonium, nitrites, nitrates, and phosphates), organic matter, pH and sediment texture were also determined. General cluster analyses, analysis of variance of specific variables, and several principal component analyses demonstrated that seawater temperature is the principal determinant of seasonal distribution of culturable heterotrophic bacteria and Vibrio spp. in mangrove sediments. Soil texture, concentration of nutrients, and organic matter concentration contribute to heterogenicity to a lesser extent. A large spatial variation in bacterial populations was observed over short distances ( approximately 1 m) in sampling areas within the same site. These analyses show that the culturable bacterial distribution in sediments of mangroves has high spatial and temporal heterogeneity. 相似文献
19.
We know that entrainment, a stable phase relationship with an environmental cycle, must be established for a biological clock
to function properly. Phase response curves (PRCs), which are plots of phase shifts that result as a function of the phase
of a stimulus, have been created to examine the mode of entrainment. In circadian rhythms, single-light pulse PRCs have been
obtained by giving a light pulse to various phases of a free-running rhythm under continuous darkness. This successfully explains
the entrainment to light-dark cycles. Some organisms show circannual rhythms. In some of these, changes in photoperiod entrain
the circannual rhythms. However, no single-pulse PRCs have been created. Here we show the PRC to a long-day pulse superimposed
for 4 weeks over constant short days in the circannual pupation rhythm in the varied carpet beetle Anthrenus verbasci. Because the shape of that PRC closely resembles that of the Type 0 PRC with large phase shifts in circadian rhythms, we
suggest that an oscillator having a common feature in the phase response with the circadian clock, produces a circannual rhythm. 相似文献
20.
Field and culture samples of the red algal genera Bostrychia and Stictosiphonia from all around the world were analyzed for the polyols D-sorbitol and dulcitol, that function as osmolytes, as well as for the heteroside digeneaside by using 13C-NMR spectroscopy and HPLC. While all plants exhibited D-sorbitol, the occurrence of dulcitol and digeneaside was highly variable. Therefore, different types of low molecular weight carbohydrate distribution patterns were found in Bostrychia and Stictosiphonia. The presence of D-sorbitol seems to be a reliable chemosystematic character for both genera, because no other red alga is known to contain this compound. The lack of dulcitol may be correlated with the geographical origin of the Bostrychia and Stictosiphonia samples: while all tropical isolates exhibited both sugar alcohols, in cold-temperate plants only D-sorbitol was determined. In warm-temperate species, however, both polyol distribution types may occur. These data are discussed in terms of possible temperature sensitivity of the dulcitol pathway. However, the biological function of digeneaside (the main photo-assimilated compound in members of the order Ceramiales) is still obscure. 相似文献