首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is ample evidence from epidemiological studies that estrogen-replacement therapy protects postmenopausal women against cardiovascular disease. One explanation for this beneficial effect could be the improvement of blood flow under estrogen therapy. By using ultrasound and Doppler color flow mapping we demonstrated in the aorta of ovariectomized rabbits a significant dose-dependent increase in blood flow after treatment with 17β-estradiol. An increase in blood flow was already observed within 1 h of estradiol treatment and lasted until the end of a 14-day treatment phase. Progesterone did not attenuate the effects of 17β-estradiol on aortic blood flow. The pure estrogen receptor antagonist ZM 182780, however, dose-dependently reversed the effect of 17β-estradiol on blood flow after the 14-day treatment phase, but was not able to antagonize the rapid 17β-estradiol effect on blood flow after 1 h. After killing the animals mRNA and protein expression of the progesterone receptor (PR), a known estrogen-responsive gene in classic target organs, were examined. Analogous to the blood flow results the PR mRNA level increased dose-dependently after 17β-estradiol treatment, whereas ZM 182780 was able to reverse this effect. Immunohistochemical localization of PR in the aortic wall revealed an increase in immunoreactivity in fibroblasts of the adventitia after 17β-estradiol treatment. ZM 182780, and to a lesser degree progesterone, reversed the 17β-estradiol-induced increase in PR immunoreactivity. PR immunoreactivity was further detected in endothelial and smooth muscle cells, but the various hormonal treatments had no discernible effect on the PR mRNA level in these cellular compartments. Our findings in the aorta of OVX rabbits suggest that (a) 17β-estradiol exhibits a rapid effect on arterial tone, (b) the pure estrogen receptor antagonist ZM 182780 inhibits the 17β-estradiol effect on blood flow and PR mRNA and (c) progesterone does not attenuate the beneficial effect of estrogens on arterial tone.  相似文献   

2.
The interaction of tamoxifen (trans-1-(p-β-dimethylaminoethoxyphenyl)-1,2-diphenylbut-1-ene) with the cytosol estrogen receptor of the anterior pituitary of female rats was studied. No differences were recorded between incubations of cytosol samples with 17β-[3H]estradiol performed in the presence or absence of unlabeled 17β-estradiol and tamoxifen, respectively, thus suggesting that these interactions were at common receptor sites and excluding possible cooperative interactions. Competition experiments and Scatchard plot analysis of saturation experiments add further evidence for common receptor sites. A dissociation constant for tamoxifen of Kd = 2 nM was recorded. Tamoxifen was found to be bound to a moiety sedimenting in the 4–5 S region, on a 6–24% linear sucrose density gradient at low salt concentrations, whereas 17β-estradiol sedimented in the 8–9 S area. These data suggest possible conformational changes of the receptor in the presence of tamoxifen. Furthermore, nuclear estrogen receptor levels remained elevated for at least 80 h after the application of tamoxifen alone or in a combination with 17β-estradiol, and a concomitant inhibition of cytosol receptor replenishment was noted. Tamoxifen and 17β-estradiol, respectively, were found to stimulate progesterone receptor levels when applied through 5 days. Tamoxifen plus 17β-estradiol administration elevated progesterone receptor contents above those found for each of the two compounds alone. On the other hand, tamoxifen enhanced the 17β-estradiol-induced prolactin serum levels, but did not stimulate prolactin serum levels by itself. These data combine to suggest that tamoxifen interacts with common estrogen receptor sites at the rat anterior pituitary.  相似文献   

3.
4.
The brain type isozyme of creatine kinase (CKB) has proven to be a useful early marker for the action of steroid and other hormones. An increase in the steady state level of mRNA for CKB was found within 30 min after estrogen stimulation of immature rat uteri. Cycloheximide treatment did not inhibit CKD induction. In order to study the molecular mechanism of this induction, 2.9 kb of the 5′-flanking region of CKB fused with the CAT reporter gene was contransfected into ROS 17/2.8 and HeLa cells along with an expression plasmid for the human estrogen receptor. 17 β-Estradiol at 10−8 M or greater concentrations and the antiestrogen tamoxifen at 10−6 M stimulated CAT activity. When given simultaneously with 17 β-estradiol, tamoxifen showed a synergistic effect.  相似文献   

5.
17β-estradiol induces the synthesis of massive amounts of the hepatic mRNA encoding the Xenopus laevis egg yolk precursor protein, vitellogenin. Vitellogenin mRNA exhibits a half life of approx. 500 h when 17β-estradiol is present, and 16 h after removal of 17β-estradiol from the culture medium. We recently reported that Xenopus liver contains a protein, which is induced by 17β-estradiol and binds with a high degree of specificity to a binding site in a segment of the 3′-untranslated region (3′-UTR) of vitellogenin mRNA implicated in 17β-estradiol stabilization of vitellogenin mRNA. To determine if this mRNA binding protein was specific to this system, or if it was present elsewhere, and regulated by other steroids, we examined the tissue distribution and androgen regulation of this protein. Substantial amounts of the vitellogenin 3′-UTR binding protein were found in several Xenopus tissues including testis, ovary and muscle. In the absence of hormone treatment, lung and intestine contained minimal levels of the mRNA binding protein. Testosterone administration induced the vitellogenin 3′-UTR RNA binding protein in several tissues. Additionally, we found a homologous mRNA binding protein in MCF-7, human breast cancer cells. Although the MCF-7 cell protein was not induced by 17β-estradiol, the MCF-7 cell mRNA binding protein appears to be closely related to the Xenopus protein since: (i) the human and Xenopus proteins elicit gel shifted bands with the same electrophoretic mobility using the vitellogenin mRNA 3′-UTR binding site; (ii) The human and Xenopus proteins exhibit similar binding specificity for the vitellogenin 3′-UTR RNA binding site; and (iii) RNA from MCF-7 cells is at least as effective as RNA from control male Xenopus liver in blocking the binding of the Xenopus and human proteins to the vitellogenin mRNA 3′-UTR binding site. Its broad tissue distribution and regulation by both 17β-estradiol and testosterone suggests that this mRNA binding protein may play a significant role in steroid hormone regulation of mRNA metabolism in many vertebrate cells.  相似文献   

6.
To determine when undifferentiated rabbit granulosa cells first develop the capacity to secrete progesterone, pieces of intact ovaries from neonatal rabbits (newborn—30 days old) and pure granulosa cells from 150–1200 μm follicles at 60–600 days old were cultured in vitro for 6–10 days with human chorionic gonadotropin (HCG), Pergonal (LH/FSH), dibutyryl cyslic AMP (Bu2CAMP), prostaglandin E2, estradiol-17β, and as controls. The culture medium was collected every 2 days, and progesterone, estrone, and estradiol-17β were measured by radioimmunoassay.None of the neonatal ovaries or granulosa cell cultures secreted estrone or estradiol-17β spontaneously or in response to stimulation by gonadotropins, Bu2CAMP, or prostaglandin E2.Control cultures of newborn and 7-day-old ovaries did not secrete progesterone, but ovaries from 17- and 30-day-old rabbits did. Gonadotropins and Bu2CAMP induced progesterone secretion in 7-day-old ovaries and stimulated its production 5-10-fold in ovaries at 17 and 30 days old, but prostaglandin E2 and estradiol-17β were without effect.Granulosa cells from all antral follicles (200–1200 μm) secreted progesterone spontaneously, and its production was stimulated 100–1000-fold with gonadotropins and Bu2CAMP, but not with estradiol-17β or prostaglandin E2. In contrast, granulosa cells from 100–150 μm preantral follicles from 200-day-old animals did not secrete progesterone under these culture conditions.These results demonstrate that rabbit granulosa cells differentiate the capacity to secrete progesterone at the time the primary follicle develops an antrum, and suggest the differentiation process involves the acquisition of the capacity to respond to gonadotropins perhaps by the synthesis or unmasking of gonadotropin receptors.  相似文献   

7.
8.
Antioxidant properties of steroids   总被引:12,自引:0,他引:12  
To determine the relative ranking of antioxidative potential of various steroids the effect of 14 steroid compounds on the fluorescence of phycoerythrin was monitored over time following the addition of a peroxy radical generator 2,2′-azobis (2-amidino-propane) dihydrochloride. The rate of decay of fluorescence in the presence of a 200 nM of 17β-estradiol, 17-estradiol and estriol expressed as percentages of the rate of decay in the absence of these compounds (control curve), were 74.1±6.3, 84.0±5.42 and 64.2±2.53%, respectively (P<0.005). Cortisone and corticosterone appeared to have very mild proxidant properties. Other steroids tested such as esterone, testosterone, progesterone, androstenedione, dehydroepiandrosterone, cortisol, tetrahydrocortisone, deoxycorticosterone and aldosterone had no significant antioxident properties. It is concluded that estrogens especially estriol and 17β-estradiol are naturally occurring antioxidants.  相似文献   

9.
Manipulating the metabolism of glucocorticoids may serve as a useful adjunct in the treatment of breast cancer. The 11β-hydroxysteroid dehydrogenase type 2 enzyme (11βHSD2) potently inactivates glucocorticoids thereby protecting the non-selective mineralocorticoid receptor (MR) in fluid transporting tissues. In the present study, Western blot analysis showed the presence of 11βHSD2 in 66% of the breast tumor samples. The 11βHSD2 and MR are also present in the breast tumor cell line PMC42. Glycyrrhetinic acid abolished glucocorticoid metabolism and inhibited cell growth by 40%, the latter at concentrations consistent with glucocorticoid receptor (GR) and MR binding studies. Metabolism was increased by glucocorticoids, the anti-glucocorticoid RU 38486 and anti-mineralocorticoid spironolactone, while aldosterone had no effect. Neither cortisol nor aldosterone affected cell proliferation, but both RU 38486 and spironolactone caused a significant decrease in cell number. The effects of RU 38486 were only observed at micromolar concentrations and are inconsistent with an action via GR or progesterone receptor (PR). This study shows that 11βHSD2 activity and cell proliferation of PMC42 cells can be modulated via steroid receptors.  相似文献   

10.
To explore the mechanism for anti-ovulatory effects of blockade of preovulatory synthesis and action of progesterone, we focused on cyclooxygenase (COX)-2 induction and mitotic activity of granulosa cells in gonadotropins-treated rats. Treatment with RU486 (a progesterone receptor antagonist) or trilostane (a 3β-hydroxysteroid dehydrogenase inhibitor) just prior to or 4h after human chorinonic gonadotropin (hCG) (hCG4h) decreased ovulation rates and circulating progesterone level. Human CG induction of immunoreactive COX-2 in the granulosa layer of mature Graafian follicles at hCG8h was reduced by RU486 treatment at hCG0h and trilostane treatment at hCG4h. RU486 treatment further attenuated ovarian prostaglandin E(2) (PGE(2)) level significantly. Cell proliferative activity in mural granulosa layer of the inhibitors-treated follicles was significantly lower than in intact group. Obtained results show that inhibition of synthesis and action of progesterone caused attenuated COX-2/PGE(2) system and dysregulated mitotic response of granulosa cells, resulting in decreased ovulation.  相似文献   

11.
The hormonal regulation of hepatic synthesis of vitellogenin during the annual reproductive cycle was performed for the first time in the deserticole, oviparous, diurnal and herbivorous Uromastyx acanthinura, a lizard belonging to the Agamidae family. In order to elucidate what kind of estrogen receptor is involved in this process, an immunohistochemical study was performed. Changes were obtained in the labeling and cellular distribution of the estrogen and progesterone receptors according to the period of the reproductive cycle and the experimental administration of 17β-estradiol. Only the ERβ subtype was present; it was found in all phases of the cycle with a variable localization: nuclear and cytosolic during vitellogenesis, mainly cytosolic in the female with egg retention (luteal phase) and strictly cytosolic in females at sexual rest. The progesterone receptors were present only at the luteal phase and during sexual rest and disappeared completely from females after 17β-estradiol treatment in sexual rest. Our data suggested that mediation of action of the 17β-estradiol in the vitellogenin synthesis in the lizard U. acanthinura occured via ERβ. PRA and PRB could both be necessary for the negative effect of progesterone on the hepatic synthesis of vitellogenin.  相似文献   

12.
Human estrogenic 17β-hydroxysteroid dehydrogenase (17β-HSD1) catalyzes the synthesis of 17β-estradiol (E2) from estrone, in the ovary and peripheral tissues. While the structures of 17β-HSD1 alone and in complex with E2 have been determined (D. Ghosh, V. Pletnev, D.-W. Zhu, Z. Wawrzak, W.-L. Duax, W. Pangborn, F. Labrie, S.-X. Lin, Structure of human 17β-hydroxysteroid dehydrogenase at 2.20 Å resolution, Structure 3 (1995) 503–513; A. Azzi, P.H. Rhese, D.-W. Zhu, R.L. Campbell, F. Labrie, S.-X. Lin, Crystal structure of human estrogenic 17β-hydroxysteroid dehydrogenase complexed with 17β-estradiol, Nature Struct. Biol. 3 (1996) 665–668, no structures of inhibitor/enzyme complex, either modeled or from crystallography, have been reported before the submission of the present paper. The best available inhibitors are among the ‘dual-site inhibitors’, blocking estrogenic 17β-HSD and the estrogen receptor. These compounds belong to a family of estradiol analogues having an halogen atom at the 16 position and an extended alkyl-amide chain at the 7 position (C. Labrie, G. Martel, J.M. Dufour, G. Levesque, Y. Merand, F. Labrie, Novel compounds inhibit estrogen formation and action, Cancer Res. 52 (1992) 610–615). We now report the crystallization of this enzyme/inhibitor complex. The complex of the best available dual-site inhibitor, EM-139, with 17β-HSD1 has been crystallized using both cocrystallization and soaking methods. Crystals are isomorphous to the native crystals grown in the presence of 0.06% β-octyl-glucoside and polyethyleneglycol 4000, with a monoclinic space group C2. Data at 1.8 Å have been collected from a synchrotron source. Even though the size of the inhibitor is greater than that of the substrate, our preliminary X-ray-diffraction study shows that EM-139 fits into the active site in a position similar to that of estrogen. The availability of such structural data will help design more potent inhibitors of estrogenic 17β-HSD.  相似文献   

13.
Estrogenic potency of six triterpene glycosides, Holothurin A, Holotoxin A1, Frondoside A, Cucumarioside A2-2 and Cauloside C, that are natural products and semi-synthesized Ginsenoside-Rh2, were examined with yeast two-hybrid system, including expressed genes of human estrogen receptor, hER, the co-activator TIF2 and lacZ as a reporter gene. Only Ginsenoside-Rh2 exhibited significant moderate estrogenic activity in the concentration range of 10−7 to 10−6 M. Its effect was approximately 30% of the activity of 17β-estradiol applied at half-effective concentration. This indicates Ginsenosides-Rh2 is a weak phytoestrogen. The sea cucumber triterpene glycosides, Holothurin A, Holotoxin A1, Cucumarioside A2-2 and Frondoside A, and plant glycoside Cauloside C had no appreciable estrogenic activity. Data obtained by yeast two-hybrid assay reflect structure–activity relationship between tested compounds and 17β-estradiol. Only Ginsenoside-Rh2 has some similarity in chemical structure with 17β-estradiol that might explain affinity of this glycoside to the hER receptor.  相似文献   

14.
Besides its involvement in reproductive functions, estrogen protects against the development of cardiovascular diseases. The guanylate cyclase/cGMP system is known to exert potent effects on the regulation of blood pressure and electrolyte balance. We examined whether 17β-estradiol can affect soluble guanylate cyclase in PC12 cells. The results indicate that 17β-estradiol decreases cGMP levels in PC12 cells. 17β-Estradiol decreases sodium nitroprusside (SNP)-stimulated, but not atrial natriuretic factor-stimulated cGMP formation in PC12 cells, indicating that 17β-estradiol decreases cGMP levels by inhibiting the activity of soluble guanylate cyclase. 17β-Estradiol also stimulates protein tyrosine phosphatase activities in PC12 cells and dephosphorylates at least three proteins. Addition of sodium vanadate, a protein tyrosine phosphatase inhibitor, blocks the inhibitory effects of 17β-estradiol on soluble guanylate cyclase activity in PC12 cells. Furthermore, transfection of SHP-1, a protein tyrosine phosphatase, into PC12 cells inhibits both basal and SNP-stimulated guanylate cyclase activity. Amino acid analysis also reveals that the 70-kDa subunit of soluble guanylate cyclase contains the SHP-1 substrate consensus sequence. These results suggest that 17β-estradiol inhibits soluble guanylate cyclase activity through SHP-1.  相似文献   

15.
A D-2 dopamine receptor and a β2-adrenoceptor occur in the intermediate lobe of the rat pituitary gland (IL). Exposure of intact IL tissue to a D-2 agonist diminished the ability of dopaminergic agonists [but not 5′-guanylyl imidodiphosphate (Gpp(NH)p)] to inhibit adenylate cyclase activity. Conversely, exposure of intact IL tissue to a β-adrenergic agonist diminished the ability of a β-adrenergic agonist (but not forskolin) to stimulate adenylate cyclase activity. Treatment of ovariectomized rats with 17β-estradiol desensitizes the β2-adrenoceptor but not the D-2 receptor. Desensitization of the IL catecholamine receptors is discussed within the framework of a previously published “working model” of these receptors.  相似文献   

16.
17ß-estradiol and progesterone were administered to post-menopausal women to determine their effects on the capacity of human endometrium to synthesize prostaglandins (PGs) F2α and E. Basal amounts of PGF2α and PGE synthesized by endometrium exposed to 17ß-estradiol and progesterone were significantly higher than the levels produced by endometrium exposed to 17ß-estradiol alone (p < 0.02 for both PGs). Levels found in the former endometrium were broadly comparable to levels in secretory endometrium and in the latter to amounts found in proliferative endometrium of spontaneous, ovulatory cycles.  相似文献   

17.
We recently showed that the production of progesterone (P4) in human placental explant culture from early gestation is enhanced by treatment with 19-nortestosterone (19-NT) or with certain androgens, namely androsen, namely androstenedione (A-dione), 5-androstane-3, 17β diol (3-diol) and 5-androstane-3β, 17β diol (3β-diol). This stimulation of P4 was explored further in this study. There was little metabolism of radioactive P4 when incubated for 24 h in the presence or absene of these steroids. The role of different steroids in the regulation of P450 cholesterol side-chain cleavage enzyme (P450scc) and 3β-hydroxysteroid dehydrogenase (3β-HSD) was evaluated by measuring the conversion of P4 derived from unlabelled 25-hydroxycholesterol and from labelled pregnenolone, respectively. The results showed that 19-NT, A-dione and 3-diol stimulated (P450scc) activity; however, 3β-diol was ineffective. While 19-NT and 3β-diol enhanced the bioconversion of pregnenoloe to P4, A-dione and 3-diol were without effect.

The initial rapid stimulation of P4 by 19-NT within 2 h of incubation was not blocked by concurrent treatment with cycloheximide (CH). However, after incubation for 24 h, 70% of the 19-NT-stimulated P4 was abolished by CH. During the same incubation period,] P4 stimulation by A-dione, 3- and 3β-diol were completely blocked by treatment with CH. Thus our observations suggest that 19-NT-stimulated P4 accumulation is due to the combined effects on P450scc adn 3β-HSD enzyme activities. A-dioneand 3-diol increase biosynthesis of P4 by acting selectively on P450scc enzyme. However, the stimulatory action of 3β-diol on P4 is only at the level of 3β-HSD. Since CH blocks the stimulatory actions, the mechanism(s) by which androgens (A-dione, 3-diol and 3β-diol) and norandrogen (19-NT) augment the biosynthetic enzyme activities appears to be mediated by a process inhibited by CH. Since CH interference was absent during the initial rapid P4-stimulation by 19-NT, there may be a direct action of this steroid at the cellular level which is not dependent on new protein synthesis.  相似文献   


18.
The membrane-bound 17β-estradiol dehydrogenase of porcine endometrial cells was purified to homogeneity as judged by SDS-PAGE and silver staining of a single 32 kD band. A second, more hydrophobic product of the purification protocol contained additional bands at 45 and 80 kD. The 17β-estradiol dehydrogenase activities of both products exceeded those for 17-one reduction by more than 260-fold. Activities of 3-, 3β- and 20-dehydrogenases were absent in either fraction. Polyclonal and monoclonal antibodies raised against the 32 kD protein and the more hydrophobic product precipitated the enzymatic activity and reacted with the 32 and 80 kD bands, but not with the 45 kD band in Western blots. The subcellular localization of the enzyme was studied in sections of intact cells and of isolated organelles using gold sol coated with F(ab′)2 fragments of monoclonal antibody F1. Gold particles were found exclusively over cytoplasmic vesicles of 120–150 nm diameter with electron-dense contents.  相似文献   

19.
An in situ hybridization method using paraffin-embedded sections was used to characterize the chicken oviduct cells synthesizing ovalbumin mRNA due to the action of estrogen and progesterne. The cytodifferentiation of the oviduct cells was induced by 17β-estradiol administration to newly hatched female chicks. To avoid possible effect of estrogen on the action of progesterone the chicks were withdrawn from the estrogen by six days withdrawal period without hormone treatment. Ovalbumin mRNA was not synthesized after a period of estrogen withdrawal. Administration of estrogen induced ovalbumin mRNA in the tubular gland cells. Administration of progesterone induced the expression of ovalbumin mRNA in the surface epithelial cells. It was also found that progesterone induced mucus producing goblet cells in the surface epithelium. Estrogen did not have an effect on the mucus production, which suggests that progesterone could induce the terminal differentiation of the goblet cells. We conclude that the expression of ovalbumin in the surface epithelial cells and in the tubular gland cells is specific for progesterone and estrogen, respectively.  相似文献   

20.
Ovariectomized ewes (n = 24) were treated with implants that resulted in circulating concentrations of progesterone and 17β-oestradiol similar to those seen in intact ewes in the luteal phase of an oestrous cycle. Progesterone implants were left in for 10 days, and 17β-oestradiol implants for 14 days. Twelve of these ewes received daily injections of 17β-oestradiol in oil (i.m.) at doses sufficient to cause a surge release of luteinizing hormone (LH) in the absence of progesterone. The other 12 ewes were treated daily with vehicle (oil). Following progesterone withdrawal on Day 10, each group of 12 ewes was divided into three subgroups. Ewes in each subgroup of the groups treated daily with 17β-oestradiol or vehicle, received an injection of either 17β-oestradiol (oil i.m.), gonadotrophin-releasing hormone (GnRH) (saline, i.v.) or vehicle, 24 h after progesterone withdrawal. Following progesterone withdrawal, no LH surge was detected in ewes treated with vehicle. Surge secretion of LH was detected in ewes of all other groups. The data suggested that in progesterone-treated ewes, daily exposure to stimulatory doses of 17β-oestradiol did not desensitize the hypothalamic pituitary axis to the positive feedback effects of 17β-oestradiol. Daily exposure to 17β-oestradiol did not suppress pituitary responsiveness to GnRH. It was concluded that circulating concentrations of progesterone, similar to those seen during the luteal phase of an oestrous cycle in intact ewes, may prevent all necessary components of the LH surge secretory mechanism from responding to 17β-oestradiol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号