首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions of protein kinase CK2 subunits   总被引:3,自引:0,他引:3  
Several approaches have been used to study the interactions of the subunits of protein kinase CK2. The inactive mutant of CK2 that has Asp 156 mutated to Ala (CK2A156) is able to bind the CK2 subunit and to compete effectively in this binding with wild-type subunits and . The interaction between CK2A156 and CK2 was also demonstrated by transfection of epitope-tagged cDNA constructs into COS-7 cells. Immunoprecipitation of epitope-tagged CK2A156 coprecipitated the subunit and vice-versa. The assay of the CK2 activity of the extracts obtained from cells transiently transfected with these different subunits yielded some surprising results: The CK2 specific phosphorylating activity of these cells transfected with the inactive CK2A156 was considerably higher than the control cells transfected with vectors alone. Assays of the immunoprecipitated CK2A156 expressed in these cells, however, demonstrated that the mutant was indeed inactive. It can be concluded that transfection of the inactive CK2A156 affects the endogenous activity of CK2. Transfection experiments with CK2 and subunits and CK2A156 were also used to confirm the interaction of CK2 with the general CDK inhibitor p21WAF1/CIP1 co-transfected into these cells. Finally a search in the SwissProt databank for proteins with properties similar to those derived from the amino acid composition of CK2 indicated that CK2 is related to protein phosphatase 2A and to other phosphatases as well as to a subunit of some ion-transport ATPases.  相似文献   

2.
The protein kinase CK2 is composed of two catalytic - or - and two regulatory -subunits. In mammalian cells there is ample evidence for the presence of individual CK2 subunits beside the holoenzyme. By immunofluorescence studies using peptide antibodies which allow us to detect the CK2-, - and -subunits we found all three subunits to be co-localized with a 58 KDa Golgi protein which is specific for the Golgi complex. Subfractionation studies using dog pancreas cells revealed the presence of all three subunits of CK2 at the smooth endoplasmic reticulum (sER)/Golgi fraction whereas the rough endoplasmic reticulum (rER) harboured only the catalytic - and -subunits. We found that the microsomal preparation from dog pancreas cells contained CK2 which phosphorylated a CK2 specific synthetic peptide and which was heparin sensitive. Furthermore, we could immunoprecipitate the CK2-subunit that exhibited a kinase activity which phosphorylated a CK2 specific substrate and which was heparin sensitive. Protease digestion experiments revealed that the CK2 subunits were located on the cytosolic side of the rER and the sER/Golgi complex. Thus, we could demonstrate an asymmetric distribution of the CK2 subunits at the rER and sER/Golgi complex. Since the CK2- and -subunits exhibit a substrate specificity which is different from the CK2 holoenzyme one might speculate that the asymmetric distribution of the CK2 holoenzyme and the CK2 catalytic subunits may have regulatory functions.  相似文献   

3.
Kitamura E  Blow JJ  Tanaka TU 《Cell》2006,125(7):1297-1308
Faithful DNA replication ensures genetic integrity in eukaryotic cells, but it is still obscure how replication is organized in space and time within the nucleus. Using timelapse microscopy, we have developed a new assay to analyze the dynamics of DNA replication both spatially and temporally in individual Saccharomyces cerevisiae cells. This allowed us to visualize replication factories, nuclear foci consisting of replication proteins where the bulk of DNA synthesis occurs. We show that the formation of replication factories is a consequence of DNA replication itself. Our analyses of replication at specific DNA sequences support a long-standing hypothesis that sister replication forks generated from the same origin stay associated with each other within a replication factory while the entire replicon is replicated. This assay system allows replication to be studied at extremely high temporal resolution in individual cells, thereby opening a window into how replication dynamics vary from cell to cell.  相似文献   

4.
5.
We have recently shown that protein kinase CK2 binds to the splice factor hPrp3p. Moreover, CK2 phosphorylates hPrp3p in vitro and in vivo. Here we analysed the spliceosome for the presence of individual subunits of CK2. By cell fractionation experiments we found that CK2alpha, CK2alpha', the spliceosome specific SmB/B' and hPrp3p protein co-localize in the nucleus. A sucrose density gradient analysis revealed that the individual subunits of CK2 co-sedimented at least in part with the SmB/B' protein. We further show by co-immune precipitation experiments that CK2alpha is associated with the U4/U6*U5 tri-snRNP specific protein 61K. In vitro splice assays with nuclear extracts depleted from CK2alpha, CK2alpha' and hPrp3p, respectively, revealed that CK2alpha and hPrp3p are absolutely necessary for an efficient splicing whereas CK2alpha' seems to be dispensable. Furthermore, these data support the notion about individual roles for CK2alpha and CK2alpha' in the splicing process.  相似文献   

6.
Specific binding of protein kinase CK2 catalytic subunits to tubulin   总被引:2,自引:0,他引:2  
Protein kinase CK2 is composed of two regulatory beta-subunits and two catalytic alpha- or alpha'-subunits. To analyse these subunits individually we generated antibodies against unique peptides derived from the alpha-, alpha'- and beta-subunit. Immunofluorescence studies with these antibodies revealed the presence of all three CK2 subunits in the cytoplasm and weakly in the nucleus with strong signals around the nuclear membrane. Double staining experiments revealed a co-localisation of all three subunits with tubulin. A direct association between the CK2 alpha- and the alpha'-subunit and tubulin was confirmed by co-immunoprecipitation experiments as well as by Far Western analysis. There was no binding of the CK2 beta-subunit to tubulin. Thus, with tubulin we have identified a new binding partner specific for the catalytic subunits of CK2.  相似文献   

7.
8.
Spatial and temporal compartmentalization of cAMP (and its target proteins) is central to the ability of this second messenger to govern cellular activity over timescales ranging from milliseconds to several hours. Recent years have witnessed a burgeoning of methodologies that enable researchers to directly monitor rapid subcellular cAMP dynamics, which are unobtainable by traditional cAMP assays. In this review, we examine cAMP biosensors that are currently available for measuring cAMP at the single-cell level, compare their various operating principles and discuss their applications.  相似文献   

9.
Adiponectin is an adipose tissue-derived hormone that is involved in the inhibition of metabolic syndrome, protection of hypertension, and suppression of atherosclerosis. Since these effects are not understood in detail, adiponectin signaling has to be clarified for therapeutic applications. Adiponectin activities are mediated by its two receptors adiponectin receptor 1 and adiponectin receptor 2, which consist of seven transmembrane helices. Previous studies revealed the beta subunit of protein kinase CK2 as an interaction partner of the adiponectin receptor 1 N-terminus using a yeast-two-hybrid screen, co-immunoprecipitation, ELISA experiments, and co-localization studies. Inhibition of CK2 activity by 2-dimethylamino-4,5,6,7-tetrabromo-1H-benz-imidazole led to a decrease of ACC phosphorylation and indicates an important role of CK2 in adiponectin signaling. CK2 is characterized as a heterotetramer that consists of two regulatory beta and two catalytic alpha subunits, but a holoenzyme-independent role for both subunits is described as well. Therefore, we analyzed the role of the catalytic subunit in this interaction by co-immunoprecipitation and bimolecular fluorescence complementation studies and found CK2 alpha as an interaction partner of the receptor. Treatment with full-length adiponectin resulted in no dissociation of the catalytic alpha subunit. Consequently, our data suggest an interaction of the adiponectin receptor 1 with the tetrameric complex and identified protein kinase CK2 as a key player in adiponectin signaling.  相似文献   

10.
Direct regulation of microtubule dynamics by protein kinase CK2   总被引:2,自引:0,他引:2  
Microtubule dynamics is essential for many vital cellular processes such as morphogenesis and motility. Protein kinase CK2 is a ubiquitous protein kinase that is involved in diverse cellular functions. CK2 holoenzyme is composed of two catalytic alpha or alpha' subunits and two regulatory beta subunits. We show that the alpha subunit of CK2 binds directly to both microtubules and tubulin heterodimers. CK2 holoenzyme but neither of its individual subunits exhibited a potent effect of inducing microtubule assembly and bundling. Moreover, the polymerized microtubules were strongly stabilized by CK2 against cold-induced depolymerization. Interestingly, the kinase activity of CK2 is not required for its microtubule-assembling and stabilizing function because a kinase-inactive mutant of CK2 displayed the same microtubule-assembling activity as the wild-type protein. Knockdown of CK2alpha/alpha' in cultured cells by RNA interference dramatically destabilized their microtubule networks, and the destabilized microtubules were readily destructed by colchicine at a very low concentration. Further, over-expression of chicken CK2alpha or its kinaseinactive mutant in the endogenous CK2alpha/alpha'-depleted cells fully restored the microtubule resistance to the low dose of colchicine. Taken together, CK2 is a microtubule-associated protein that confers microtubule stability in a phosphorylation-independent manner.  相似文献   

11.
Salvi M  Sarno S  Marin O  Meggio F  Itarte E  Pinna LA 《FEBS letters》2006,580(16):3948-3952
The acronym CK2 denotes a highly pleiotropic Ser/Thr protein kinase whose over-expression correlates with neoplastic growth. A vexed question about the enigmatic regulation of CK2 concerns the actual existence in living cells of the catalytic (alpha and/or alpha') and regulatory beta-subunits of CK2 not assembled into the regular heterotetrameric holoenzyme. Here we take advantage of novel reagents, namely a peptide substrate and an inhibitor which discriminate between the holoenzyme and the catalytic subunits, to show that CK2 activity in CHO cells is entirely accounted for by the holoenzyme. Transfection with individual subunits moreover does not give rise to holoenzyme formation unless the catalytic and regulatory subunits are co-transfected together, arguing against the existence of free subunits in CHO cells.  相似文献   

12.
Flowering plants have evolved a unique reproductive process called double fertilization, whereby two dimorphic female gametes are fertilized by two immotile sperm cells conveyed by the pollen tube. The two sperm cells are arranged in tandem with a leading pollen tube nucleus to form the male germ unit and are placed under the same genetic controls. Genes controlling double fertilization have been identified, but whether each sperm cell is able to fertilize either female gamete is still unclear. The dynamics of individual sperm cells after their release in the female tissue remain largely unknown. In this study, we photolabeled individual isomorphic sperm cells before their release and analyzed their fate during double fertilization in Arabidopsis thaliana. We found that sperm delivery was composed of three steps. Sperm cells were projected together to the boundary between the two female gametes. After a long period of immobility, each sperm cell fused with either female gamete in no particular order, and no preference was observed for either female gamete. Our results suggest that the two sperm cells at the front and back of the male germ unit are functionally equivalent and suggest unexpected cell-cell communications required for sperm cells to coordinate double fertilization of the two female gametes.  相似文献   

13.
14.
Biochemical and crystallographic data suggest that, in contrast with other organisms, the active maize protein kinase CK2 might be composed simply of a catalytic polypeptide (CK2alpha), thus lacking CK2beta regulatory subunits. To investigate the existence and functionality of CK2beta regulatory subunits in Zea mays, we have screened a maize cDNA library using different approaches and have isolated three full-length cDNAs encoding CK2beta regulatory subunits (CK2beta-1, CK2beta-2 and CK2beta-3) and a cDNA coding for a novel CK2alpha catalytic subunit, CK2alpha-3. The pattern of expression of all these alpha/beta subunits has been studied in different organs and developmental stages using specific probes for each isoform, and indicates that while CK2alpha subunits are constitutive, CK2beta subunits are expressed differentially during embryo development. The yeast two-hybrid system and pull-down assays have been used to study specific interactions between the different subunits. While CK2alpha subunits are unable to self-associate, preferential interactions between alpha/beta isoforms and beta/beta isoforms can be predicted. Furthermore, we show that maize CK2alpha/beta subunits assemble into a structural tetrameric complex which has very similar properties to those described in other organisms, and that expression of maize CK2beta subunits in yeast allows the rescue of the phenotypic defects associated to the lack of CK2 function, thus demonstrating the functionality of maize CK2beta regulatory subunits.  相似文献   

15.
The protein kinase CK2 (former name: "casein kinase 2") predominantly occurs as a heterotetrameric holoenzyme composed of two catalytic chains (CK2alpha) and two noncatalytic subunits (CK2beta). The CK2beta subunits form a stable dimer to which the CK2alpha monomers are attached independently. In contrast to the cyclins in the case of the cyclin-dependent kinases CK2beta is no on-switch of CK2alpha; rather the formation of the CK2 holoenzyme is accompanied with an overall change of the enzyme's profile including a modulation of the substrate specificity, an increase of the thermostability, and an allocation of docking sites for membranes and other proteins. In this study we used C-terminal deletion variants of human CK2alpha and CK2beta that were enzymologically fully competent and in particular able to form a heterotetrameric holoenzyme. With differential scanning calorimetry (DSC) we confirmed the strong thermostabilization effect of CK2alpha on CK2beta with an upshift of the CK2alpha melting temperature of more than 9 degrees . Using isothermal titration calorimetry (ITC) we measured a dissociation constant of 12.6 nM. This high affinity between CK2alpha and CK2beta is mainly caused by enthalpic rather than entropic contributions. Finally, we determined a crystal structure of the CK2beta construct to 2.8 A resolution and revealed by structural comparisons with the CK2 holoenzyme structure that the CK2beta conformation is largely conserved upon association with CK2alpha, whereas the latter undergoes significant structural adaptations of its backbone.  相似文献   

16.
蛋白激酶CK2的研究进展   总被引:14,自引:0,他引:14  
蛋白激酶CK2是一种真核细胞中普遍存在的信使非依赖性丝/苏氨酸蛋白激酶。近年来,对蛋白激酶CK2的研究也取得了一些重要进展,尤其是蛋白激酶CK2的结构及其作用底物,蛋白激酶CK2与肿瘤及细胞凋亡的关系,越来越引起人们的关注。  相似文献   

17.
Protein phosphorylation is a key regulatory post-translational modification and is involved in the control of many cellular processes. Protein kinase CK2, formerly known as casein kinase II, which is a ubiquitous and highly conserved protein serine/threonine kinase, plays a central role in the control of a variety of pathways in cell proliferation, transformation, apoptosis and senescence. An understanding of the regulation of such a central protein kinase would greatly help our comprehension of the regulation of many pathways in cellular regulation. A number of reviews have addressed the detection, the development, and the characterization of inhibitors of CK2. The present review focuses on possible natural regulators of CK2, i.e. proteins and other cellular factors that bind to CK2 and thereby regulate its activity.  相似文献   

18.
Five isoforms of CK2 may exist simultaneously in yeast cells: free catalytic subunits CK2α', CK2α and three holoenzymatic structures composed of αα'ββ', α(2)ββ' and α'(2)ββ'. Each isolated and purified form exhibits properties typical for CK2, but they differ in substrate specificity as well as in sensitivity to specific modulators. All five isoforms of protein kinase CK2 from Saccharomyces cerevisiae were examined for their binding capacity with ATP/GTP and two commonly used ATP-competitive inhibitors TBB and TBI. Enzymes were tested with protein substrates differently interacting with CK2 subunits: Elf1, Fip1, Svf1, P2B and synthetic peptide. Obtained results show that K(m) for ATP varies from 2.4-53 μM for Elf1/CK2α' and Svf1/CK2α, respectively. Similar differences can be seen in case when GTP was used as phosphate donor. The inhibitory effect depends on composition of CK2/substrate complexes. Highest sensitivity to TBB shows all complexes containing αα'ββ' isoform with K (i) values between 0.2 and 1.1 μM. The prospect that TBB and TBI could be utilized to discriminate between different molecular forms of CK2 in yeast cells was examined. Both inhibitors, TBB as well as TBI, decreases cell growth to extents devoting interactions with different CK2 isoforms present in the cell but the presence of β/β'-dimer has a high importance towards sensitivity. Conceivably, a given inhibitor concentration can inhibit only selected CK2-mediated processes in the cell.  相似文献   

19.
Protein kinase CK2 is ubiquitous in eukaryotes and is known to phosphorylate many protein substrates. The enzyme is normally a heterotetramer composed of catalytic ( and ) and regulatory () subunits. The physiological regulation of the enzyme is still unknown but one of the factors that may play an important role in this regulation is the ratio of the catalytic and regulatory subunits present in cells. The possible existence of free CK2 subunits, not forming part of the holoenzyme, may be relevant to the physiological function of the enzyme in substrate selection or in the interaction of the subunits with other partners. The objective of this work was to study in COS-7 cells the effects of transient expression of CK2 subunits and mutants of the catalytic subunit on the CK2 phosphorylating activity of the extracts of these cells. Using pCEFL vectors that introduce hemaggutinin (HA) or a heptapeptide (AU5) tags in the expressed proteins, COS-7 cells were transfected with and subunits of Xenopus CK2, with the subunit of D. rerio, and with Xl CK2A156, which although inactive can bind tightly to CK2, and with Xl CK2E75E76, which is resistant to heparin and polyanion inhibition. The efficiency of transient transfection was of 10–20% of treated cells.Expression of CK2 or CK2E75E76 in COS-7 cells caused an increase of 5–7-fold of the CK2 activity in the soluble cell extracts. If these catalytic subunits were cotransfected with CK2, the activity increased further to 15–20-fold of the controls. Transfection of CK2 alone also increase the activity of the extracts about 2-fold. Transfection with the inactive CK2A156 yielded extracts with CK2 activities not significantly different from those transfected with the empty vectors. However, cotransfection of CK2 or CK2E75E76 with CK2A156 caused a 60–70% decrease in the CK2 activity as compared to those of cells transfected with only the active CK2 subunits. These results can be interpreted as meaning that CK2A156 is a dominant negative mutant that can compete with the other catalytic subunits for the CK2 subunit. Addition of recombinant CK2 to the assay system of extracts of cells transfected with catalytic subunits causes a very significant increase in their CK2 activity, demonstrating that CK2 subunit is limiting in the extracts and that an excess of free CK2 has been produced in the transfected cells. Transfection of cells with CK2E75E76 results in a CK2 activity of extracts that is 90% resistant to heparin demonstrating that a very large proportion of the CK2 activity is derived from the expression of the exogenous mutant. In both the in vivo and in vitro systems, the sensitivity of CK2E75E76 to heparin increases considerably when it forms part of the holoenzyme CK222.  相似文献   

20.
Subcellular localization of protein kinase CK2   总被引:17,自引:0,他引:17  
More than 46 years ago, Burnett and Kennedy first described protein kinase CK2 (formerly known as casein kinase 2) in liver extracts. Since then, protein kinase CK2 has been investigated in many organisms from yeast to man. It is now well established that protein kinase CK2 is a pleiotropic and ubiquitous serine or threonine kinase, which is highly conserved during evolution. A great number of studies deal with substrates of CK2, but the fact that over 160 substrates exist is more confusing than elucidatory. The holoenzyme is composed of two regulatory beta-subunits and two catalytic alpha- or alpha'-subunits. There is now increasing evidence for individual functions of the subunits that are different from their functions in the holoenzyme. Furthermore, more and more studies describe interacting partners of the kinase that may be decisive in the regulation of this enzyme. A big step forward has been the determination of the crystal structure of the two subunits of protein kinase CK2. Now the interactions of the catalytic subunit of CK2 with ATP as well as GTP and the interaction between the regulatory subunits can be explained. However, cellular functions of protein kinase CK2 still remain unclear. In the present review we will focus our interest on the subcellular localization of protein kinase CK2. Protein kinase CK2 is found in many organisms and tissues and nearly every subcellular compartment. There is ample evidence that protein kinase CK2 has different functions in these compartments and that the subcellular localization of protein kinase CK2 is tightly regulated. Therefore studying the subcellular localization of protein kinase CK2 may be a key to its function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号